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1. Introduction 

Phase diagrams of multicomponent systems provide full information on the thermodynamic 

compatibility of components in wide concentration and temperature ranges. One of the first 

phase diagrams of polymer–solvent systems was published by Papkov et al., (1937), 

Rogovin et al. (1937), Kargin et al. (1939). In 1941, the works of  Tager & Kargin (1941) 

devoted to the thermodynamics of polymer solutions were published. From the end of the 

1940s, systematic research into the thermodynamic properties and construction of phase 

diagrams of polymer solutions have been performed at the Laboratory of Colloid Chemistry 

(at the Polymer Chair with 1958), Ural State University. Over the course of sixty years, phase 

diagrams have been constructed for hundreds of polymer systems with amorphous and 

crystalline phase separations. Many of these data were included in textbooks, monographs, 

and reviews: Tager (2007), Papkov (1981), Nesterov & Lipatov (1987), Vshivkov (1991), 

Chalykh et al. (1998), Malkin & Kulichikhin (1996), Vshivkov et al. (1998), Vshivkov & 

Rusinova (1998, 2001), Rusinova & Vshivkov (1997), Klenin (1995). The phase liquid 

crystalline transitions of the cellulose derivatives solutions are studied at the polymer chair 

of Ural State University last ten years.  

Academician Kargin was the first who described the ability of polymers to produce 
mesophases. In 1941, he wrote “interactions between big molecules is rather strong even 
when the interaction between individual units is weak. As a result, this can lead to the 
orientation of big molecules in one common direction”. In 1956 Robinson (1956, 1958) has 
discovered, that poly(γ-benzyl-L-glutamate) (PBG) can form the liquid crystals in 
concentrated solutions in chloroform, methylene chloride, trichlorethane, dioxane, m-cresol. 
Flory (1956) has suggested the phase diagram for a polymer – solvent system with the liquid 
crystalline transition. At a later date such diagrams were built for the systems: PBG – DMF 
(Wee & Miller, 1971), polycarbobenzoxyline – DMF (Miller et al., 1974, 1978), poly-p-
benzamide – DMA (Papkov et al., 1974), poly-p-benzamide – DMA, LiCl (Iovleva et al., 
1976), poly(p-phenyleneterephthalamide) – H2SO4 (Papkov & Kulichikhin, 1977, Andreeva 
et al., 1981), PBG – ethylene chloride, PBG – benzyl alcohol (Sasaki et al., 1983), poly(p- 
phenyleneterephthalamide) – H2SO4 – water (Nakajima et al., 1978), PBG – m-cresol (Kiss & 
Porter, 1977), copolymer on the bases of p-phenylenediamine + terephthalic acid and 4,4”-
diphenyldicarboxylic acid) – H2SO4 Lukashova et al. , 1978), PBG – DMF and PBG – 
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dicloracetic acid (Konevets et al., 1985), poly(p-benzamide) – DMA – LiCl (Salaris et al., 
1976), polyhexylisocyanate and poly(50 % butyl + 50 % p-anisole-3-propyl)isocyanat in 
tetrachlorethane (Aharoni & Walsh, 1979), copolymer on the bases of p-
phenylenterephyhalaamide + benzimidazole) – H2SO4 (Iovleva & Banduryan, 2010).  
The influence of a magnetic field on the liquid crystal structure was studied by Meuer 
(1968), de Gennes (1968). The authors  have considered such a field distortion of the 
cholesteric structure and find that the transition to complete nematic order occurs at a 
critical field strength given by 

 Hc= 

1/22
22

0

1

2 m

K

p

 
 
 

  (1) 

Where p0 is the zero field pitch, Δǘm , the diamagnetic anisotropy of the liquid crystal, K22 , 

the twist elastic constant. As the field increases the pitch is predicted to oncrease slowly at 

first and then diverge logarithmically as the critical field is approached. The theory has been 

verified for lyotropic liquid crystals of PBG in a number of different solvents 

(Chandrasekhar, 1977, Iizuka, 1973, DuPre & Duke, 1974, 1975, DuPre et al., 1976, 1977, Patel 

& DuPre, 1979). Molecules of liquid crystals orient themselves in the magnetic field so that 

their long chains are oriented parallel to the magnetic field lines (Miller, 1978). This 

orientation is associated with the molecular anisotropy of macromolecules rather than the 

existence of permanent magnetic moments. 

The LC state in solutions and melts of cellulose derivatives was characterized later on  1970–

1980s (Kulichikhin & Golova, 1985, Meeten & Navard, 1982, Bhadani & Gray, 1983, Navard 

& Haudin, 1981, Yunusov et al., 1982, Iovleva, 1989, Vshivkov et al., 2006, 2007, Vshivkov & 

Rusinova, 2007, 2008). Molecules of cellulose and cellulose derivatives are characterized by a 

rigid helical conformation and, hence, they are capable of ordering and formation of 

cholesteric liquid crystals in concentrated solutions. Investigation of the LC state in polymer 

solutions is of evident practical importance because, owing to the ability to orient under the 

action of external fields, such solutions are used for the preparation of high-modulus fibers. 

To control the above processes, the knowledge of phase diagrams for the systems under 

processing is crucial. However, data on the phase diagrams of such systems in the applied 

magnetic and mechanical fields are not numerous (Vshivkov & Rusinova, 2007, 2008). The 

goal of this work is to study phase liquid crystalline transitions of cellulose derivative 

solutions in magnetic and in a shear stress fields for the following systems: CEC – DMA, 

CEC – DMF, CEC – mixture of trifluoroacetic acid with methylene chloride, HPC – ethanol, 

HPC – acetic acid, HPC – DMA, HPC – DMF, HPC –water and poly(γ-benzyl-L-glutamate) 

(PBG) – DMF.  

2. Results and discussion 

2.1 Experimental 
Cyanoethyl cellulose (CEC) sample with a degree of substitution of 2.6 and Mw= 1.9x105 and 
hydroxypropyl cellulose (HPC) samples with a degree of substitution of 3.4 and Mw=9.5x104 
(HCP-1), 1.4x105 (HPC-2), and 1.15x106 (HPC-3) were used. According to X-ray studies, 
degree of crystallinity of HPC samples did not exceed 15%. The degree of crystallinity for 
the CEC samples was 35%. All X-ray measurements were performed on a DRON-13 
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diffractometer (Cu Kα-irradiation). The CEC and PBG sample with Mη = 2.4× 105  were 
synthesized at the laboratory of the Institute of Macromolecular Compounds, Russian 
Academy of Sciences. 
Dimethylformamide (DMF), dimethylacetamide (DMA), acetic acid (reagent grade), twice-

distilled water, ethanol and a 1 : 1 (by mass) mixture of trifluoroacetic acid with methylene 

chloride were used as solvents. The polymer solutions were prepared in sealed ampoules 

for several weeks at 298 (water), 340 (in ethanol), 350 K (DMF, DMAA, and TFAA–

methylene chloride mixed solvent). 

Phase-transition temperatures Tph were estimated by the cloud-point method. The solution 

temperatures were varied at a rate of 12 K/min. The structure of solutions was examined 

with the help of an “Olympus BX-51” polarization microscope. A polarization photoelectric 

setup was used to determine the type of phase transition in solutions: a sealed ampoule 

containing the transparent polymer solution was placed in the gap between the crossed 

polaroids and the temperature of the ampoule was decreased. The polarized light of an 

LGN-015 He–Ne laser was transmitted through the polaroids in the direction normal to the 

ampoule containing the solution. When the solution was transparent (isotropic) the intensity 

of the transmitted light was zero. As the system became turbid upon variation in 

temperature or increase in the concentration of solution, the transmitted light intensity 

increased. This indicated formation of the anisotropic phase, that is, the LC phase transition. 

Experiments in the magnetic field were performed using a setup generating a constant 

magnetic field with an intensity of up to 15 000 Oe (Fig. 1). 

 

1

23

N S

H

  

Fig. 1. Schematic presentation of the magnetic facility: ( 1 ) electromagnet tips, ( 2 ) the 
thermostating jacket and ( 3 ) the ampoule with the test solution. H is the magnetic field 
vector. 
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The sealed ampoule containing a transparent polymer solution was placed between the 
magnet poles. The magnetic field vector was directed normal to the solution layer (~5 mm 
thick) in the sealed ampoule. The temperature of solution was varied with the thermostating 
jacket, and the onset temperature of opalescence development was measured. This 
temperature was related to the appearance of the LC state. The coefficients of magnetic 
susceptibility ǘ were determined by means of a vibration magnetometer. The values of ǘ are 
presented in the table 1. The energy of the magnetic field E stored by the solution volume 
unit was calculated via equation E=ǘH2, where H is the magnetic intensity. 
 

System -ǘ·107 

HPC-1 18,1 

CEC 5,3 

HPC-1 – ДǺА (ω2=0.5) 6,9 

CEC - ДǺА (ω2=0.5) 6,7 

HPC-1 – Water (ω2=0.5) 3,4 

HPC-1 – Сǻ3СǼǼǻ (ω2=0.3) 71,3 

PBG 78,8 

PBG – DMF  (ω2=0.4) 2,3 

Table 1. The value of ǘ for the studied systems. 

The phase transition temperature under dynamic conditions was measured using two 
methods: (1) a polymer solution that occurred in the isotropic state at elevated temperatures 
was placed in a gap between a glass rotor and a stator of the plastoviscometer. The shear 
rate was set constant, and the working unit was cooled at a rate of 12 K/h. A temperature 
corresponding to the onset of solution opalescence was taken as the phase transition 
temperature. (2) a polymer solution was placed in a metallic working unit of the rheometer 
HAAKE MARS. The shear stress was measured as a function of temperature, and viscosity η 
was calculated. The temperature corresponding to a sharp change in the run of the η – T 
curve was taken as the phase transition temperature Tph. 

2.2 The HPC, CEC and PBG solutions in organic solvents 
2.2.1 Influence of the molecular weight of polymers on the phase liquid crystalline 
transitions 
The boundary curves delimiting transparent isotropic and opalescent anisotropic solutions 
for HPC-1–DMA, HPC-2–DMAA, HPC-1–ethanol, HPC – acetic acid, HPC-2–ethanol, CEC–
DMA, CEC–DMF, CEC–(methylene chloride/TFAA) and PBG – DMF systems are 
determined. Under conventional light, the concentrated solutions of HPC and CEC are 
opalescent. This is suggests formation of cholesteric liquid crystals. 
Figures 2 a – c show boundary curves delimiting transparent isotropic and opalescent 
anisotropic solutions for solutions of the polymers with the different molecular weights. 
It is seen, that as the molecular mass of the polymer increases, the boundary curve 
corresponding to the development of anisotropic LC phase in solutions is shifted to lower 
concentrations. This behavior agrees with the existing theoretical concepts (Flory, 1956). 
According to Flory, the critical concentration of a polymer, Ǘ2*, above which the LC order 
arises, is related to the asymmetry of macromolecules  x  (the length-to-diameter aspect 

ratio) through the following relationship: Ǘ2* = 8 2
(1 )

x x
 . As the molecular mass of the 

polymer increases, the degree of anisometry of macromolecules x increases; as a result, Ǘ2* 
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decreases. The boundary curves of the HPC-1 and HPC-2 in acetic acid coincide practically, 
because the molecular weights of these samples are not too different. 
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Fig. 2 a. Boundary curves for the systems: (1) HPC-1 – ethanol, (2) HPC-2 – ethanol, (3) HPC-
3 – ethanol. I – isotropic solutions, II – anisotropic solutions. 
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Fig. 2 b. Boundary curves for the systems: (1) HPC-1 – DMA, (2) HPC-3 – DMA. I – isotropic 
solutions, II – anisotropic solutions. 
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Fig. 2 c. Boundary curves for the systems: (1) HPC-1 – acetic acid, (2) HPC-2 – acetic acid. I – 
isotropic solutions, II – anisotropic solutions. 
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2.2.2 Influence of the solvent nature on the phase liquid crystalline transitions 
Figures 2 d – 2 g show the boundary curves for the polymer solutions in the different 
solvents. It is seen from these figures and from the table 2, that as the solvent polarity is 
increased (solvent dipole moment µ is increased), the LC phase appears at higher 
concentrations and lower temperatures since with an increase in polarity, a solvent ruptures 
bonds between macromolecules to a higher extent. It is seen, that DMA and DMF are the 
best solvents of the cellulose derivatives. The cellulose and cellulose derivative molecules 
may form the hydrogen bonds between the chains. So the good solvent has to be also an 
electron donor. This ability is determined by the ionization potential Ǘ. As Ǘ is decreased, 
ω2* is increased, that is such solvent is better. 
 

Solvent 
µ dipole 

moment, D 
[61] 

Ǘ-ionization 
potential, 

eV [62] 

ω2* (mass fraction) 
Т=298 К 

HPC-1 HPC-2 HPC-3 CEC 
DMA 3,86 ≤9,65 0,45  0,43 0,42 
DMF 3,81 ≤10,16    0,42 

ethanol 1,69 10,25 0,44 0,38 <0,36  
acetic acid 1,74 10,35 0,3 0,305   

water 1,84 12,59 0,25 0,25 0,195  

Table 2. Physical parameters of the solvents and critical polymer concentration ω2*, above 
which the LC order arises. T = 298 K. 
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Fig. 2 d. Boundary curves for the HPC-1 solutions in (1) acetic acid, (2) ethanol, (3) DMA. I – 
isotropic solutions, II – anisotropic solutions. 
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Fig. 2 e. Boundary curves for the HPC-2 solutions in (1) acetic acid, (2) ethanol. I – isotropic 
solutions, II – anisotropic solutions. 
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Fig. 2 f. Boundary curves for the HPC-3 solutions in: (1) ethanol, (2) DMA. I – isotropic 
solutions, II – anisotropic solutions.  

 

0,2 0,3 0,4 0,5
240

280

320

360

 

T, K




1
2 3

I

II

 

Fig. 2 g. Boundary curves for the CEC solutions in: (1)  mixture of trifluoroacetic acid with 
methylene chloride (1 : 1), (2 ▲) DMF, (3 ▼) DMA. I – isotropic solutions, II – anisotropic 
solutions. 

2.2.3 Influence of the shear stress field on the liquid crystalline phase transitions 
Figures 3 a, b, c  show the temperature dependences of viscosity for the solutions under 
study. The above dependences are described by curves with well-pronounced sharp 
maxima. This behavior is typical of the solutions with LC transitions (Kulichikhin & Golova, 
1985, Vshivkov & Rusinova, 2008, Gray, 1962). According to Gray (1962), this profile of the 
temperature dependences of viscosity corresponds to the (isotropic liquid)–(nematic liquid 
crystal) phase transition. Therefore, upon cooling of HPC, CEC and PBG solutions under 
deformation conditions, no cholesteric crystals are formed: in other words, under dynamic 
conditions, a liquid crystal changes its type from cholesteric to nematic. The results obtained 
are in good agreement with the data of other authors (Volkova et al., 1986), who showed 
that the shear deformation of CEC solutions (c= 30%) in trifluoroacetic acid and a 2 : 1 
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TFAA–methylene chloride mixture results in the formation of similar textures that indicated 
the formation of an XRD-detectable nematic liquid crystal. Thus, the deformation of CES 
solutions leads to the change of an LC type from cholesteric to nematic. When the deformed 
solutions were studied by the method of polarization microscopy, the development of 
striped textures was observed (fig. 4). This fact is indicative of the formation of the domain 
supramolecular structure (Papkov & Kulichikhin, 1977, Aharoni & Walsh, 1979). Since, 
compared to cholesteric liquid crystals, nematic liquid crystals exist at higher temperatures, 
the temperature–concentration region corresponding to the existence of anisotropic 
solutions under the mechanical field should change. 
 

 

Fig. 3 a. Temperature dependences of viscosity for solutions (1, 3) HPC-3–DMA and (2) 
PBG–DMF (2); C = 42.9 (1), 19.4 (2), 44.5 % (3). Shear rate γ = 8 s–1. 

 

 

Fig. 3 b. Temperature dependences of viscosity for solutions: HPC-3– ethanol;  c = (1) 36 and 
(2) 42.1%; Shear rate γ = 8 s–1. 
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Fig. 3 c. Temperature dependences of viscosity for solutions: HPC-1–DMF: c = (1) 50 and (2) 
54.9%. Shear rate γ = 8 s–1. 

 
 
 

 
 
 

Fig. 4. Mocrograph of the CEC solution in DMA с=51.2 % after deformation. γ=60 s-1. х120.  
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The phase transitions in the CEC–DMF and CEC–DMAA systems under static conditions 
and in a shear field are studied. The mechanical field leads to an extension of the 
temperature – concentration region of the existence of the LC phase (fig. 5), a phenomenon 
that is due to the change of orientation of CEC  macromolecules in solutions. 
 

 

Fig. 5 a. Boundary curves of CEC – DMF system. γ: (1) 0, (2) 12 and ( 3 ) 60 s –1. 

 

 

Fig. 5 b. Boundary curves of CEC – DMА system . γ=0 (1) и 12 s-1 (2). 

The dependence of ΔT (ΔT is the difference of phase transition temperatures under dynamic 

and static conditions) on the shear rate is described by a curve with a maximum (fig. 6). The 

same behavior was reported for some polymer–solvent and polymer–polymer systems with 

crystalline phase separation (Vshivkov et al., 1998, Vshivkov & Rusinova, 2001).  
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Fig. 6 a. ∆T vs. shear rate for the following solutions: HPC-2 – DMA (1 – 3), CEC – DMF (4, 6, 
7), HPC-1 – DMA (5, 8, 9), PE (M=2.3x105) – p-xylene (10). c = 48.9 (1), 44.6 (2), 40.8 (3), 43.0 
(4), 50.0 (5), 41.0 (6), 38.0 (7), 45.0 (8) and 40.0 % (9, 10). 
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Fig. 6 b. ∆T vs. shear rate for the following solutions: (1, 2) CEC in DMA and (3–5) DMF; c = 
(1) 42.9, (2) 51.2, (3) 43.0, (4) 41.0, and (5) 38.0%. 

This pattern of the curve was associated with two opposite processes in the system, namely, 

the orientation of macromolecules along the flow direction, which is favorable for phase 

transition, and the destruction of nuclei of the new phase by a mechanical field, a process 

that retards the formation of the LC phase. In the examined range of shear rates, the 

orientation processes dominate, thereby resulting in the elevation of the formation 

temperature (relative to static conditions) of the LC phase. as manifested in the elevation of 

the LC phase transition temperature. For comparison, Fig. 6 a  shows the data for the PE – p-

s-1 

s-1 

ΔT, K 

ΔT 
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xylene system with crystalline phase separation (Vshivkov et al., 1998). As follows from fig. 

6 a , the orientational processes (increase in ∆T) during the LC transition are observed at 

lower shear rate (by approximately an order of magnitude).  

2.2.4 Influence of the magnetic field on the liquid crystalline phase transitions 
Application of the magnetic field raises the temperature of LC phase formation Tph in HPC, 
CEC and PBG solutions; that is, it widens the temperature–concentration region of the 
existence of anisotropic solutions. Molecules of liquid crystals orient themselves in the 
magnetic field so that their long chains are oriented parallel to the magnetic field lines [46]. 
According to published data (Meuer (1968), de Gennes (1968), Chandrasekhar, 1977, DuPre 
& Duke, 1974, 1975, DuPre et al., 1976, 1977, Patel & DuPre, 1979), the cholesteric liquid 
crystal–nematic liquid crystal phase transition occurs in magnetic field. From a certain 
critical intensity, magnetic field causes untwisting of the cholesteric helix. Eventually, 
nematic liquid crystals are formed which occur at higher temperatures than cholesteric 
liquid crystals. 
Polarization microscopy studies revealed a striped texture of HPC and CEC solutions 
treated in magnetic field (fig. 7), thus suggesting formation of large supramolecular 
structures—domains. A similar phenomenon was reported for other polymer–solvent 
systems (Papkov & Kulichikhin, 1977). 
 

 

Fig. 7. Micrograph of the HPC-1 solution in  DMA. с=52.0 %. х120. ǻ=9 kOe. 

It was discovered that after the magnetic field was switched off, an increased Tph was 
preserved in solutions for many hours. This is clearly seen from fig. 8, which demonstrates 
the time dependence of the time dependences of ΔT (ΔT is the difference in LC phase 
transition temperatures in the presence and absence of magnetic field) are determined. This 
fact provides evidence that structures induced by the magnetic field are preserved in 
solutions. Thus, the systems under study possess memory.  
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Fig. 8 a. Time dependence of ∆T for solutions: HCP-3 in DMAA (c = 51.3%) at (1) 370, (2) 
CEC in DMAA (c = 48.3%) at (2) 370 and (3) 298 K treated with magnetic field with intensity 
H = 7 kOe. 

 

 

 
 

Fig. 8 b. Time dependence of Tph for solution CEC in DMF (c = 48.3 %) at (1) 370 and (2) 298 
K treated with magnetic field with intensity H = 7 kOe. 

On the basis of the above data, the times of relaxation τ were calculated for the nematic 
liquid crystal – cholesteric liquid crystal reverse transition in solutions after switching off 

ΔT,E 

t, h 

t, h 
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the magnetic field. Calculations were performed according to the common exponential 
equation. The values of τ were found to be 18 h (HPC-3–DMAA); τ1= 11 h at 298 K and τ2= 8 
h at 370 K (CEC–DMAA). The calculation results made it possible to estimate the order of 
the enthalpy of activation ΔH* for the nematic liquid crystal–cholesteric liquid crystal 
transition in solutions after switching off the magnetic field. The value of ΔH*  is estimated 
via the equation ln(τ1/τ2) = (ΔH*/R)(1/T1– 1/T2) as ~ 4 kJ/mol, in qualitative agreement 
with rather low enthalpies of LC phase transitions (Chandrasekhar, 1977, Plate, 1988). 
Figures 9 a – 9 c show the boundary curves measured for the HPC-3-DMAA, HPC-1 – 
ethanol and CEC–DMAA systems at various magnetic field intensities H. 
 

 

Fig. 9 a. Boundary curves for the HPC-3–DMAA system. H = (1) 0, (2) 3, (3) 5, and (4) 9 kOe. 
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Fig. 9 b. Boundary curves for the CEC – DMAA system. H = (1) 0, (2) 3, (3) 5, and (4) 9 kOe. 
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Fig. 9 c. Boundary curves for the HPC-1 – ethanol for system. H = (1) 0, (2) 3, (3) 5 kOe.  
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Fig. 10 a. ∆T vs magnetic field intensity for the CEC – DMA system. ω2: (1) 0.46,  (2) 0.48, (3) 
0.49. 

As is seen, with an increase in H, the temperature–concentration region of LC solutions 

widens. The higher the value of H, the more pronounced the shift of the boundary curves. A 

similar behavior was observed for solutions of CEC in DMF and PBG in DMF. 

Figures 10 a – 10 e show the concentration dependences of ∆T for the cellulose ester – 

solvent systems (ΔT is the difference of phase transition temperatures in magnetic field and 

in its absence). It is seen, that as the magnetic field intensity H is increased, the ∆T value 

increases. It testifies about the macromolecule orientation increase. 
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Fig. 10 b. ∆T vs magnetic field intensity for the CEC – DMF system. ω2: (1) 0.47, (2) 0.49, (3) 
0.50. 
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Fig. 10 c. ∆T vs magnetic field intensity for the HPC-3 – DMA system. ω2: (1) 0.46, (2) 0.48, 
(3) 0.50, (4) 0.51. 

0 2 4 6 8 10
0

10

20

30

40

 

H, кЭ

T, K

1

2

3

 

Fig. 10 d. ∆T vs magnetic field intensity for the HPC-1 – DMA system. ω2: (1) 0.49, (2) 0.52, 
(3) 0.55. 
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Fig. 10 e. ∆T vs magnetic field intensity for the HPC-1 – ethanol system. ω2: (1) 0.44, (2) 0.46, 
(3) 0.47, (4) 0.48. 

2.3 HPC solutions in water 
Aqueous solutions of HPC belong to systems with strong electron-donor (hydrogen) bonds 
(Belousov & Panov, 1983). Because of the presence of two mobile protons and two unshared 
electron pairs at the oxygen atom, a water molecule may function both as an electron donor 
and an electron acceptor and form four hydrogen bonds with an energy of 20 kJ/mol. 
Therefore, a loose structure with a large free volume is formed in water. In the case of water, 
the fraction of nonspecific interaction is as low as 7%. Intermolecular interactions of HPC 
with water may be determined by both the hydrophilic hydration giving rise to hydrogen 
bonding between a polymer and a solvent and the hydrophobic hydration of water, which 
consists in densification of water structure around nonpolar methyl and methylene groups 
of HPC molecules during formation of solutions. Many studies were devoted to phase 
equilibrium in the HPC–water system, and the LCST values were reported in a number of 
papers (Vshivkov et al., 2007, Fischer et al., 1995, Kagemoto et al., 1970, Nystrom & 
Bergman, 1978, Werbowyi & Gray, 1976, 1979, 1980, Nishio et al., 2002, Fortin & Charlet, 
1989, Ryotarou & Yoshiyuki, 2003, Guido, 1995, Furusawa & Tagawa, 1985, Suto et al., 1989, 
Lu & Schwartz, 2002, Bergman & Sundelof, 1977). Figure 11 a displays the phase diagram 
measured for the HPC-1–water system. This diagram is largely consistent with the phase 
diagrams described for this system. Four regions can be distinguished in the diagram: (I) the 
region of isotropic transparent solutions; (II) the region of anisotropic transparent solutions; 
(III) the region of heat-induced phase separation giving rise to formation of a white 
anisotropic precipitate; and (IV) the region of anisotropic solutions opalescent over the 
entire volume (the colorless solutions are observed, which is typical of cholesterol LC 
solutions. (1* refers to colorless solutions and 2* refers to blue solutions, which is typical of 
cholesterol LC solutions (Kapustin, 1978). According to Fisher et al. (1995), the crystal 
solvates are formed in solutions at an HPC concentration of ~ 80 % or above. The boundary 
curve 1 that characterized the heated induced phase transition has a binodal shape. It 
appears that the breakdown of hydrophilic and hydrophobic hydration of HPC initially 
leads to the amorphous phase separation of solutions and formation of two coexistent dilute 
and concentrated phases (the LCST is 298 K). Simultaneously, anisotropic crystal solvates 
precipitate in the concentrated phase.  

www.intechopen.com



 
Thermodynamics – Physical Chemistry of Aqueous Systems 

 

424 

 

Fig. 11 a. Phase diagram for the HPC-1–water system. Shear rate γ = 0 (1) and 12 s-1 (2). See 
text for explanations. 
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Fig. 11 b. Boundary curves for the HPC-2–water system at γ = (1) 0, (2) 12, and (3) 60 s–1. 
Color of the solutions: (1') red, (2') green, (3') violet. Comments are given in text. 

Figures 11 b and 12 show the phase diagrams for the HPC-2–water and HPC-3–water 
systems measured under static conditions and in the shear field. The phase diagram of the 
HPC-2 – water system virtually coincides with that of the HPC-1–water system, since a 
difference in the molecular masses of these samples is insignificant; the LCST is 298 K. The 
diagram comprises the regions similar to those characteristic of the HPC-1–water system. 
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The distinctive feature is a change in the color of solutions with the weight fraction of the 
polymer ω2 > 0.45. The observed color transition from red to violet through green may be 
related to a reduction in the cholesteric helix pitch with an increase in the polymer 
concentration in solutions. Also note that, in contrast to HPC-1 solutions, in the case HPC-2 
solutions, the curve delimiting regions II and IV shifts toward lower polymer concentrations 
at low temperatures. The molecular mass of the HPC-3 sample is almost an order of 
magnitude higher than that of the HPC-1 and HPC-2 samples, therefore we failed to prepare 
HPC-3 solutions in a wide concentration range because of its poor solubility. Three regions 
may be distinguished in the phase diagram: (I) the region of isotropic solutions; (II) the 
region of transparent anisotropic solutions; and (III) the region, where heating causes phase 
separation accompanied by formation of the while anisotropic precipitate. A comparison of 
the phase diagrams indicates that an increase in the molecular mass of the polymer leads to 
a shift in the boundary curve reflecting the formation of anisotropic LC solutions to lower 
concentrations. This fact is consistent with the current theoretical concepts [20].  
 
 

 
 

Fig. 12. Boundary curves for the HPC-3–water system at  γ = (1) 0 and (2) 12 s–1. Comments 
are given in text. 

2.3.1 Influence of the shear stress field on the liquid crystalline phase transitions 
The deformation of these systems increases the temperatures of heat-induced separation 
and decreases the temperatures of transition from region II to region III. As the shear rate is 
increased, the absolute value of ΔT increases for both transitions and achieves 7 K (ΔT is a 
difference between phase transition temperatures under dynamic and static conditions). 
This phenomenon may be explained by the breakdown of nuclei of a new phase under the 
action of the mechanic field, as was observed for a number of polymer – solvent systems 
characterized by amorphous and crystalline phase separation (Vshivkov et al., 1998, 
Vshivkov & Rusinova, 2001). 
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2.3.2 Influence of the magnetic field on the liquid crystalline phase transitions 
Application of magnetic field causes an increase in the phase transition temperature under 
heating, which is likely associated with a change in the orientation of macromolecules in 
solution (fig. 13).  
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Fig. 13. Boundary curves for the HPC-1–water system. H = (1) 0, (2) 5, and (3) 9 kOe. 
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Fig. 14. Time dependence of ∆T for HPC-1 solutions in water. c = (1) 53.5 and (2) 49.6%. H= 5 
Oe. 

Like the HPC and CEC solutions in organic solvents, the HPC – water system possesses 
memory: an increased Tph is preserved for many hours after the magnetic field is switched 
off (fig. 14). The calculated time of relaxation necessary to achieve the initial orientation of 
macromolecules is τ = 260 h (c = 53.5%) and 103 h (c = 49.6%). With an increase in the 
concentration of the polymer, the time of relaxation grows, since the viscosity of the system 
increases. 

3. Conclusion 

Phase diagrams have been constructed for the cellulose ester – water systems under static 
conditions, in the shear stress and magnetic fields. As the molecular mass of the polymer is 
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increased, the curves delimiting isotropic and anisotropic solutions shift to lower 
concentrations. The deformation causes the formation of domain structure,  the changes in 
the type of the liquid crystal, and in the phase transition temperatures of solutions both 
upon heating and cooling. As the molecular mass of the polymer increases, the ability of 
macromolecules to orient under the shear stress field decreases. The concentration and 
dependence ΔT is described by the curve with maxima. The formation of domains in  
solutions was observed under the shear stress field.  
The magnetic field also widens the temperature–concentration region of the existence of the 
LC phase. This effect is related to the cholesteric liquid crystal – nematic liquid crystal phase 
transition and the orientation of macromolecules in the direction parallel to the magnetic 
field lines. In this case, large supramolecular structures (domains)  develop in solutions. The 
effect of magnetic field on the variation in LC transitions with the polymer concentration in 
solution shows an extremal pattern. Figures 15 and 16 demonstrate the concentration 
dependences of  ∆T for HPC1– DMAA, HPC-3–DMAA, and HPC-1–water systems 
measured at various magnetic field intensities. 
 

Ñ, ì àñ.%

48 52 56

 Ò, Ê

0

10

20

30

40

1

4

3

2

 

Fig. 15. Concentration dependence of ∆T for solutions of (1,  2) HPC-3 and (3,  4) HPC-1 in 
DMAA. H =(1, 3) 5 and (2, 4) 9 kOe. 
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Fig. 16. Concentration dependence of ∆T for HPC-1 solutions in water. H = (1) 5, (2) 9, and 
(3) 13 kOe. 
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In analyzing the effect of the polymer concentration on magnetic field-induced changes in 

phase transition temperatures, two factors should be taken into account. First, as 

concentration increases, the number of macromolecules capable of orientation in the 

magnetic field grows; as a consequence, Tph should increase. Second, a rise in the polymer 

concentration in solution facilitates densification of the fluctuation network of 

entanglements. This impedes the occurrence of orientation processes and weakens the effect 

of the magnetic field. On the whole, the concentration dependence of ΔT is apparently 

described by a curve with a maximum.  

It should be noted that for solutions of an HPC-1 sample with a lower molecular mass, the 

value of ΔT is much higher. This observation indicates a more distinct orientation of smaller 

molecules in the magnetic field, in agreement with the data from (Kol”tsov et al., 1995). 

Figures 17 and 18 plot ∆T as a function of lnE for HPC-1–DMAA, HPC-3–DMAA, and CEC 
– DMAA systems. It is seen that  these dependences are described by straight lines. The 
analogous dependence is determined for the PBG – DMF system. With an increase in the 
magnetic field energy stored by solutions, the value of ΔT increases. The effect of field on 
the phase transitions shows a threshold character: a change in Tph begins from a certain 
critical intensity of the field Hcr. These values are 2.3 and 2.0 kOe for the HPC – DMAA and 
CEC –DMAA systems, respectively, and 2.3 kOe for the PBG – DMF system. In order of 
magnitude, these values are consistent with Hcr necessary for the  nematic liquid crystal - 
cholesteric liquid crystal phase transition (Papkov & Kulichikhin, 1977, Chandrasekhar, 
1980). In this case,  ∆T =  Kln(E/E0) or Tph (H > Hcr) = Tph(H = 0) + Kln(E/E0). Coefficient K 
depends on the molecular mass of the polymer and its concentration in solution. 
 

 

Fig. 17. Plot of ∆T vs. lnE for solutions of   (1–4) HPC-3 and (5, 6) HPC-1 in DMAA c = (1) 
46.1, (2) 48.3, (3) 49.6, (4) 51.3, (5) 52.0, and (6) 49.0%. 
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Fig. 18. Plot of ∆T vs. lnE for CEC solutions in DMAA. c = (1) 46.0 and (2) 48.8%. 

Thus it is revealed a perfect analogy in influence magnetic and mechanical fields in their 
influence on phase liquid crystal transitions in solutions of rigid chain polymers. 

4. Chart of symbols 

- PBG – poly(γ-benzyl-L-glutamate, DMF – dimethylformamide, DMA – 
dimethylacetamide, Hc – a critical field strength, 

- p0 – zero field pitch, Δǘm – diamagnetic anisotropy of the liquid crystal, K22 – the twist 
elastic constant, LC – liquid – crystalline, CEC – cyanoethyl cellulose, HPC – 
hydroxypropyl cellulose, Tph – phase-transition temperature, Χ –  coefficients of 
magnetic susceptibility, H – magnetic intensity, E  – energy of the magnetic field stored 
by the solution volume unit, η  – viscosity , Ǘ2* – critical concentration of a polymer, , 
above which the LC order arises, 

- x  – asymmetry of macromolecules, Ǘ  – ionization potential, ΔT –  the difference of 
phase transition temperatures under dynamic and static conditions , γ – shear rate, ΔT – 
the difference in LC phase transition temperatures in the presence and absence of 
magnetic field, τ –  times of relaxation, ΔH* – enthalpy of activation for the nematic 
liquid crystal–cholesteric liquid crystal transition, ω2 – mass portion of polymer, 
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