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1. Introduction 

In recent years, the quasi-particle spectra of various condensed systems, crystalline as well 
as disordered and amorphous, became also the “object” of applications and technical 
developments and not only of fundamental research. This led to the interest in the 
theoretical and experimental study of the quasi-particle spectrum of such compounds, 
which are among the most popular and advanced structural materials. Most of these 
substances have heterogeneous structure, which is understood as a strong spatial 
heterogeneity of the location of different atoms and, consequently, the heterogeneity of local 
physical properties of the system, and not as the coexistence of different phases (i.e. 
heterophase). To these structures belong disordered solid solutions, crystals with a large 
number of atoms per unit cell as well as nanoclusters. 
This chapter is devoted to the study of vibration states in heterogeneous structures. In such 
systems, the crystalline regularity in the arrangement of atoms is either absent or its effect 
on the physical properties of the systems is weak, affecting substantially the local spectral 
functions of different atoms forming this structure. This effect is manifested in the behavior 
of non-additive thermodynamic properties of different atoms (e.g. mean-square amplitudes 
of atomic displacements) and in the contribution of individual atoms to the additive 
thermodynamic and kinetic quantities. The most important elementary excitations 
appearing in crystalline and disordered systems are acoustic phonons. Moreover, in 
heterogeneous nanostructures the application of the continuum approximation is 
significantly restricted; therefore we must take into account the discreteness of the lattice. 
This chapter contains a theoretical analysis at the microscopic level of the behavior of the 
spectral characteristics of acoustic phonons as well as their manifestations in the low-
temperature thermodynamic properties. 
The chapter consists of three sections. The first section contains a detailed analysis at the 
microscopic level of the propagation of acoustic phonons in crystalline solids and 
disordered solid solutions. We analyze the changes of phonon spectrum of the broken 
crystal regularity of the arrangement of atoms in the formation of a disordered solid 

www.intechopen.com



 
Waves in Fluids and Solids 

 

104 

solution with heavy isotope impurities and randomly distributed impurities weakly 
coupled both with the atoms of the host lattice and among themselves. As is well known, 
such defects enrich the low-frequency phonon spectrum and lead to a significant change in 
the low-temperature thermodynamic and kinetic characteristics (see, for example, Kosevich, 
1999; Maradudin et al., 1982; Lifshitz, 1952a). In particular, the impurity atoms cause the so-
called quasi-localized vibrations (Kagan & Iosilevskij, 1962; Peresada & Tolstoluzhskij 1970, 
1977; Cape et al., 1966; Manzhelii et al., 1970). This section analyzes in detail the conditions 
of the formation and evolution of quasi-localized vibrations with increasing concentration of 
impurities. It is shown that the quasi-local maximum in the phonon spectrum of the low-
frequency zone is formed by vibrations localized on impurity atoms. Rapidly propagating 
phonons corresponding to the vibrations of the host lattice atoms are scattered by localized 
vibrations. This scattering forms a kink in the local spectral densities of these atoms that is 
similar in shape to the first van Hove singularity of a perfect crystal. In the description of the 
spectral characteristics of the elementary excitations in heterogeneous structures such 
theoretical methods are necessary which do not involve the translational symmetry of the 
crystal lattice. In this section we use such a method for computing the local Green's 
functions and the local and partial spectral densities.  
These self-averaging spectral characteristics (Lifshitz et al., 1988) can be determined also for 
compounds that do not possess regularity in their crystal structure. An effective method for 
describing disordered systems and calculating their quasi-particle spectra is the method of 

Jacobi matrices ( J -matrices) (Peresada, 1968; Peresada et al., 1975, Haydock et al., 1972). By 

this method the majority of the calculations in this paper were carried out. 
The second section is devoted to the analysis of the reasons for the strong temperature 
dependence of the Debye temperature ΘD(T) under T ≤ 0.1ΘD. The temperature dependence 
ΘD(T) is a solution of the transcendental equation CD(T/ΘD) = C(T), where C(T) is calculated 
at the microscopic level or experimentally determined and CD(T/ΘD) is the temperature 
dependence of the Debye heat capacity. It is shown that the reason for the formation of a 
low-temperature minimum on the dependence ΘD(T) are the fast-propagating low-
frequency phonons (propagons) (Allen et al., 1999) scattered on the slow quasi-particles. In 
the case of a defect (random reduction of force constants) the quasi-localized vibrations do 
not form, but in the ratio of the phonon density of states ǎ(ω) to the square of the frequency 
a maximum in the propagon zone of the phonon spectrum is formed with increasing 
concentration of defects. The maxima in the ratio ǎ(ω)/ω2 are called boson peaks (see, for 
example, Feher et al., 1994; Gurevich et al., 2003; Schrimacher et al., 1998). They are 
intensively studied for systems with topological disorder, glasses and such compounds as 
molecular crystals with rotational degrees of freedom. In this section we analyze the arising 
of such features in solid solutions with only vibration degrees of freedom. The frequency of 
the boson peak coincides with the frequency of the quasi-local vibrations corresponding to a 
weakly bound impurity at concentrations, for which the average distance between the 
randomly distributed impurity atoms corresponds to the propagon frequency equal to the 
frequency of quasi-local vibrations. That is, the distance between the impurities (disorder 
parameter) becomes comparable to the wavelength of rapid acoustic phonons with the 
frequency equal to the quasi-local vibration frequency. This corresponds to the phonon 
Ioffe-Regel crossover (Klinger & Kosevich, 2001, 2002). It is shown that the temperature-
dependence and magnitude of ΘD(T) are even more informative than the phonon density of 
states. It was shown on the example of a Kr1-pArp solid solution that for p ≈ 25% there are no 
singularities both in the propagon zone of the phonon density of states and in the phonon 
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density relation to the square of frequency. At the same time, the temperature dependence 
of the relative (compared with pure Kr) changes in the low-temperature heat capacity shows 
two peaks that can not be explained by the superposition of contributions of isolated 
impurities, impurity pairs, etc. The reason of this behavior is the scattering of fast 
propagating phonons, corresponding to the krypton atoms, on significantly slower phonons 
corresponding to the vibrations of atoms in argon clusters. 
Many features of the phonon spectra and vibrational characteristic of disordered 
heterogeneous structures are also inherent to the crystals with polyatomic unit cells. Third 
section of this work is devoted to the analysis of phonon spectra and vibrational 
characteristics of such crystals. The manifestations of the phonon Ioffe-Regel crossover in 
multilayered regular crystalline structures are analyzed. The presence of the quasi-two-
dimensional and quasi-one-dimensional features in the behavior of the vibrational 
characteristics of multilayer compounds is shown. The macroscopic characteristics of such 
compounds are derived from the low-dimensional ones. This allows us to describe the 
vibrational characteristics of such complex compounds in frames of low-dimensional 
models. The features of the interaction of phonons with a planar defect are investigated 
using these models. In particular, the resonance effects in the scattering of acoustic waves 
and the formation of localized and resonance vibrational states in the planar defect are 
considered. Such effects may lead to singularities in the experimentally observed kinetic 
characteristics of the grain boundaries. The heat transfer between two different media, on 
the condition that the Fano resonance occurs, is analyzed. 

2. Low-frequency characteristics of the phonon spectra of disordered solid 
solutions 

This chapter is devoted to the study of the propagation of acoustic phonons at different 

frequencies of quasi-continuous FCC crystal phonon spectrum.  We analyze in more detail 

the analogy of the Van Hove singularity in the phonon spectrum of the perfect crystal with 

similar features of the phonon spectra of structures with broken regularity in the 

arrangement of atoms of a crystal. For any solid (both crystal and the one which does not 

possess the translational symmetry of the atoms arrangement), a low-frequency range exists 

where the dispersion relation of phonons has the form    s k k   ( k  is a module of the 

wave vector k , k k , and  s   is the velocity of sound). The phonon density of states in 

this range takes the Debye form   2~   . With the increase of the k -value the phonon 

dispersion relation increasingly deviates from the linear one (frequency   becomes lower 

than sk ) and the actual density of states deviates upwards from the Debye one. At low 

frequencies, the sound propagation occurs along all crystallographic directions. With 

increasing frequency the propagation velocity of acoustic phonons decreases, this decrease 

being different for different crystallographic directions. In a perfect crystal, when the 

phonon frequency corresponds to the frequency of the first van Hove singularity *   , 

the propagation of the transverse sound along one of the crystallographic directions (in the 

FCC it is the crystal direction ГL, Fig. 1a) ceases and the corresponding group velocity is 

zero. Phonons with frequencies *   were named propagons and those with higher 

frequencies are called diffusons. With a further frequency increase also the number of 

directions increases along which the propagation of sound ceases. The highest frequency of 

the van Hove singularity ( * *   ) corresponds to the frequency at which the wavelength 
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of the longest wavelength phonons is smaller than the interatomic distance (Fig. 1b). 

Phonons with * *    are almost localized and they were named locons, while the 

frequency interval  * *, m   is called the locon band. 
 

 

Fig. 1. The phonon density of states (red lines), the frequency dependences of the group 

velocities of phonon modes (part a) and frequency dependences of the values   0/eff l   

(part b) along the main of the highly symmetrical crystallographic directions of FCC crystal 

with central nearest-neighbors interaction (blue, purple and olive line, depending on the 

direction). The first octant of the first Brillouin zone of a FCC crystal with indications of 

considered high-symmetry directions is shown on the right ( 0 2l a  is the distance 

between nearest neighbors). 

Note that the propagation character of locons and diffusons practically does not differ from 
the propagation character of optical phonons in a crystal with complex lattice. A 
translational symmetry disturbance does not lead to a qualitative modification in the nature 
of acoustic phonons and does not change their classification.  

Let in the crystal randomly introduce heavy isotopic substitution impurities or impurities 

weakly coupled to the atoms of the host lattice and among themselves. Neglecting the 

interaction between impurities the variations of the phonon spectrum are satisfactorily 

described by the theory of regular perturbations devised by I.M. Lifshitz (Lifshitz, 1952a). In 

particular, the formation of the so-called quasi-local vibrations (QLV) due to the presence of 

heavy or weakly bound impurities was predicted  (Kagan & Iosilevskij, 1962) and studied in 

detail both theoretically (see, for example, Peresada & Tolstoluzhskij 1977) and 

experimentally (see, for example, Cape et al., 1966; Manzhelii et al., 1970). The QLV are 

manifested by the resonance peaks in the low-frequency part of the phonon spectrum and 

they contribute essentially to the low-temperature thermodynamic properties. At low 

impurity atoms concentrations 1p  , the vibration characteristics of the solid solution can 

be described within the linear in p approximation: 

        i

i

p         (1) 

The summation is performed over all cyclic subspaces (Peresada, 1968; Peresada et al.,1975), 

in which the operator ̂  describing the  perturbation of the lattice vibrations by either 

isolated heavy or weakly coupled impurity  is non-zero,    i   is the spectral density 
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change in each of these subspaces,     and     are the phonon densities of solid 

solution and perfect crystal states, respectively. If in each of the cyclic subspaces the 

operator ̂  induces a regular degenerate operator, then the value    i   can be 

calculated using the spectral shift function     (Lifshitz, 1952a). Using the expressions 

obtained for this function in the J-matrix method (Peresada, 1968; Peresada et al., 1975, 

Peresada & Tolstoluzhskij 1977), we obtain: 

      
     

   
 

2

22 2

Re

Re

d S Gd
d dS G

       
       

               
 (2) 

 where the function  S   describes the perturbation by defect and depends on the defect 

parameters,  G   is the local Green’s function of a perfect crystal. If in any cyclic subspace 

the solution of the equation 

    Re 0S G                            (3) 

is k   , then in the vicinity of this value the expression (2) has a resonant character: 

 
 

 
   

2 2

2
;

4 Re
k

k

d
dd S G

d 

  
   

          

 .          (4) 

The equation (3) formally coincides with the Lifshitz equation which yields (of course for 

other values of  S  ) the frequencies of discrete vibrational levels, lying outside the band of 

quasi-continuous spectrum of the crystal (Lifshitz, 1952a). However, these discrete levels 

are, in contrast to the values k , the poles of the perturbed local Green’s function. The 

Green’s function can not have poles within the quasi-continuous spectrum. The possibility 

to determine the QLV frequencies using equation (3) arises from the fact that at low 

frequencies    00 00Re ImG G   . 

Let us analyze the quasi-local oscillations due to the substitution impurity in an FCC crystal 

with the central interaction of nearest-neighbors. The interaction of the impurity with the host 

lattice is also considered as a purely central and, therefore, the perturbation caused by such an 

impurity should be regular and degenerate. Let us consider two cases: the isotopic impurity 

with a mass four times higher than that of the host lattice (i.e. the mass defect is 3m m    ) 

and the impurity atom with a mass equal to the mass of a host lattice atom  = 0 and coupled 

to the host lattice four times weaker than are the atoms of the host lattice between each other 

( 3 4      is the coupling defect). In the first case, operator ̂  induces a non-zero 

operator only in the cyclic subspace which is generated by the displacement of the impurity 

atom. The vectors corresponding to this subspace transform according to the irreducible 

representation 5
  of the symmetry group of the lattice hO  (the notation of Kovalev, 1961). In 

the given subspace the spectral density of perfect lattice coincides with its density of states. For 

an isotopic impurity the function  S   (Peresada & Tolstoluzhskij, 1977) reads: 

   2
isS   


                                                  (5) 
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In the second case, except the subspace 
5( )H   where the function  S   is 

 
     5 2

3

12 m
wS    

  
  

 (6) 

the non-zero operators will be operators induced by the operator ̂  in cyclic subspaces 

transformed according to irreducible representations, 1
 , 3

 , 4
  and 4

  of the same group 

hO . Over all of these four subspaces    216 mS      . For weakly bound impurity, the 

function lim 16 /w mS S      and equation (3) can not have solutions in the propagon zone 

within these cyclic subspaces. Therefore, for real values of parameter   equation (3) has a 

solution in the subspace
5( )H   only. This solution for both cases shows Fig. 2. The real part of 

the Green’s function (curves 2 in both parts) crosses the dashed curves 3, which represent the 

equations (5) (part a) and (6) (part b), at points k . This figure also shows the spectral 

densities  
5( )   of the perfect crystal, coinciding with its phonon density of states     

(dashed curves 1), and phonon densities of states of the corresponding solid solutions with 

concentration 5%p  . This figure shows the phonon density of states (curves 1) for both the 

heavy isotopes (part a) and weakly bound impurities (part b). Curves 4 show the 

contributions from impurities and curves 6 those from the matrix lattice. We can see that the 

maxima formed on the phonon densities  , p   are (curves 1) completely caused by the 

vibrations of impurity atoms. Let us analyze figures 2 and 3 together. The value of the 

phonon density of states of a perfect crystal at k    can not be considered as negligible, 

since it is comparable to the value of the real part of the Green’s function at this frequency 

(    ~ 0.1Rek kG   ). Therefore, as is seen from the figures, though the frequencies of the 

maxima on the curves  , p   and  ,imp p  are close to the frequency k , they do not 

coincide with it (Fig. 2b) (especially in the case of a weakly bound impurity). For weakly 

bound impurity one should expect a higher degree of localization of QLV on impurity 

atoms. In Fig. 3 the values of  ,imp p   are compared with the spectral density of isolated 

impurity atoms 
   

5 5 51( ) ( )2
0 0

2 ˆ ˆIm ,h I L h  
               

 
 . The function  ,imp p   is 

nonzero only near frequencies ql , which are the maxima on curves 5. Therefore the 

frequency ql  can be more reasonably than k  considered as the frequency of QLV (quasi-

local frequency). 

Therefore, QLV can be represented as waves slowly diverging from the impurity, similar to 

spherical waves. Fig. 2 also presents (curves 4) the values of  
5( )

01
  , i.e. the spectral 

correlators of displacements of impurity atoms with their first coordination sphere 

      
5 5 5 51( ) ( ) ( ) ( )2 2

101 1 0
2 ˆ ˆIm ,h I L h P   

                    

 
,         (8) 
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Fig. 2. Phonon densities of disordered solid solutions with impurity concentration 5% (curves 
1) and solutions of the equation (3) (intersection of curves 2 and 3) for cases of a heavy isotopic 
impurity (part a) and weakly bound impurities (part b). Curves 4 in both parts are spectral 
correlators of vibrations of the impurity atom with its first coordination sphere. 

where  2
1P   is the polynomial defined by the recurrence relations for the J-matrix of the 

perturbed operator ˆ ˆL +  (Peresada, 1968; Peresada et al.,1975). Spectral correlator  01   

vanishes when  E= , where E  is the Einstein frequency of the correspondent subspace 

(  2 2

0

m

E d


      ). Thus, when E= , the correlation with the first coordination sphere is 

absent, and the close is the frequency  ql  to E , the stronger is the degree of localization of 

QLV. As it could be seen from Fig. 2 the QLV frequency for weakly bound impurity is 
nearly three times closer to E  than that the heavy isotopic one, and the quasi-local 

maximum for a weakly bound impurity has a sharper resonance form than the maximum 
for a heavy isotopic defect. 
The QLV are localized near the impurity atoms and their formation is very similar to the 
occurrence of discrete vibrational levels (local oscillations) outside the continuous spectral 
band of the host lattice in the presence of light or strongly coupled impurities in a crystal. 
However, there is an important fundamental difference between the local and quasi-local 
vibrations, manifested under increasing concentration of impurity atoms. Local vibrations 
are the poles of the Green’s function of the perturbed crystal, and their amplitudes decay 
exponentially with the distance from the impurity. Being located outside the quasi-
continuous spectrum, these vibrations do not interact with the phonon modes of the host 
lattice. With an increasing concentration of either light or strongly coupled impurities their 
effect upon phonon spectrum can be determined by taking into account the expansion of 
concentration (Lifshitz et al., 1988). Thus, the increase of the concentration of light impurities 
leads to the appearance of sharp resonant peaks in phonon spectrum with frequencies 
coincident with those of local vibrations of the isolated impurity atom pairs and eventually, 
regular triangles and tetrahedrons (Kosevich et al., 2007). The QLV are not the poles of the 
Green’s function, they are common non-divergence maxima in the phonon density of states. 
Though, as is shown in the next section, these peaks are formed by the impurity atoms 
vibrations which interact with the phonon modes of host lattice. Therefore, at finite (even 
low enough, about few percents) concentrations of heavy or weakly coupled impurity atoms, 
the significant modification of the entire phonon spectrum of the crystal occurs, 

www.intechopen.com



 
Waves in Fluids and Solids 

 

110 

 

 

Fig. 3. Phonon densities of disordered solid solutions with impurity concentration 5% 

(curves 1); from contributions impurity atoms (curves 4) and atoms of the host lattice 

(curves 6). Part а corresponds to the heavy isotopic impurity ( 4m m  ), part b corresponds 

to a weakly bound impurity ( 1 4   ). Curves 2 show the phonon density of the original 

perfect lattice, curves 3 represent the frequency dependence of the transverse sound velocity 

along the crystallographic direction ГL, and curves 5 show the spectral density of single 

isolated impurities, multiplied by the concentration 0.05p  . 

which can not be described by the expansion of the impurity concentration. Thus the 

weakening of bonds between the argon impurities in krypton matrix leads to a characteristic 

“two-extreme” behavior of the temperature dependence of the relative change in the low-

temperature heat capacity unexplained by the superposition of contributions of isolated 

impurities, impurity pairs, triples and etc., without taking into account the restructuring of 

the entire spectrum (Bagatskii et al., 2007). The restructuring of the phonon spectrum of the 

crystal and the delocalization of QLV at finite concentrations of impurities in the coherent 

potential approximation was considered in (Ivanov, 1970; Ivanov & Skripnik, 1994). 

The QLV usually occur in the frequency range where corresponding wavelengths of 

acoustic phonons of the host lattice become comparable to the average distance between the 

defects (the so-called disorder parameter). This is valid even for low concentrations of 

impurity atoms as is illustrated in Fig. 1b. The value  ql   for most phonon modes 

exceeds the disorder parameter even at 1%p  . Therefore an interaction of QLV with 

rapidly propagating acoustic phonons of the host lattice (propagons) appears as the Ioffe-

Regel crossover as is shown in (Klinger & Kosevich, 2001, 2002) and can lead to the 

formation of a boson peak (BP). The BP is an anomalous override of the low-frequency 

phonon density over the Debye density. The BP was observed in the Raman and Brillouin 

scattering spectra (Hehlen et al., 2000; Rufflé et al., 2006) and in inelastic neutron scattering 

experiments (Buchenau et al., 1984) as maxima in the frequency dependence   2    or 

  2I    (  I  is the scattering intensity). These peaks appear in the low-frequency region 

(between 0.5 and 2 THz) of the vibration density of states (Ahmad et al., 1986), i.e. far below 

the Debye frequency. At the BP frequency the transition occurs from the fast-propagating 

low-frequency phonons (propagons), with dispersion relation close to the acoustic one, to 
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the so-called diffusons, i.e. phonons, whose propagation is hampered by the scattering on 

localized states (Feher et al., 1994). In the frequency range  * **,  , the number of localized 

vibrations increases with the frequency increase (Fig. 1a). Therefore, the phonons with 

frequencies lying in that interval (diffuson area) are either diffusons or locons. The similarity 

of the boson peak in disordered systems (e.g. glasses and substitution solid solutions) to the 

first van Hove singularity in  crystal structures is noted in (Buchenau et al., 2004; 

Gospodarev et al., 2008). BPs are also observed in polymeric and metallic glasses (Duval et 

al., 2003; Arai et al., 1999). 

As is shown in Fig.4 in the frequency range [ *0, ] the vibrations of atoms of the host lattice 

propagate rapidly and are scattered by the quasi-localized states formed by impurity 

vibrations. Curves 6 in this figure depict the frequency dependence    , ,impp p     . At 

frequencies ql   there vibrations propagate as plane waves. Corresponding parts of 

curves 6 are smooth and have parabolic (quasi-Debye) form. At ql    a kink similar to the 

shape of the first van Hove singularity can be seen on curves 6. At this frequency as well as 

at *    in the phonon spectrum of a perfect crystal (Fig. 1a) there is a sharp change of the 

average group velocity of phonons. The frequency ql  is the upper limit of propagon zone 

of solid solution. This is clearly exhibiting with increasing impurity concentration p. Fig. 4 

shows the evolution of the contribution to the phonon density of states by the displacements 

of impurity atoms (part a) and by the displacements of atoms of the host lattice (part b) with 

increasing impurity concentration. Note that both dependences can be determined 

experimentally (e.g., by the method described in (Fedotov et al., 1993). On both parts of 

Fig. 4 dashed curves show phonon densities of states of the perfect host lattice. In addition, 

functions  
5( )p    are depicted in Fig. 4a by dashed lines. It is seen that at concentrations 

 0.1,0.5p  the values of both  ,imp p   and  
5( )p    are different from zero in the same 

frequency range near the quasi-local frequency ql . For ω < ql  the frequency dependence 

takes parabolic form (quasi-Debay form). The frequency dependences    , ,impp p      

also have a characteristic kink at ql   , similar in shape to the first van Hove singularity 

(observed at all concentrations, even at 0.9p  ). That is at 0.5p   the quasi-local frequency 

is an upper bound of the propagon zone for the vibrations of both impurity atoms and 

atoms of the host lattice. 

With increasing concentration ( 0.25p  ) a singularity of the kink type begins to form on the 

function  ,imp p   at ql   . At concentrations 0.5p   large enough impurity clusters are 

formed in the solid solution. There is a short-range order in such clusters and we can 

identify the different crystallographic directions. The structure consisting of such clusters 

can already be considered as a structure with topological disorder and for given values of 

the concentration the upper limit of the propagon zone corresponds to the vanishing of the 

group velocity of the transversally polarized phonons along the crystallographic direction 

ГL in impurity clusters. This frequency, as shown in Fig. 4a, is lower than ql . With 

increasing p it approaches to the value of the frequency of the first van Hove singularity of 

perfect crystal consisting of heavy impurity atoms * . 
Thus the influence of impurity atoms, which are heavy or weakly bound to the atoms of 

host lattice, on the phonon spectrum and the vibrational characteristics is manifested both in 

the formation of quasilocal vibrations caused by the vibrations of impurities and in the 

scattering on these vibrations of fast acoustic phonons generated by atomic vibrations of the 
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Fig. 4. Part a shows the evolution of function  ,imp p   with increasing concentration of 

impurities. Part b shows the evolution of function    , ,impp p      with increasing 

concentration of impurities.  

host lattice. Up to concentrations of 0.5p   the quasi-local frequency is an upper boundary 

of the propagon band, i.e. the frequency interval in which the phonons propagate freely in 

all directions. Further increase in the concentration is accompanied by the shift of the 

propagon zone upper boundary to the frequency of the first van Hove singularity of the 

crystal consisting of impurity atoms * ql   . At the same time for the propagation of atomic 

vibrations of the host lattice the upper boundary of the propagon zone is quasi-local 

frequency ql . 

3. Phonon spectra and low-temperature heat capacity of heterogeneous 
structures with bonds randomly distributed between atoms 

The Debye approximation widely used for the description of the thermal properties of solids is 

based on an approximation of the real vibrational spectrum of the crystal by phonons with 

acoustic dispersion law. The corresponding density of states is (see, e.g. Kosevich, 1999): 

 
   

1q
q

D q
D

q 
  


.                                          (9) 

Fig. 5a shows the Debye density of states    3 2 33 DD     , defined by (9) at 3q   

(curve 1), compared with the true density of states of the FCC lattice with central interaction 

of nearest neighbors (curve 2). It is seen that at 0.25 m    these curves almost coincide. 

With the frequency increase a deviation of the phonon density from    3
D   occurs. This 

leads to a deviation of the temperature dependence of the phonon heat capacity from its 

Debye form  DC T . Moreover, this deviation is more apparent the lower the frequencies are 

at which such deviation starts. As a rule, the deviation of the true phonon heat capacity 

from  DC T  is described as a temperature dependence of the Debye temperature D . This 

dependence can be derived from the transcendental equation  
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where the heat capacity  vC T  is determined from experiment or microscopic calculation as  

    -2sh
0

3
2 2

m

vC T R d
kT kT


            

   
 

.                       (11) 

Of course, at      3
D      the expressions (10) and (11) coincide and  D P mT k     , 

i.e. the Debye temperature does not depend on temperature. At low temperatures 

( ,P DT    ) the main contribution to the heat capacity is provided by the long-wavelength 

phonons with the sound dispersion relation. It seems that the dependence  vC T  is well 

described by (10). That is, the Debye temperature should be practically the same as P . 

Indeed, as seen from Fig. 5b (curve 2), exactly in the temperature range 0.1 PT    the 

dependence  D T  is most intense. This is typical for a large number of compounds 

(Leibfried, 1955). To find the cause of a strong temperature dependence of D  at DT    we 

consider the function  D T  for a system for which the phonon density of states is a linear 

combination of the function    3
D   (curve 1 in Fig. 5a) and the Einstein density of states 

 *  , where  is the frequency of the first van Hove singularity (dashed line 3 in 

Fig. 5a). Curve 3 in Fig. 5b shows the  D T  in the case when the phonon density of states is 

       38 31
*

39 39
appr D        . The coefficients of this linear combination are selected 

from the averaging over all the high-symmetry directions in the FCC lattice. As shown in 

Fig. 5b, curve 3 quite satisfactorily coincides with the dependence  D T  of the FCC crystal 

(curve 2). This is manifested in the behavior of  D T  at 0.1 PT    and in the coincidence of 

the minima (both in temperature and in magnitude). Thus, one can assert that the dependence 

 D T  at low temperatures is conditioned by the changes in the character of the phonon 

propagation on the frequency of the first van Hove singularity. 

Taking into account the Einstein level tailing can improve the approximation of the  D T  

function at low temperatures (curves 4). 

As mentioned above, the frequency of the first van Hove singularity *  is an “interface” 

frequency between the fast and slow phonons, i.e. between propagons and diffusons. It can 

be interpreted as the Ioffe-Regel singularity (or its equivalent) in a regular crystal system. 

Maxima on the ratio   2    can be considered as BPs only when *  , because the 

maximum on the mentioned ratio, corresponding to the first van Hove singularity, always 

exists. Within this frequency interval the phonon density can be approximated by a 

parabola, and its deviation from the Debye density    3
D   can be expressed by the 

frequency dependence of the value D , i.e. writing the phonon density in a form analogous 

to (9). At q=3 we have 
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Fig. 5. Relationship of the temperature dependence of the Debye temperature (part b) to the 
character of the long-wavelength phonons propagation in a crystal (part a). 

Then, using the definition of D , the ratio of the phonon density to the squared frequency 

can be expressed by the dispersion of sound velocities  is    
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 

    
 ,                                 (13) 

where 0V  is the unit cell volume. Thus, the occurrence of the maximum on the ratio 

  2    is caused by the additional dispersion of sound velocities. This dispersion is 

caused by the heterogeneity of the structure, which is the source of quasi-localized 

vibrations. Such additional sound velocity dispersion must be manifested in the behavior of 

the temperature dependence D . On the curve  D T  a low-temperature minimum 

should appear (see curve 5, Fig. 5b), deeper than those on curves 1–4 in Fig. 5b. This curve 

corresponds, in addition to the quasi-localized perturbations on the frequency of the first 

van Hove singularity in the phonon spectrum with the density of states  appr  , to the 

presence of an additional resonance level with the frequency  5D   (see Fig. 5a). 

Curves 6 in both parts of Fig.5 correspond to the 5% solution of a heavy isotope impurity in 

the FCC crystal. The formation of the QLV leads to a significant deepening of the 

 D T low-temperature minimum and to be shifting of its temperature below that of the 

perfect crystal. 
In the first section it was shown that heavy or weakly bound impurities form QLV caused 

by their motion. On these vibrations the fast acoustic phonons associated with the 

displacements of atoms of the host lattice are scattered. This leads to kinks in the 

contribution to the phonon spectral density (see curve 6 in Fig. 3) which are a manifestation 

of the Ioffe-Regel crossover. On the background of large quasi-local maxima it is difficult to 

distinguish their influence on the vibrational characteristics of the crystal. The study of this 

effect is possible in systems in which interatomic interactions are not accompanied by the 

formation of QLV, or in systems in which the frequencies of QLV lie beyond the propagon 

zone. Examples of such systems are crystals with weakly bound impurities. Fig. 6 shows the 

low-frequency parts of the phonon density of states (a) and the temperature dependence 

D  (b) for the FCC lattice, in which force constants of impurities (p = 5%) are four and eight 
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times weakened (curves 3 and 4, respectively). Part a shows the functions 
  2

4
m   

  
 

(curves 3’ and 4‘), for which the deviation of the phonon density of states from the Debye 

form is more pronounced. Curve 1 corresponds to a perfect crystal. Curve 2 shows the 

frequency dependence of the group velocity in the direction ГL (see Fig. 1a). Values  4ql  and 

 8
ql  correspond to the frequencies of QLV in a lattice containing an isolated weakly bound 

impurity ( 1 4    and 1 8   , respectively). As can be seen from the figure, the 

phonon densities are qualitatively different from the quasi-Debye behavior, starting from 

the frequencies  4
ql    (curve 3) and  8

ql    (curve 4). In this system the formation of 

QLV with such frequencies corresponds to the existence of atoms with few weakened force 

interactions (at least two, along the same line), i.e. to the formation of defect clusters (or 

impurity molecules). The minimum size of the defect cluster is equal to two interatomic 

distances and the Ioffe-Regel crossover can occur in a wide range of values (see Fig. 1b). 

Fig. 6b shows that there are notable low-temperature minima on  D T for crystals with 

impurities (p = 5% ) whose force interactions are  four and eight times weakened  (curves 3 

and 4, respectively). These minima points to a slowdown of acoustic phonons due to their 

localization on the defect clusters and due to the scattering of additional phonons, 

remaining delocalized on the resulting quasi-localized states. 

 

 

Fig. 6. Low-frequency parts of phonon spectra (part a) and temperature dependences D  

(part b) of FCC crystals with 5% of weakened force interactions 

The high sensitivity of the low-temperature heat capacity to the slowing of the long-
wavelength phonons is clearly manifested in the case when not only the interaction of 
impurity atoms with the host lattice is weakened, but also the interaction between 
substitution impurities in the matrix of the host lattice. An example of such a system is the 
solid solution Kr1-pArp . Krypton and argon are highly soluble in each other and the 

concentration p can take any value from zero to one. Argon is 2.09  times lighter than 

krypton, and the interaction of the impurity of argon with krypton atoms is slightly weaker 
than the interaction of krypton atoms between each other, so an isolated Ar impurity in the 
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Kr matrix behaves almost like a light isotope. At the same time, in a krypton matrix the 
interaction of argon impurities between each other is more than five times weaker than the 
interaction between the krypton atoms (Bagatskii et al., 2007). Fig. 7a shows the phonon 
densities of states of pure krypton and argon as well as that of the Kr0.756Ar0.244 solid 
solution. At such a concentration there is a sufficient number of isolated impurities and 
defect clusters with dimensions less than two interatomic distances in the solution (Fig. 7b). 
This leads, in comparison with the pure Kr phonon spectrum, to the increase of the number 
of high-frequency states in the phonon spectrum of the solution (Bagatskii et al., 1992). In 
such clusters weakly coupled argon impurities are not created and quasi-local vibrations are 
not formed. At the same time in such a solution larger defect clusters are formed, which 
consists of weakly coupled Ar impurities. However, the frequency of QLV formed by these 

clusters is Kr Ar

Kr
0.86 *ql

   , that is (unlike the previous case) slightly less than the 

frequency of the first van Hove singularity for the Kr lattice. Therefore, neither on the 
solution phonon density of states nor on its relationship to the square frequency any 
singularities do appear. Extension of the of quasi-continuous spectrum of the Kr-Ar solution 
as compared with pure Kr, as seen in Fig. 7a, occurs mainly due to the phonons with 

frequencies in the interval  *, * *   (diffuson zone).  

 

 

Fig. 7. Phonon densities (a) and temperature dependences of the Debye temperature ( d) of 

the krypton, argon and the Kr0.756Ar0.244 solid solution. Part b shows in the [111] plane,  some 

typical configurations of the displacements of argon impurity in the in krypton matrix at 

0.1p   and at 0.24 (circles and filled circles correspond to the Ar atoms, lying in different 

neighboring layers). Part c is shows the relative change of the heat capacity.  
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Note that the phonon densities of states of the solution and of pure krypton are practically 

the same in the most part of the propagon zone. The redistribution of the phonon frequency 

leads to a characteristic two-extremum behavior of the temperature dependence of the 

relative change of the low-temperature heat capacity (Fig. 7c), the maximum on which 

indicates that there is an additional slowing-down of the long-wavelength acoustic phonons 

on slow phonons, corresponding to the quasi-local vibrations of weakly couple argon atoms. 

This scattering, as in earlier cases, forms a significant minimum in the temperature 

dependence of D . Fig. 7d plots the values  D T  for pure krypton, argon, and the 

Kr0.756Ar0.244 solution. These dependences are the solutions of the transcendental equation 

(10) for the heat capacity, calculated theoretically and determined experimentally, see Fig. 7c 

(Bagatskii et al., 1992). The results of the theoretical calculations show a good agreement 

with experimentally obtained results, especially near the minimum on  D T . This 

minimum can appear also in the case when the maximum of the ratio   2    is not 

observed. 

Thus, the results presented in this section allow us to make the conclusion that both the low 

temperature heat capacity and the temperature dependence of the value D  are highly 

sensitive not only to the formation of quasi-localized states, but also to the reduction of the 

rate of propagation of long-wavelength acoustic phonons due to their scattering on these 

states. This slowdown is clearly manifested in the frequency range as boson peaks in the 

ratio   2   , or as another singularities of the Ioffe-Regel type, but only when certain 

conditions are fulfilled. They are, according to our analysis:  
1. For such defects as local weakening of the interatomic interactions or light weakly 

bound impurities the QLV scattering frequency must be low enough, and so, in other 

words, the “power of the defect” should be large enough.  

2. Defect cluster should be large enough (at least two atomic distances) which requires a 

high enough (~ 15-20%) concentration of defects. 

4. Low-frequency features of the phonon spectra of layered crystals with 
complex lattice 

As it has been shown in the previous sections the low-frequency region of the phonon 

density of states of heterogeneous systems differs from the Debye form. This is caused by 

the formation of the quasi-localized states on the structure heterogeneities and by the 

scattering of the fast longwavelength acoustic phonons (propagons) on them.  However, it is 

not necessary that these heterogeneities were defects violating the regularity of the 

crystalline arrangement of atoms. If, in the crystal with polyatomic unit cell the force 

interaction between atoms of one unit cell is much weaker than the interaction between 

cells, then optical branches occur in the phonon spectrum of the crystal at the frequencies 

significantly lower than the compound Debye frequency. These optical branches are 

inherent to the phonon spectra of many highly anisotropic layered crystals and they may 

cross the acoustic branches, causing additional features in the propagon area of phonon 

spectrum (Wakabayashi et al., 1974; Moncton et al., 1975; Syrkin & Feodosyev, 1982). Note 

that the deviation of the phonon spectrum of such compounds from    3
D   at low 

frequencies may be a manifestation of their quasi-low-dimensional structure as well 
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(Tarasov, 1950) of the flexure stiffness of single layers (Lifshitz, 1952b). However, the 

crossing of the low-lying optical modes with the acoustic ones may also occur in systems, in 

whose propagon zone of the phonon spectrum no quasi-low-dimensional peculiarities and 

no flexural vibrations are present. These compounds include high-temperature 

superconductors, dichalcogenides of transition metals, a number of polymers and 

biopolymers, as well as many other natural and synthesized materials. A distinctive feature 

of the structure of these substances is the alternation of layers with strong interatomic 

interactions (covalent or metal) with layers in which atomic interactions are much weaker, 

e.g. the van der Waals interaction. Since this interaction is weak along all directions, the 

propagation of the propagons is three-dimensional and can be characterized by the 

temperature dependence of the D  determined by formulas (10, 11). 

Let us examine a simple model of such a structure, i.e. the system based on a FCC crystal 

lattice and generated by “separating” the atomic layers along the [111] axis into a 

structure consisting of stacked layers of the closely packed ...A - B - B - A - B - B - ...  type. To 

describe the interatomic interaction we shall restrict our attention to the central 

interaction between nearest neighbors. We assume that the interaction between atoms of 

the B type (lying in one layer as well as in different layers) is half as strong as the 

interaction between A type atoms and atoms of different types (we assume these 

interactions are the same). The phonon spectrum of considered model contains nine 

branches (three acoustic and six optical) and the optical modes are not separated from the 

acoustic modes by a gap. The frequencies of all phonons polarized along the [111] axis 

(axis c) lie in the low-frequency region. At 0k   two optical modes have low frequencies 

corresponding to a change in the topology of the isofrequency surfaces (from closed one to 

the open one along the c axis) both for transverse and longitudinal modes. Thus, these 

frequencies play the role of the van Hove frequencies * and are shown in Figs. 8a-d and 9a 

as vertical dashed lines 
  and l

 . 

Fig. 8 displays the spectral densities corresponding to displacements of A and B atoms in the 

basal plane ab and along the c axis (curves 1). The normalization of each spectral density 

corresponds to its contribution to the total phonon density of states     presented in 

Fig. 9a:  

                  A BA B2 1 4 2

9 9 9 9
c cab ab              .                    (14) 

Fig. 8 also displays the quantities proportional to the ratio of the corresponding spectral 

densities to the squared frequency (curves 2). The coefficients of proportionality are chosen 

so that these curves may be placed in the same coordinate system as the corresponding 

spectral density. The functions    A
c   and    B

c   and their ratios to 2  have distinct 

features at l
  as well as at a certain frequency c  lying below 

 . This frequency 

corresponds to the crossing of the longitudinal acoustic mode, polarized along the c axis, 

with the transversely polarized optical mode propagating in the plane of the layer. The 

velocity of sound in this acoustic mode is  c
ls ~ 33C  (in the described model the elastic 

moduli of elasticity ikC  satisfy the relations 11 33 66 442.125 3 7.5C C C C      ). The spectral 

densities    A
ab   and    B

ab   have additional features at frequencies   *ab



    and 

  ,
l

lab
 
      . These features are related to the crossing of acoustic branches with the low-
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frequency optical mode which is polarized along the c axis. There are three acoustic waves 

propagating in the basal plane and differing substantially from one another (longitudinal 

wave  ab
ls ~ 11C  and two transverse waves). One of the transverse waves is polarized in 

the basal plane (  abs ~ 66C ) and another one is polarized along the c axis (  
n
abs ~ 44C ). 

The acoustic modes with sound velocities  ab
ls  and  abs  cross the low-frequency optical 

mode. In this optical mode at 0k   the frequency of the vibrations  is l
   , and at the 

point  K at the boundary of the first Brillouin zone (see Fig 1) the mode joins the slowest 

acoustic mode, polarized along the c axis. Appreciable dispersion of this optical mode leads 

to a small value of  
ab
  (  

cab
   ) and to the blurring of the feature near  l

ab . 
 

 

Fig. 8. Spectral densities (curves 1) and their ratio to the squared frequency (curves 2), 
corresponding to displacements of atoms of different sublattices along different 
crystallographic directions. 

All spectral densities at quite low frequencies are proportional to 2 , i.e. at low-

temperatures the thermodynamic quantities should be determined by an ordinary three-

dimensional behavior (see Fig. 8). Fig. 9b shows the temperature dependence of the 

Debye temperature (10, 11) for the considered model. For comparison, on Fig. 9a and 9b 

the characteristics of the “initial” FCC lattice is shown (lattice of A type atoms). As a result 

of the weakening (as compared to the A lattice) of some force bonds the function     

increases at low frequencies (Fig. 9a) and therefore D  decreases. The scattering of the 

propagons on slow optical phonons forms a distinct low-temperature minimum on 

 D T . 
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Fig. 9. Phonon density of states (a) and temperature dependence of  D T  (b) of a layered 

crystal with a three-atom unit cell (solid curves) and analogous characteristics of an ideal 

FCC lattice with  central interaction of the nearest neighbors (dashed curves). 

The Ioffe-Regel crossover determined by the intersections of the acoustic branches with the 

low-lying optical one is clearly apparent on the niobium diselenide phonon spectrum.    This 

compound has a three-layer Se-Nb-Se “sandwich” structure. Fig. 10 (center) shows the 

dispersion curves of the NbSe2 low-frequency branches (Wakabayashi et al., 1974)]. The low-

frequency optical modes 2  and 5  correspond to a weak van der Waals interaction 

between “sandwiches”. They cross at points C2, C3, C4, S1, A1 and A2 with acoustic 

branches polarized in the plane of layers. The wavelength eff  (see Sec. 2) corresponding to 

frequency of each of these crossovers exceeds the thickness h of the “sandwich”. The 

parameter h plays in this case the same role as the distance between impurities in solid 

solutions, i.e. the condition of the Ioffe-Regel is met. Therefore, for given values of frequency 

as well as for the van Hove frequencies (points D1, D2 and D4) an abrupt change of the 

propagon group velocity occurs. This leads to the appearance of peaks on the dependences 

    and   2    (curves 1 and 2 in Fig. 10a) and to the formation of a rather deep low-

temperature minimum in the dependence  D T  (Fig. 10b). For the longitudinal acoustic 

mode 1  polarized along the c axis at the frequency corresponding to the point of its 

intersection with the branch 5  (point C1), the value eff is less than h . Therefore, at this 

point the group velocity of phonons does not have a jump and does not change its sign. 

There are no peculiarities at point C1 on the phonon density of states and on the function 

  2   . 
Thus, in the crystalline ordered heterogeneous structures the scattering of fast phonons on 

slow optical ones is possible. This scattering is similar to the scattering of such phonons on 

quasi-localized vibrations in disordered systems and is completely analogous to that 

considered in (Klinger & Kosevich, 2001, 2002). It leads to the formation of the same low-

frequency peculiarities on the phonon density of states than are those manifested in the 

behavior of low-temperature vibrational characteristics. The elastic properties of structures 

discussed in this section differ essentially from the properties of low-dimensional structure. 

However, at high frequencies (larger than the frequencies of the van Hove singularities, 

which correspond to the transition from closed to open isofrequency surfaces along the c 

axis) the phonon density of states exhibits quasi-two dimensional behavior seen on parts a 

of Figs. 8, 9 and 10. Such a behavior is inherent to many heterogeneous crystals, in particular 

high-temperature superconductors (see, e. g., Feodosiev et al., 1995; Gospodarev et al., 1996), 
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as was confirmed experimentally (Eremenko et al., 2006). This allows us to describe the 

vibrational characteristics of such complex compounds in the frames of low-dimensional 

models. 

 

 

Fig. 10. Vibrational characteristics of NbSe2. Part a shows the phonon density of states 

(curve 1) and ratio   2    (curve 2). On the inset the dispersion curves of the low-

frequency vibration modes determined by the method of neutron diffraction are shown. 

Part b shows the dependence  D T . 

The theory developed for the multichannel resonance transport of phonons across the 

interface between two media (Kosevich Yu. et al., 2008) can be applied to interpret the 

experimental measurements of the phonon ballistic transport in an Si-Cu point contact 

(Shkorbatov et al., 1996, 1998). These works revealed for the first time the low temperature 

quantum ballistic transport of phonons in the temperature region 0.1 – 3 K. Besides, in some 

works (Shkorbatov et al., 1996, 1998) a reduced point contact heat flux in the regime of the 

geometric optics was investigated in the temperature interval 3 - 10 K. The results obtained 

in these works showed that in this temperature interval the reduced heat flow through the 

point contact is a non-monotonous temperature function and has pronounced peaks at 

temperatures T1 = 4.46 K, T2 = 6.53 K and T3 = 8.77 K. We suppose that the series of peaks for 

the reduced heat flow (Shkorbatov et al., 1996, 1998) could be explained by the models 

represented in Fig.11 a,b. These peaks are a result of the resonance transport. In the case of 

the single-channel resonance transport studied in work (Feher et al., 1992) a model of the 

narrow resonance peak was applied, meaning the following: the total heat flux Q  may be 

written as the sum of the ballistic flux BQ  and the resonance heat fluxes RQ , B RQ Q Q    . 

Assuming the narrow resonance peak near the frequency 0
  we obtain the formula 

describing the temperature dependence of the heat flux:  

      
4

0

0 0 0

1 1
,

exp / 1 exp / 1
Q T T C T K

T T
  



 
    
      


 

. (15) 

To separate the two parts of the total heat flux, its value must be divided by 
4 4 4

0( )T T T   . 

This model (using only one frequency) can be fitted to our experimental data with a 

correlation factor of about 0.95. The resonance frequency 0  is connected with Tmax by the 
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Fig. 11. a) Schematic model of a contact. T and T0   are the temperatures of the massive edges 
of the contact; a1, a2, and a3 are the zones with different composition of the interface layer. 
b) Schematic figure showing an interface between two crystal lattices that contains three 
intercalate impurity layers. c) Experimentally observed temperature dependence of the 
reduced heat flux through the Si-Cu point contact. d) Results of a numerical calculation 
using the considered model. 

relation 0 max3.89T  . Using the model of the multichannel resonance transport we 

modified the expression (15) in a following way:  

 
1 13

2

4 4 2
01

1 1
exp 3.89 1 1 exp 3.89 1n n

n n
n s

T TQ
K T T C

T TT T T

 



                                   




. (16) 

The optimal correspondence between the values calculated by this formula and the 
experimental results was obtained for the following values of parameters: 

0 1 2 30.15 ; 4.46 ; 6.8 ; 8.71 ; 1.5sT K T K T K T K T K     . 

1 2 30.7 ; 2 ; 50 ;K nW K nW K nW    449.55 /C nW K . 

The expression (16) takes into account the presence of three channels of the resonance 
transport as well as (using an additional term containing the intrinsic temperature ТS) the 
instability of the intermediate layer of weakly bound impurities near the resonance. Results 
of numerical calculations by formula (16) are given in Fig.11d. These results evidence that 
the proposed model describes in much detail the experimental results presented in Fig. 11c. 

It should be noted that the temperature ST used in our calculations corresponds to the 

binding energy of the impurity layer with contact banks. This temperature is by two orders 

of magnitude lower than the Debye temperature of crystals forming the banks of contacts.  
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Fig. 12. Coefficients of the phonon energy reflection (curve 1, red line) and transmission 
(curve 2, blue line) through an impurity atom. 

This is in agreement with the fact that the binding constant of the impurity layer with 
contact banks is by two orders of magnitude lower than the binding constant in crystals 
forming this contact (Shklyarevskii et al., 1975; Koestler et al., 1986; Lang, 1986). Coefficients 
K are proportional to the squares of the area of different interface layers. Using the results 
presented in Fig. 11d we can interpret experimental results (Shkorbatov et al., 1996, 1998) 
presented in Fig. 11c.  
Finally we consider the resonance reflection and transmission of phonons through an 
intercalated layer between two semi-infinite crystal lattices. We consider an infinitely long 
chain which contains a substitution impurity atom weakly coupled to the matrix atoms (see 
model in Fig. 12). In this system quasi-local (resonance) impurity oscillations emerge with 
such a frequency, at which the transmission coefficient through the impurity becomes equal 
to unity (full phonon transmission through the interface, see Fig.12a). Let us compare these 
results with the results received taking into account the force constant γ3, corresponding to 
the interaction between non-nearest neighbors. We have shown that if the non-nearest 
neighbor force constant γ3 is larger than the weak bounding force constant γ2 (Kosevich, et 
al., 2008) (see Fig.12), two frequency regions with enhanced phonon transmission are 
formed, separated by the frequency region with enhanced phonon reflection. Namely, for 
γ3 ≈ γ1 a strong transmission “valley” occurs at the same resonance frequency at which there 
is a transmission maximum for γ3 << γ2  < γ1. Moreover, this transmission minimum occurs 
on the background of an almost total phonon transmission through the impurity atom due 
to the strong interaction of matrix atoms through the defect (with force constant γ3 ≈ γ1). For 
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large values of γ3,  the resonant transmission frequency corresponds to the frequency of total 
reflection (so-called Fano effect) (Fano, 1961). Such a system permits to make a filter which 
reflects the phonons in a very narrow region of frequencies (heat transmission is minimum 
at corresponding temperatures) while the total transmission is observed in other regions of 
frequencies. It is worth to mention that such an inversion of the transmission and reflection 
spectra in the two limiting cases is directly related to the Fano-type interference. Similar 
inversion of the Fano-type transmission and reflection resonances also occurs in sound 
transmission through two-dimensional periodic arrays of thin-walled hollow cylinders due 
to the their flexural  vibration modes (see Liu, 2000). 
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