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1. Introduction 

Classical thermodynamics discusses the thermodynamic system, its surroundings and their 

common boundary. It is concerned with the state of thermodynamic systems at equilibrium, 

using macroscopic, empirical properties directly measurable in the laboratory (Wang, 1955; 

Yunus, Michael and Boles, 2011). Classical thermodynamics model exchanges of energy, 

work and heat based on the laws of thermodynamics. The first law of thermodynamics is a 

principle of conservation of energy and defines a specific internal energy which is a state 

function of the system. The second law of thermodynamics is a principle to explain the 

irreversibile phenomenon in nature. The entropy of an isolated non-equilibrium system will 

tend to increase over time, approaching a maximum value at equilibrium. Thermodynamic 

laws are generally valid and can be applied to systems about which only knows the balance 

of energy and matter transfer. The thermodynamic state of the system can be described by a 

number of state variables. In continuum mechanics state variables usually are pressure p , 

volume V , stress σ , strain ε , electric field strength E , electric displacement D , magnetic 

induction density B , magnetic field strength H , temperature T , entropy per volume s , 

chemical potential per volume  and concentration c  respectively. Conjugated variable 

pairs are ( , ),( , ),( , ),( , ),( ),( , )p V cT,Sσ ε E D H B . There is a convenient and useful combination 

system in continuum mechanics: variables , , , , ,V T ε E H  are used as independent variables 

and variables , , , ,p cSσ D B,  are used as dependent variables. In this chapter we only use 

these conjugated variable pairs, and it is easy to extend to other conjugated variable pairs. In 

the later discussion we only use the following thermodynamic state functions: the internal 

energy U  and the electro-magneto-chemical Gibbs free energy ( , , , )e T,E Hg   per 

volume in an electro-magneto-elastic material. They are taken as  

 
d ( , , , ) d d d d d  ; d d

d ( , , , )=d d d d d d 

ij ij

e

c T s

Ts s T

  

  

       

            g

U

U

s, c

T, c c





D B σ : ε E D H B σ : ε

E H E D H B σ : ε D E B H
    (1) 

Other thermodynamic state functions and their applications can be seen in many literatures 

(Kuang, 2007, 2008a, 2008b, 2009a, 2009b, 2010, 2011a, 2011b). For the case without chemical 

potential e e g g  is the electromagnetic Gibbs free energy. For the case without 

electromagnetic field e g g  is the Gibbs free energy with chemical potential. For the case 

without chemical potential and electromagnetic field e g g  is the Helmholtz free energy. 
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In this chapter two new problems in the continuum thermodynamics will be discussed. The 

first is that in traditional continuum thermodynamics including the non-equilibrium theory 

the dynamic effect of the temperature is not fully considered. When the temperature T  is 

varied, the extra heat or entropy should be input from the environment. When c  is varied, 

the extra chemical potential   is also needed. So the general inertial entropy theory (Kuang, 

2009b, 2010) is introduced into the continuum thermodynamics. The temperature and 

diffusion waves etc. with finite phase velocity can easily be obtained from this theory. The 

second is that usually we consider the first law only as a conservation law of different kinds 

of energies, but we found that it is also containing a physical variational principle, which 

gives a true process for all possible process satisfying the natural constrained conditions 

(Kuang, 2007, 2008a, 2008b, 2009a 2011a, 2011b). Introducing the physical variational 

principle the governing equations in continuum mechanics and the general Maxwell stress 

and other theories can naturally be obtained. When write down the energy expression, we 

get the physical variational principle immediately and do not need to seek the variational 

functional as that in the usual mathematical methods. The successes of applications of these 

theories in continuum mechanics are indirectly prove their rationality, but the experimental 

proof is needed in the further. 

2. Inertial entropy theory 

2.1 Basic theory in linear thermoelastic material 

In this section we discuss the linear thermoelastic material without chemical reaction, so in 

Eq. (1) the term d d cd     μD E B H  is omitted. It is also noted that in this section the 

general Maxwell stress is not considered. The classical thermodynamics discusses the 

equilibrium system, but when extend it to continuum mechanics we need discuss a dynamic 

system which is slightly deviated from the equilibrium state. In previous literatures one 

point is not attentive that the variation of temperature should be supplied extra heat from 

the environment. Similar to the inertial force in continuum mechanics we modify the 

thermodynamic entropy equation by adding a term containing an inertial heat or the inertial 

entropy (Kuang, 2009b), i.e. 

 

 ( ) ( ) ( )
, , 0 0

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )
, , ,

 ( ) ,     ,     

; ;

= = 0;

a a a
i i i i s s s

r i r a
i i

i r a i
i i i i i i

Ts Ts r q r T s T s T C T T

s s s s s r T T

Ts Ts Ts Ts Ts r T T s T T

   



  

       

     

        

q

       

       

         

      (2) 

where  a
s  is called the reversible inertial entropy corresponding to the inertial heat; s  is 

called the inertial entropy coefficient, 0s  is also a constant having the dimension of the time; 

s is the entropy saved in the system, ( )rs  and ( )is  are the reversible and irreversible parts of 

the s , Ts  is the absorbed heat rate of the system from the environment, ( )a
sTs TT   is the 

inertial heat rate and  a
s  is proportional to the acceleration of the temperature; r  is the 

external heat source strength, q  is the heat flow vector per interface area supplied by the 

environment, η  is the entropy displacement vector, η  is the entropy flow vector. Comparing 

Eq. (2) with the classical entropy equation it is found that in Eq. (2) we use ( ) aTs Ts   to 

instead of Ts  in the classical theory. In Eq. (2) s is still a state function because  a
s  is 
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reversible. As in classical theory the dissipative energy h  and its Legendre transformation or 

“the complement dissipative energy” h  are respectively 

  ( )
, , , ,d d  = ,  i
i i i i i i i ih h t Ts T h T T T          

          (3) 

Using the theory of the usual irreversible thermodynamics (Groet, 1952; Gyarmati, 1970; Jou, 
Casas-Vzquez, Lebon, 2001; Kuang, 2002) from Eq. (3) we get 

   
or

1
, , ,

1
,

( ),               ,       

,       

i i j i ij j i i ij j

ij ij ijj i i ij

T T T T q T

T T q

     

    





     

    

   


    (4)  

where λ  is the usual heat conductive coefficient. Eq. (4) is just the Fourier’s law. 

2.2 Temperature wave in linear thermoelastic material 

The temperature wave from heat pulses at low temperature propagates with a finite 

velocity. So many generalized thermoelastic and thermopiezoelectric theories were 

proposed to allow a finite velocity for the propagation of a thermal wave. The main 

generalized theories are: Lord－Shulman theory (1967), Green－Lindsay theory (1972) and 

the inertial entropy theory (Kuang, 2009b).  

In the Lord－Shulman theory the following Maxwell-Cattaneo heat conductive formula for 

an isotropic material was used to replace the Fourier’s law, but the classical entropy 

equation is kept, i.e. they used 

 0 , ,,  i i i i iq q T Ts r q                               (5) 

where 0  is a material parameter with the dimension of time. After linearization and 

neglecting many small terms they got the following temperature wave and motion 

equations for an isotropic material: 

 
   

     
, 0 0 0

, . ,

( ) 2 1 1 2 ( )

1 2 2 1 1 2

ii jj jj

j ij i jj i i

T C T T G T

G u Gu G T u

       

    

        
            

   


          (6) 

where C is the specific heat,  is the thermal expansion coefficient, G and   are the shear 

modulus and Poisson’s ratio respectively. From Eq.Ȑ5ȑwe can get 

 0 , 0iiTs Ts T r r           

From above equation it is difficult to consider that s  is a state function. 

The Green－Lindsay theory with two relaxation times was based on modifying the 

Clausius-Duhemin inequality and the energy equation; In their theory they used a new 

temperature function ( , )T T   to replace the usual temperature T . They used 

 
   

 
d d d 0,    ( , ),    ( ,0)

,    , ,

i iV V a

ij

s V r V q n a T T T T

s T T

    

 

    

  

   

g g gU

      (7) 
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After linearization and neglecting small terms, finally they get (here we take the form in 
small deformation for an isotropic material)  

 
 

, 0 0 ,

1

( ) ,       

2 1 2 2 ( )

ii jj ji j i i

ij kk ij ij

T C T T T f u

G G

      

         

    

       

   


  (8) 

where 0 ,  1  and γ are material constants. 

Now we discuss the inertial entropy theory (Kuang, 2009b). The Helmholtz free energy g  

and the complement dissipative energy h  assumed in the form 

 

   

 

2
0

, , 00

( , ) 1 2 1 2

) ,

, ,

kl ijkl ji lk ij ij

t

ij i j

ijkl jikl ijlk klij ij ji ij ji

C T C

h T d T T

C C C C

       

     

   

  

      
    



g

       (9a) 

where 0T  is the reference (or the environment) temperature, ,ijkl ijC   are material constants. 

In Eq. (9a) it is assumed that 0s   when 0T T  or 0  . It is obvious that , , ,j jT T    . 
The constitutive (or state) and evolution equations are 

 

 
0

, , ,0

,    /

d ,    

ij ij ijkl kl ij ij ij

t

i i ij j i i ij j

C s C T

h T T q

        

       

         

        

g g
                    (10) 

Using Eq. (10), Eq. (9a) can be rewritten as 

          1 2    1 2 1 2
T T

ijkl ji lk ij ijC s         g g , g                            (9b) 

where  T
g  is the energy containing the  effect of the to temperature.  

Substituting the entropy s  and iT  in Eq. (10) and  a
s  in (2) into ( )

,( )a
i iTs Ts r T       in 

Eq. (2) we get 

    0 , ,
/  ij ij s ij j i

T C T T r         
               (11) 

When material coefficients are all constants fromȐ11ȑwe get 

 0 , /s ij ji ij ijT CT T r T                (12a) 

Eq. (12a) is a temperature wave equation with finite phase velocity. For an isotropic elastic 
material and the variation of the temperature is not large, from Eq. (12a) we get 

 
    

 
0 0 ,

, 0 0

/    s ii ii

ii s ii

C T T r T or

C T r

     

     

   

   

   

   
                             (12b) 

Comparing the temperature wave equation Eq. (12b) with the Lord－Shulman theory (Eq. 

(6)) it is found that in Eq. (12b) a term 0 jj   is lacked (in different notations),but with that in 
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the Green－Lindsay theory (Eq. (8)) is similar (in different notations). For the purely thermal 

conductive problem three theories are fully the same in mathematical form. 
The momentum equation is 

 
,ij j i if u           (13) 

where f  is the body force per volume,   is the density. Substituting the stress σ  in Eq. 
(10) into (13) we get 

   , ,
,

,ijkl kl ij i i i ijkl k lj ij j i
j

C f u or u C u f                  (14) 

Comparing the elastic wave equation Eq. (14) with the Green－Lindsay theory (Eq. (8)) it is 

found that in Eq. (14) a term 1 ,i   is lacked (in different notations), but with the 

Lord－Shulman theory (Eq. (6)) is similar (in different notations). 

2.3 Temperature wave in linear thermo - viscoelastic material 

In the pyroelectric problem (without viscous effect) through numerical calculations Yuan 

and KuangȐ2008, 2010ȑpointed out that the term containing the inertial entropy 

attenuates the temperature wave, but enhances the elastic wave. For a given material there 

is a definite value of 0s
 , when 0 0s s   the amplitude of the elastic wave will  

be increased with time. For 3BaTio 0s
  is about 1310 s . In the Lord－Shulman theory 

critical value 0
 is about 810 s . In order to substantially eliminate the increasing effect of 

the amplitude of the elastic wave the viscoelastic effect is considered as shown in this 

section. 
Using the irreversible thermodynamics  (Groet, 1952; Kuang, 1999, 2002) we can assume 

 

   
 

 
   

2
0

0
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1 2 1 2

, /

) ,

, d ,  

ijkl ji lk ij ij

r
ij ijkl kl ij ij ijij

t

ijkl ji lk j j ijkl ji lk ij i j

ti
ij ijkl kl i i ij j i i iij

C T C

C s C T

h T d

h h T T q

     

        

            

          

  

         

       

           





   

  

g

g g

   
,j j

r i
ij ijkl kl ijkl kl ijij ij C



           

      (15) 

where  r
ij  and  i

ij  are the reversible and irreversible parts of the stress ij , d dij ij t  . 

Comparing Eqs. (9) and (10) with (15) it is found that only a term ijkl ji lk     is added to the 

rate of the complement dissipative energy in Eq. (15) . Substituting the entropy s  and iT  in 

Eq. (15) and  a
s  in (2) into ( )

,( )a
i iTs Ts r T       in Eq. (2) we still get the same equation (12).  

Substituting the stress σ  in Eq. (15) into (13) we get 

   , , ,
,

,ijkl kl ijkl kl ij i i i ijkl k lj ijkl k lj ij j i
j

C f u or u C u u f                           (16) 

In one dimensional problem for the isotropic material from Eq. (15) we have  

 
0, /Y s C T                        (17) 
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where Y  is the elastic modulus,   is a viscose coefficient,   is the temperature coefficient. 
When there is no body force and body heat source, Eqs. (12) and (16) are reduced to 

  0 0 0

0

sC T u

u Yu u

    

  

    

     

  

 
      (18) 

 where ,t x          for any function  . For a plane wave propagating along 
direction x we assume 

    exp i , exp iu U kx t kx t                     (19) 

where ,U   are the amplitudes of u  and   respectively, k  is the wave number and   is 

the circular frequency. Substituting Eq. (19) into (18) we obtain 

 
 

 

2 2

2 2
0 0

i i 0

i 0s

Y k U k

T k U k C
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     

      
      

   (20) 

In order to have nontrivial solutions for ,U  , the coefficient determinant of Eq. (20) should 
be vanished: 

 
 

 
2 2 2 2

2 2 2
0 0 0

i i i
0

is

Y k k ak k

T k k C T k k Cb

    

        

  
 
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     (21a) 

where 

 

i 2 2 2

i2 2 2
0 0

i , , sin

i , 1, sin

Y

T

Y Y Y Y

s T T s T T

a Y r e r aa Y r

b r e r bb r





    

       

       

      
              (21b) 

From Eq. (21) we get 
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0

1 21 2
2 ii i i2 2 2
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2
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Y T
Y

Y T Y T

ak Cab T k Cb

k Cr r T
r

Cr r T T r r e

  
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    

  


    

 

 

    

    

    


   (22) 

where the symbol “+” is applied to the wave number Tk  of the temperature wave and the 
symbol “  ” is applied to the wave number of the viscoelastic wave Yk . If the temperature 
wave does not couple with the elastic wave, then  is equal to zero. In this case we have 

 
      1 i i i i2 2

i 2 i 2

2

,

T Y T Y

Y T

Y T Y T Y

Y Y T T

k r Cr r e e Cr r e e

k r e k Cr e

   

 

  

  

  



   

 

    (23)  
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Because 0Y  due to 0   and 0T   due to 0 0s  , a pure viscoelastic wave or a pure 

temperature waves is attenuated. The pure elastic wave does not attenuate due to 0  . 

For the general case in Eq. (22) a coupling term 2 2
0i T k   is appeared. It is known that  

   i i i i i i2 2 2 2
0 0Im e e i e Im e e i eT Y Y T Y Y

Y T Y TCr r T Cr r T
                   

It means that Im 0Tk   or the temperature wave is always an attenuated wave. If 

 
   

 

2 ii i i2 2 2
0 0

2i i i2 2
0

Im e e i e 4i

Im e e i e

T YT Y Y

T Y Y

Y T Y T

Y T

Cr r T T r r e

Cr r T

   

  

    

  

 

 

 
   

 

  

 (24) 

 

we get Im 0Yk   or in this case the elastic wave is an attenuated wave, otherwise is 

enhanced.  
Introducing the viscoelastic effect in the elastic wave as shown in this section can 

substantially eliminate the increasing effect of the amplitude of the elastic wave with time. 

2.4 Temperature wave in thermo-electromagneto-elastic material 

In this section we discuss the linear thermo-electromagneto-elastic material without 

chemical reaction and viscous effect, so the electromagnetic Gibbs free energy eg  in Eq. (1) 

should keep the temperature variable. The electromagnetic Gibbs free energy eg  and the 

complement dissipative energy eh  in this case are assumed respectively in the following 

form 

 

   
   

 

-

-
2

0

, , , 00

( , , , ) 1 2 1 2

1 2 1 2

( ) ( ),

, , , ,

e e
e kl k k ijkl ji lk kij k ij ij i j i i

m m
kij k ij ij i j i i ij ij

t

e ij i j j j

e e m m
ijkl jikl ijlk klij kij kji kl lk kij kji kl

E H C e E E E E

e H H H H T C

h T d T T

C C C C e e e e

       

       

       

  

  

   

    

      



g

,lk ij ji  

    (25) 

 

where , , , , ,e e m m
kij kl i kij kl ie e     are material constants. The constitutive equations are 

 

 

+

+ 0

, , ,0

,

, /

d ,  

e m e e
ij ijkl kl kij k kij k ij i ij j ijk jk i

m m e m
i ij j ijk jk i ij ij i i i i

t

i v i ij j i i ij j

C e E e H D E e

B H e s E H C T

h T T q

       

        

       

     

     

        

        (26)  

Similar to derivations in sections 2.2 and 2.3 it is easy to get the governing equations: 

    0 ,
,

/e m
ij ij i i i i s ij j

i
T E H C T TT r            

          (27)  
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 
   + +

,

, ,

,

, 0

e m
ijkl kl kij k kij k ij i i

j

e e m m
ij j kij kl i e ij j kij kl i

i i

C e E e H f u

E e H e

   

        

    

   


   (28) 

where e  is the density of the electric charge. The boundary conditions are omitted here.  

2.5 Thermal diffusion wave in linear thermoelastic material 

The Gibbs equation of the classical thermodynamics with the thermal diffusion is: 

 
 , , , ,,

,     ,     

: ,    

i i i i i i i i ii
Ts r q d Ts c r q r T d c

Ts c sT c

  

 

         

     σ ε σ : ε

       

    gU
                 (29) 

where  is the chemical potential, d  is the flow vector of the diffusing mass, c  is the 

concentration. In discussion of the thermal diffusion problem we can also use the free 

energy c sT c  σ : ε  g  (Kuang, 2010), but here it is omitted. Using relations 

     1 1 2 1 1 1
, , ,

, , ,
,i i i i i i i i i

i i i
T q T q T q T T d T d d T                         

From Eq. (29)  (Kuang, 2010) we get: 

 

   
   

( ) ( )
,

( )
, , , ,

;

0, ,

rr i
i i i

ri
i i i i i i ii

s s s Ts r T q T d T

Ts Ts Ts T T Td



     

    

          

    

    
              (30) 

where  iTs  is the irreversible heat rate. According to the linear irreversible thermodynamics 

the irreversible forces are proportional to the irreversible flow (Kuang, 2010; Gyarmati, 1970; 

De Groet, 1952), we can write the evolution equations in the following form 

        1
, , , ,,       i ij i ij i i ij i ij iT T T L T T T D T T L T T                          (31a) 

where ijD  is the diffusing coefficients and Lij  is the coupling coefficients. The linear 

irreversible thermodynamics can only give the general form of the evolution equation, the 
concrete exact formula should be given by experimental results. Considering the 
experimental facts and the simplicity of the requirement for the variational formula, when 
the variation of T is not too large, Eq. (31a) can also be approximated by 

        
       

( )
, ,

, , , ,

, ,

0;    

,    

ˆ ˆ ˆ ˆ,      

i
i i i i i i

i ij i ij i i ij i ij i

i ij i ij i i ij i ij i

Ts T d

T T T L T D T L T T

T T T L T D T L T T

   

    

     

    

     

     

  


  

           (31b) 

Especially the coefficients ˆ ˆ ˆ, , , , ,ij ij ij ij ij ijL D L D   in Eq. (31b) can all be considered as 

symmetric constants which are adopted in following sections. Eq. (31) is the extension of the 

Fourier’s law and Fick’s law.  

Eq. (29) shows that in the equation of the heat flow the role of Ts is somewhat equivalent to 

c  . So analogous to the inertial entropy ( )as  we can also introduce the inertial 
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concentration ( )ac  and introduce a general inertial entropy theory of the thermal diffusion 

problem. Eq. (29) in the general inertial entropy theory is changed to (Kuang, 2010) 

 
       

   

( ) ( )
, ,,

( ) ( ) ( ) ( )

0 0

;   

d ,    ; d ,    

aa a
i i i i ii

t ta aa a a a
s c

T s s c c r q r T c c d

s s s T c c c

 

    

         

    

        

    
         (32) 

 

where c  is the inertial concentration coefficient. Applying the irreversible thermodynamics 

we can get the Gibbs free energy g  and the complement dissipative energy h  as 

    
   

2 2

0

, , , , , ,

1 1
, , , , , ,0 0

1 1 1
( , , )

2 2 2
kl ijkl ji lk ij ij ij ij

i i i i i i i i j j j j

t t

j ij i ij i j ij i ij i

C C b b a
T

h T T

T L T d L D d





            

            

         

     

      

     

g

            (33a) 

where , , ija b b  are also material constants. The constitutive and evolution equations are: 

 

   
0

1 1
, , , , , ,0 0

,   

/ ,    

,

ij ij ijkl kl ij ij

ij ij ij ij

t t

i i ij j ij j i i ij j ij j

C b

s C T a c b b a

h T L T d h L D d



 

 

     

        

           

     

           

            

g

g g   (34) 

Using Eq. (34) g  in Eq. (33a) can also be rewritten as 

         ( , , ) 1 2    1 2
T T

kl ijkl ji lk ij ij ij ijC s c b                   g g , g     (33b) 

where  T
g  is the energy containing the effects of temperature and concentration. 

Substituting Eq. (34) into Eq. (32) we get 

 

 
   

 

0

, ,
,

, ,

/

   

;

ij ij s

ij ij s ij j ij j
i

ij ij c ji ij ji ij

T C T a T

b b a r L

b b a L D In medium

     

        

      

  

      

    









 



   (35) 

If we neglect the term in second order ,i id  in Eq. (29), i.e. we take ,i iTs r q    and assume 

that ,iT  and , j  are not dependent each other, i.e. in Eq. (31b) we assume 

1
, ,,i ij j i ij jT T D       , then for 0r  , Eq. (35) becomes 

 
 , 0 ,

, ,

/

;

ij i j s ij j

ij i j c ij ji

T u C T a

b b u a D In medium

      

    

   

   

  
 

         (36) 
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The formulas in literatures analogous to Eq. (34) can be found, such as in Sherief, Hamza, 
and Saleh’s paper (2004), where they used the Maxwell-Cattaneo formula. 
The momentum equation is 

  ,
,

ijkl k l ij ij i i
j

C u b f u                                (37) 

The above theory is easy extended to more complex materials. 

3. Physical variational principle 

3.1 General theory 

Usually it is considered that the first law of thermodynamics is only a principle of the 
energy conservation. But we found that the first law of thermodynamics is also a physical 
variational principle (Kuang, 2007, 2008a, 2008b, 2009a 2011a, 2011b). Therefore the first law 
of the classical thermodynamics includes two aspects: energy conservation law and physical 
variational principle: 

 
Classical Energy conservation: d d d d =0

Classical physical variational principle : d 0

V

V

V W Q

V W Q   

 

   


Π

U

U

      (38) 

where U  is the internal energy per volume, W is the work applied on the body by the 

environment, Q  is the heat supplied by the environment . According to Gibbs theory when 

the process is only slightly deviated from the equilibrium state dQ  can be substituted by 

d d
V

T s V . In practice we prefer to use the free energy g : 

 

, d d d d

Energy Principle: d d d d 0

Physical Variational Principle: d d 0

V V

V V

Ts s T T s

V dW s T V

V W s T V   





    

  

   

 
 Π

g g

g

g

U U

            (39) 

Here the physical variational principle is considered to be one of the fundamental physical 
law, which can be used to derive governing equations in continuum mechanics and other 
fields. We can also give it a simple explanation that the true displacement is one kind of the 
virtual displacement and obviously it satisfies the variational principle. Other virtual 
displacements cannot satisfy this variational principle, otherwise the first law is not 
objective. The physical variational principle is different to the usual mathematical 

variational method which is based on the known physical facts. In many problems the 
variation of a variable   different with displacement u , should be divided into local 
variation and migratory variation, i.e. the variation + u     , where the local variation 

   of   is the variation duo to the change of   itself and the migratory variation u   of 
  is the variation of change of   due to virtual displacements. In Eqs. (38) and (39) the new 
force produced by the migratory variation u   will enter the virtual work W  or W   as 

the same as the external mechanical force. But in the following sections we shall modify Eq. 
(39) or (38) to deal with this problem. The physical variational principle is inseparable with 
energy conservation law, so when the expressions of energies are given we get physical 
variational principle immediately. We need not to seek the variational functional as that in 
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usual mathematical methods. In the following sections we show how to derive the 
governing equations with the general Maxwell stress of some kind of materials by using the 
physical variational principle. From this physical variational principle all of the governing 
equations in the continuum mechanics and physics can be carried out and this fact can be 
considered as the indirect evidence of the physical variational principle. 

3.2 Physical variational principle in thermo-elasticity 

In the thermo-elasticity it is usually considered that only the thermal process is irreversible, 
but the elastic process is reversible. So the free energy g  and the complement dissipative 

energy can be assumed as that in Eq. (9). The corresponding constitutive and evolution 
equations are expressed in Eq. (10). As shown in section 3.1, the variation of the virtual 

temperature   is divided into local variation    due to the variation of   itself and the 

migratory variation u   due to u : 

 ,,  u u i iu                           (40) 

In previous paper (Kuang, 2011a) we showed that the migratory variation of virtual electric 
and magnetic potentials will produce the Maxwell stress in electromagnetic media, which is 
also shown in section 3.4 of this paper. Similarly the migratory variation u  will also 
produce the general Maxwell stress which is an external temperature stress. The effective 
general Maxwell stress can be obtained by the energy principle as that in electromagnetic media.  
Under assumptions that the virtual mechanical displacement u  and the virtual temperature 

( )or T  satisfy their own boundary conditions ,i iu u      on ua and Ta  respectively. 
The physical variational principle using the free energy in the inertial entropy theory for the 
thermo-elasticity can be expressed as: 

 

 
,

( )

0 0 0 0

( )d d 0

( ) d d d d d d d d

( )

q

T
T k kV V

t t t ti
sV V a V

k k k k kV a

h V u V Q W

Q r T V s V a V

W f u u dV T u da


    

          

   



 



     

    

  

 

       

 

  



g g

 (41) 

where ,k kf T  and i in     are the given mechanical body force, surface traction and 

surface entropy flow respectively. Eq. (41) is an alternative form of Eq. (39). In Eq. (41) the 

term ( )
,0 0

d d
t ti

i is T        is the complement dissipative heat rate per volume 

corresponding to the inner complement dissipation energy rate h . The entropy s  

includes the contribution of ( )

0
d

t is    . The fact that the complement dissipation energy 

rate 
V

hdV  in T  and the internal irreversible complement heat rate ( )

0
d d

t i

V
s V     

in Q   are simultaneously included in Eq. (41) allows us to get the temperature wave 

equation and the boundary condition of the heat flow from the variational principle. In 

Eq. (41) there are two kinds of variational formulas. The first is 
 

, d
T

k kV V
dV u V W    g g , in which the integrands contain variables themselves. The 

second is 
V

hdV Q   , in which the integrands contain the time derivatives of variables, 

so it needs integrate with time t. This is the common feature of the irreversible process 

because in the irreversible process the integral is dependent to the integral path. 
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It is noted that 

      
       

, 0

,

, ,

,

1
,0

( ) ( / )

d 1 2 d  

1 2 d 1 2 d

( d )

ijkl kl ij i j ij ijV V V

ij j i ij j ia V V

T
k k ij ij k kV V

ij ij k k ij ij ka V k

t

ij i jV a

dV C u dV C T dV

n u da u dV s dV

u V s u V

s n u V s u V

hdV T n da

        

    

   

       

    

   

  

  

      

  

  
  

 
 

  

g

g

1
, ,0

[ ( ) d ]
t

ij i jV
T dV    

        (42) 

Finishing the variational calculation, we have 
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 
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    

      

      



  

   





 

 ij

    (43) 

where Tσ  is the effective or equivalent general Maxwell stress which is the external equal 

axial normal temperature stress. This general Maxwell stress is first introduced and its 

rationality should be proved by experiments. Obviously Tσ  can be neglected for the case of 

the small strain and small change of temperature. In Eq. (43) it is seen that u       is 

appeared in a whole. Using  

 ( ) ( )1
, , , , , ,,

( )  = i i
ij i j j j j j i i i i ii

T T Ts T Ts T T T q                  

and the arbitrariness of iu  and  , from Eq. (43) we get 

 
 , ,

1
,

;   

,   ;  , ,   = ,  

ij j i i s i i

kl l k i ij i i i i n n q

f u T s r q in medium

n T on a T n or q q on a

   

        

    

   

  

  
               (44) 

Here Tσ  is the external temperature body force and Tn σ is the surface traction. 
The above variational principle requests prior that displacements and the temperature 
satisfy the boundary conditions, so in governing equations the following equations should 
also be added 

 
on on,  ; ( ),  u Ta or T T a     u u                                 (45) 

Eqs. (44) and (45) are the governing equations of the thermo-elasticity derived from the 
physical variational principle. 

3.3 Physical variational principle in thermo-diffusion theory 

The electro-chemical Gibbs free energy g  and the complement dissipative energy h  are 

expressed in Eq. (33) and the constitutive and evolution equations are expressed in Eq. (34). 
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Under assumptions that the mechanical displacement u , the temperature   and the 

chemical potential   satisfy their own boundary conditions u u ,   and    on 

ua , Ta and a respectively. When the variation of temperature is not large the physical 

variational principle for the thermo-elasto-diffusive problem is 

 

 

 

 
 
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     
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 
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
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 

   
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 
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 
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Π Φ

Φ

g g

 (46) 

In Eqs. (46) ,k kf T  i in      and i in      are given values. In Eq. (46) Q  is related to heat 

(including the heat produced by the irreversible process in the material), Φ  is related to 
the diffusion energy. Eq. (46) shows that there is no term in 

V
dV h corresponding to the 

term 1

0
d da

t

na
T      , so it should not be included in Q   and 

1 1 1
, ,0 0 0

d d d da d d
t t t

i i i i i iV a V
T V T n T V                     . 

It is noted that we have the following relations 
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

g

g
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t

ij i ij iV
L T D d dV  

          (47) 

The further derivation is fully similar to that in the thermo-elasticity. Combining Eqs. (46) 
and (47) we get 
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     (48) 
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where 

      , 1 2 1 2T T
ij ij ij ij ij ij ijij ij s c b s c                            (49)  

Due to the arbitrariness of u ,  and  , from Eq. (48) we get 

 , ,    ;    ,     kl l k k kl l kf u in medium n T on a             (50)  

and 

 

   
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 

1
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1
, ,

, ,

d

, , =

, , =

t t
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t t

c j jV V

j ij i ij i j j n n q

j ij i ij i j j n n d

s d dV T r q dV

c d dV d dV In medium

T T L n or q q on a

L T D n or d d on a

    

    

    

   



  

 

   

  

   

   

   

   

  

 

  

  

         (51)  

where      1 1 1
, , , , , ,

,
ij i ij i i i i i j j i i

j
T T L T T T q              has been used. 

The first two formulas in Eq. (51) can be rewritten as 

 
 
   

, , ,

,

;

;
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s c j j
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     

  
        (52) 

The last equation in Eq. (52) is just the same as that in Eq. (32).  

The above variational principle requests prior that the ,u  and   satisfy their own 

boundary conditions, so in governing equations the following equations should also be 
added 

 on on on,  ; ,  ; ,  u Ta a a       u u       (53) 

Eqs. (49)-(53) are the governing equations of the generalized thermodiffusion theory.  

If we neglect the term  ( )ac c    in Eq. (32), or  ( )
,

a
i iT s s r q      is adopted, then we 

easily get 

 

  , ,, ;

, =

, =

s j j c j j

j j n n q

j j n n d q

T s r q c In medium

n or q q on a

n or d d on a and a

    

 

 

 

 

     





    

 

 
      (54) 

If we also assume that ,iT  and , j  are not dependent each other, then for 0r  , the Eq. (54) 

becomes Eq. (36), i.e. 

 
 , 0 ,

, ,

/

;

ij i j s ij j

ij i j c ij j

T u C T a

b b u a D In medium

      

    

   

   

  
 

                      (55) 
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3.4 Physical variational principle in electro-magneto-elastic analysis 

In this section we discuss the nonlinear electro-magneto-elastic media. Here we extend the 
theory in previous paper (Kuang, 2011) to the material with the electromagnetic body 
couple. Because the asymmetric part of the stress is introduced by the electromagnetic body 

couple, the specific electromagnetic Gibbs free energy emg  is taken as 

 

      
    

       

-( , , ) 1 2 1 2

1 2 + +

, , , , , , , , ,
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     
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   

 

   

g

,e m m
i kij kjie e

  (56a) 

where e
ijkll and m

ijkll  are the electrostrictive and megnetostrictive constants respectively;   

and   may be asymmetric. The corresponding constitutive equations are 
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 
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 

g

g

g l

          (57) 

Let sσ  and aσ  be the symmetric and asymmetric parts of σ  respectively, we have 
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 
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   

      

    

     km l lm k mH H H

     (58) 

where  0 0,  D = E P B = H M have been used, P  and M  are the polarization density 

and magnetization density, 0 and 0  are the dielectric constant and magnetic permeability 

in vacuum respectively. The terms containing ε  in D  and B  in Eq. (58) have been 

neglected. In the usual electromagnetic theory the electromagnetic body couple is 

0+ P E M H . From Eq. (58) it is seen that    2 0a
kl k l l k k l l kD E D E B H B H       or the 

electromagnetic body couple is balanced by the moment produced by the asymmetric 

stresses.  
Using Eq. (57), Eq. (56a) can be reduced to 

       

, ,

1 2 , 1 2 1 2em em
em ijkl ji lk k k k k kl lk k k k k

e m e m
kl mkl m mkl m mkl m mkl m

C D E B H D E B H

e E e H e e

  

 

         

     

g g g
 (56b) 

Because the value of the term :ε  is much less than that of other terms, it can be neglected. 

In the nonlinear electro-magneto-elastic analysis the medium and its environment should be 

considered together as shown in Fig. 1 (Kuang, 2011a, 2011b), because the electromagnetic 

field exists in all space. Under the assumption that , , , , ,env env env   u u  satisfy their  
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Fig. 1. Electromagnetic medium and its environment  

boundary conditions on their own boundaries , , , , ,env env env
u ua a a a a a     and the continuity 

conditions on the interface inta . The Physical variational principle in the nonlinear electro-

magneto-elastic analysis is 
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  (59) 

where the superscript “env” means the variable in environment, “int” means the variable on 
the interface, * * *, , , ;k k n i if T B B n  , , ; , ,env env env int int int

k n k nT B T B        are the given values 

on the corresponding surfaces.  Eq. (59) is an alternative form of Eq. (39) and the 
electromagnetic force is directly enclosed in the formula (Kuang, 2008a, 2009a). 
As shown in previous paper (Kuang, 2011a, 2011b) and in section 3.1 the variations of 

, , ,  E H  will be distinguished into local and migratory variations, i.e.  
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, , ,

,

, , , , ,, ,

, , , , , , , , ,

, , ,

, , , , ,

i i
i i i i u i iE H

u p p p pp

u i i u p p i p i p i p i p i p pi ip

E H E H E H

u E H u

E H u E H u E H E u

         

      

        

 

  

     

  (60) 

Noting that in Eq. (59) we have 

Boundary of environment I 
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      

  

,

,

,
,

, ,

1 2 1 2 d

1 2 d d d

d d d

em
em k k ij ij i i i iV V V V V

k k k k j j ij k k k k ij j iV a

ij k k k k ij i i i i iV a Vj

i p i p i i i iV a V

dV u dV dV D E dV B H dV

D E B H u dV D E B H n u a

D E B H u V D n a D V

D E u V B n a B V

 

 

     

   

      

    

   

      
      

  

    
 

  

  

g g

, di p i pV
B H u V 

 

So 1  in Eq. (59) is reduced to 

 

 
     

 
     

int

int int

1 1 1

1
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*
,

1 , , ,

d d

d d d

d d d d

1 2 d 1 2

D

kj j k k kj j ka a

kj j k k k i i e i iV V a

i i i i i i i i ia V a a

m m m m k k ma

n T u a n u a

f u u V D V D n a

D n a B V B B n a B n a

D B n u a D







 

   

  

    

        

       

    





  

   

      

    

   

 

  

   





Π Π Π

Π

Π  
   

int ,

, , ,,

*
,

d

1 2 d d

d
env

D

m m m k ka

m m m m k i p i p e p pkV V V

p p i p i p i i p pa V a

B n u a

D B u V D E u V E u dV

E u da B H u V B n H u da


 

     

   



   

  


  

  

     (61) 

where 1 Π  is the part of 1Π due to the local variations of , , u ; 1 Π  is the part of 

1Π due to the migratory variations of ,  . Substituting the following identity 

 
 

   
   

int

int

*
, ,

*

,
,

,

d d

( )

( )

D

D

i p i p e p p p p i p i pV V a V

i i p p i i u i i u i p i pa a a a

i p p i i e u i i i uV V ai

i i u i p i p i pa a i

D E u V E u dV E u da B H u V

B n H u da D n da D n da D E n u da

D E u dV D dV B B n da

B n da B H n u da B H





     

      

     

  





   

    

    

  

   
   

  

  ,p i i uV V
u dV B dV   

    (62) 

into 1 Π  in Eq. (61) we get 

  
int

int

int

*
1 ,

,

,

( ) ( )
D

i i e u i i u i i uV a a

i i u i i i u i i uV a a

M M M
ik i k ik i k ik i ka a V

D dV D n da D n da

B dV B B n da B n da

n u da n u da u dV





        

     

     



      

   

  

  

  

  

Π

              (63) 

where Mσ  is the Maxwell stress: 

   1 2M
ik i k i k n n n n ikD E B H D E B H                                      (64) 

Substituting Eq. (63) into Eq. (61) we get 
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  
 
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( ) d d ( )
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D
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


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  

 







     

    

   

     

  
  

  

  



Π

σ σ  
  

1 2

1 2

e m
i j ijkl i j

m m m m kl

E E l H H

D E B H 



 

         (65) 

where σ  is the pseudo total stress (Jiang and Kuang, 2004), which is not the true stress  

in electromagnetic media. From the expression of σ  it is known that σ  is symmetric  

though σ  and Mσ  are asymmetric. Due to the arbitrariness of ,iu   and  , from Eq. 

(65) we get 

  
in

int int int

, , ,

*

1

, , 0,

, ; , ; 0,

d

jk j k k i i e i i

jk j k i i D i i i

ij i j i i i ia a a

f u D B V

n T on a D n on a B B n on a

n u a D n da B n da

 

  

 

    

 

   

    

    





Π

            (66) 

For the environment we have the similar formula: 

 

in
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int int

, , ,

2

, , 0,

, ; , ; ,

env env env env env env env
ij i j j i i e i i

env env env env env env env env env env env env env
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f u D B V

n T a D n on a B n B n on a
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  

 

   

  

   

   

   





Π
int

nv env

a

M envenv env
jk jk jk

da

   




  (67) 

 

Using , , ,env env env env
i i i in n u u          and 1 2

intW       on the boundary 

surface we get 

 
int int

=- on
* int int( ) , ( ) , ( ) ,env env env

ij ij i j i i i i i i i in T D D n B B n B n a                  (68) 

The above variational principle requests prior that the displacements, the electric potential 
and the magnetic potential satisfy their own boundary conditions and the continuity 
conditions on the interface, so the following equations should also be added to governing 
equations 

 

on on on

on

int

, ; , ; ,

, ; ; ; ,

, , ;

i i u

env env env env env env env env env
i i u

env env env
i i

u u a a a

u u a on a on a

u u on a

 

 

   

   

   

  

  

  

  

  

         (69) 

Eqs. (66)－(69) are the governing equations. It is obvious that the above physical variational 

principle is easy to extend to other materials. 
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3.5 Materials with static magnetoelectric coupling effect 
In this section we discuss the electro-magneto-elastic media with static magnetoelectric 
coupling effect shortly. For these materials the constitutive equations are 

 

   

 

 

1 2 1 2

2

kij

kij

e m e m
kl ijkl ij jkl j jkl j ijkl i j ijkl i j

km m l km m l km m l km m l

e e
k kl ijkl ij ml mk mk ml l ij kl l

m m m m
k kl ijkl ij ml mk mk ml l ij kl l

C e E e H l E E l H H

E E H H H E E H

D l E e H

B l H e E

 

   

       

       

    

   

       
       

                    (70) 

where ij ji   is the static magnetoelectric coupling coefficient. The electromagnetic body 
couple is still balanced by the asymmetric stress, i.e. 

   
   

+ =

+ = 2

k l l k k l l k km l lm k m km l lm k m

a
km l lm k m km l lm k m kl

D E D E B H B H E E E H H H

E E H H H E

   

    

      

     
 

In this case though the constitutive equations are changed, but the electromagnetic Gibbs 
free energy eg in Eq. (56b), governing equations (66)－(69) and the Maxwell stress (64) are 
still tenable. 

4. Conclusions 

In this chapter some advances of thermodynamics in continuum mechanics are introduced. 
We advocate that the first law of the thermodynamics includes two contents: one is the 
energy conservation and the other is the physical variational principle which is substantially 
the momentum equation. For the conservative system the complete governing equations can 
be obtained by using this theory and the classical thermodynamics. For the non-
conservative system the complete governing equations can also be obtained by using this 
theory and the irreversible thermodynamics when the system is only slightly deviated from 
the equilibrium state. Because the physical variational principle is tensely connected with 
the energy conservation law, so we write down the energy expressions, we get the physical 
variational principle immediately and do not need to seek the variational functional as that 
in usual mathematical methods. 
In this chapter we also advocate that the accelerative variation of temperature needs extra 
heat and propose the general inertial entropy theory. From this theory the temperature 
wave and the diffusion wave with finite propagation velocities are easily obtained. It is 
found that the coupling effect in elastic and temperature waves attenuates the temperature 
wave, but enhances the elastic wave. So the theory with two parameters by introducing the 
viscous effect in this problem may be more appropriate. 
Some explanation examples for the physical variational principle and the inertial entropy 
theory are also introduced in this chapter, which may indirectly prove the rationality of 
these theories. These theories should still be proved by experiments. 
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