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1. Introduction 

Solitons, or by the original terminology waves of translation, were for the first time observed and 
described by Scott Russel (1845) as a special kind of the hydrodynamic waves that can arise 
and propagate in narrow channels. Solitons are: (i) solitary waves, resembling propagation 
of the wave front of shock waves; (ii) these waves can propagate without considerable 
attenuation, or (iii) change of form; or (iv) diminution of their speed; see, Craik (2004). It was 
shown later on, that motion of these waves can be described by a non-linear KdV 
differential equation; see the work by the originators of the KdV-equation Korteweg and de 
Vries (1885) and the subsequent works by Lax (1968), Miles (1981), and Zwillinger (1997), 
where some of the analytical solutions are presented and the main properties of the KdV 
equation are analyzed.  

Herein, we analyze the long-wave limits of Lamb waves propagating in multilayered elastic 

anisotropic plates at vanishing frequency 0 , or in terms of the wave number r , at 

0r  . These vanishing frequency Lamb waves satisfy conditions (i) – (iv), and thus, 

resemble the solitons. But, in contrast to the genuine solitons in hydrodynamics or their 

nonlinear analogues propagating in  elastic solids; see, Eckl et al. (2004), Kawahara (1972), 

Kliakhandler, Porubov, and Verlande (2000), Planat and Hoummady (1989), Porubov et al. 

(1998), Samsonov (2001), our soliton-like waves are described by linear vectorial differential 

equations, known as the Christoffel equations for Lamb waves.  
Studies of Lamb waves, as solutions of linear equations of motion for the infinite plates, and 
the corresponding soliton-like linear waves traveling with the finite phase speed at 
vanishing frequency have quite a long history. Presumably, the first asymptotic analysis of 
the waves propagating at vanishing frequency in an isotropic plate with the traction-free 
outer planes was performed by Gogoladze (1947). He obtained an analytical expression for 
the phase speed of such a wave by asymptotic analysis of the approximate equation of 
motion related to the theory of plates based on the Bernoulli – Euler hypotheses.  Later on, 
the similar approach and a more elaborate one allowing to consider plates with different 
boundary conditions at outer planes, but still based on the approximated theories of plates, 
were exploited by Mindlin (1951a, b, 1958, 1960), Mindlin and Medick (1959), Mindlin and 
Onoe (1957), Onoe (1955), and Tolstoy and Usdin (1953). The latter authors reported highly 
intricate behavior of the disperse curves in the vicinity of the zero frequency. See also a more 
recent work by Pagneux and Maurel (2001), where the dispersion relations in the complex 
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space were analyzed, and a paper by Kaplunov and Nolde (2002), where an asymptotic 
method was developed for analyzing the limiting case of the flexural mode. The behavior of 

the lowest branches of the disperse curves at 0  for the traction-free isotropic plate was 

studied numerically by Lyon (1955), who used the classical theory of plates.  

Along with the approximate theories of plates, a more general approach based on the 

Papkovich – Neuber elastic potentials for solving equations of motion was used. It allowed 

obtaining dispersion relations for different wave modes, not necessary flexural; see, Holden 

(1951). This approach was especially useful for analyzing behavior of the dispersion curves 

at 0 ; see also works by Auld (1990) Ewing, Jardetzki, and Press (1957), Graff (1975). 

The Papkovich – Neuber potentials written in cylindrical coordinates allowed obtaining 

dispersion relations for elastic rods in the frame of Pochhammer – Chree theory  for waves 

in isotropic rods; see, Pochhammer (1876), Chree (1889), Davies (1948), Meeker and Meitzler 

(1964), Miklowitz (1978), Mindlin and McNiven (1960), Onoe, McNiven, and Mindlin (1962). 

It should be noted that for rods a similar intricate behavior at 0  of the lowest branches 

of the disperse curves for longitudinal and torsional waves was observed. The 

generalizations of the Papkovich – Neuber potentials to cover media with elastic anisotropy 

were also worked out; see Barber (2006), however the generalized potentials became so 

complicated that no analytical solutions obtained with them are known.  

Analysis of Lamb waves propagating in anisotropic plates and their soliton-like 

counterparts relies on reducing the second-order vectorial equations of motion to the first-

order systems via different variants of the six-dimensional formalisms. Such a reduction 

can be referred to as the first step of the generalized Hamiltonian formalism; see Arnold 

(1989). From these formalisms the Stroh (1958, 1962) formalism is the most widely used, 

but there are also some other variants, among which we mention Lekhintskij (1963) 

formalism; see, also works by Barnett and Kirchner (1997) and Ting (1996, 1999, 2000) 

discussing equivalence of Stroh and Lekhnitskii formalisms. There are also different 

variants of the genuine six-dimensional Hamiltonian formalism applied to analysis of the 

surface acoustic wave; see, works by Tarn (2002a, b), Yan-ze Pen (2003), a recent paper by 

Fu (2007), and works by Kuznetsov (2002, 2003, and 2006). In the framework of the 

generalized Hamiltonian formalisms, several asymptotic approaches have been developed 

to study the limiting SH waves, propagating at 0 ; see, Kuznetsov and Djeran-Maigre 

(2008); the lower modes of Lamb waves; see, Li and Romanowicz (1995); and the flexural 

modes of Lamb waves; see, Poncelet et al. (2006).  
Another interesting variant of the asymptotic analysis is developed by Simonetti (2003), who 

studied behavior of propagation modes of Lamb and SH waves in a single-layered (infinite) 

plate with different types of boundary conditions by considering a two-layered plate and 

taking limits in material properties of one of the contacting layers.  

Remarks 1.1. a) Analytical and numerical data; see Graff (1975), reveal that in the vicinity of 

the limiting phase speed sc  the corresponding dispersion curve ( )c   satisfies a condition  

 ( ) ( ), 0n
sc c O      , (1.1) 

where 0n   is a positive number. However, by numerical analyses it is not possible to 

determine the exponent n . Below, a condition for obtaining the limiting speed sc  will be 

developed.  
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b) Low or vanishing frequencies of Lamb waves traveling with the phase speed satisfying 
condition (1.1), need in a small amount of energy needed for excitation. Indeed, the specific 
kinetic energy is determined by the following expression:  

 
2 2 21 1

2 2
kinE    u m , (1.2) 

where m  is the wave amplitude (possibly varying along depth of a layer). The right-hand 
side of (1.2) ensures that at finite values of the amplitudes and at 0 , the specific kinetic 
energy vanishes. It can be shown that the specific potential energy is also proportional to 
square of amplitude and frequency, thus, vanishing at 0 , as well.  
c) Importance of the limiting waves is underlined by the fact that they resemble propagation 
of the wave front (WF) in a layer; see Treves (1982, Ch.V, §1) for definition of the WF and 
Achenbach (1973, Ch.IV, §4.5) for the corresponding notion used in acoustical applications.  
Following Lamb (1917), the displacement field of the wave traveling in an isotropic layer can 
be represented by the following 

 
4

( )

1

( , ) pir x ir ct
p p

p

t C e e
   



 
 
 
 
 n x

u x m , (1.3) 

where u  is the displacement field, and 3
p m   are the unit amplitudes (polarizations). It 

is assumed that each vector pm  belongs to the sagittal plane. This plane is determined by 

the unit normal  w n  , where n  is the unit normal to the wave front and   is the unit 

normal to the median plane of the plate. In (1.3) x  x  is a coordinate along vector  ; r  

is the wave number; c  is the phase speed; t  is time. The Christoffel parameters p  will be 

introduced later on. In representation (1.3)  

 ( )( , ) pir xp ir ct
pt e e

    n x
u x m  (1.4) 

are the partial waves. The unknown coefficients pC  in (1.3) are determined up to a 
multiplier by the traction-free boundary conditions: 

 : 0x h       
x

t C u  , (1.5) 

where C  is the fourth-order elasticity tensor (for isotropic medium tensor C  is determined 

by two independent constants); and 2h  is the depth of a plate. Exponential multiplier 
( )ir cte  n x  in (1.3) and (1.4) stands for propagation of the plane wave front const n x .  

Remark 1.2. Representation (1.3) is also valid in a case of anisotropic plate, provided: (A) the 
elasticity tensor has an axis of elastic symmetry, and (B) the wave travels in the direction of 
such an axis. Condition (A) is equivalent to monoclinic symmetry of the elasticity tensor, 
meaning that the elasticity tensor contains 13 independent decomposable components. At 
violating conditions (A) or (B), the amplitudes of partial waves may not belong to the 
sagittal plane. If that is the case, the six partial waves compose Lamb wave, instead of four 
partial waves used in (1.3); see, Kuznetsov (2002).  
If a multilayered plate is concidered, the solution is usualy constructed by one of the 
following methods: (i) the transfer matrix (TM) method, known also as Thomson – Haskell 
method due to its originators; see, Thomson (1950), Haskell (1953) and more recent papers 
by Ryden et al. (2006) and Lowe (2008); and, (ii) the global matrix (GM) method; see, 
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Knopoff (1964) and Mal and Knopoff (1968). The TM method is based on a sequential 
solution of the boundary-value problems on the interfaces and constructing the transfer 
matrices. The TM method will be discussed in a more detail in the subsequent sections. The 
GM method is based on solving a system of the governing differential equations with the 
piecewise constant coefficients, resulting in construction of the special “global matrix”.  
Herein, a variant of the modified TM (MTM) method will be developed. That is associated 
with construction of the fundamental exponential matrices and satisfying interface 
conditions in terms of these matrices. The MTM method allows us to analyze both phase 
speed and polarization of Lamb waves propagating at vanishing frequencies in anisotropic 
multilayered plates.  

2. Basic notations 

All the layers of a multilayered plate are assumed homogeneous and hyperelastic. Equations 
of motion for a homogeneous elastic anisotropic medium can be written in the following form  

 ( , ) div 0x t x x       A u C u u , (2.1) 

where the elasticity tensor C  is assumed to be positively definite: 

 
3 3sym( ), 0, , ,

( ) 0,ijmn
ij mn

R Ri j m n

A C A
  

      
A A

A C A A , (2.2) 

In expression (2.2) 
1

sym ( )
2

t A A A . 

Remark 2.1. For isotropic medium the positive definiteness of the elasticity tensor yields:  

 
2

0,
3

     , (2.2´) 

where   and   are Lamé constants.  
Following Kuznetsov (2002, 2003) we consider a more general than (1.3) representation for 
Lamb waves, that is suitable for layers with arbitrary elastic anisotropy: 

 ( )( , ) ( ) ir ctt x e   n x
u x f , (2.3) 

where x irx   is a dimensionless coordinate; and f  is the unknown vectorial function 

defining variation of the amplitude at the wave front. Substituting representation (2.3) into 

Eq. (2.1), yields the ordinary differential equation with respect to f . This is known as the 

Christoffel equation for Lamb waves:   

  2 2
1 2 3 0x xr        A A A f , (2.4) 

where  

 2
1 2 3, , c            A C A C n n C A n C n I    . (2.5) 

By introducing an auxiliary function x w f , Eq. (2.4) can be reduced to the matrix ODE of 
the first order: 
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x
   

     
   

f f
G

w w
, (2.6) 

where G  is the matrix of the sixth rank for arbitrary elastic anisotropy, and of the fourth 

rank for the case described by conditions A and B in Remark 1.2:  

 
1 1

1 3 1 2
 

 
       

0 I
G

A A A A

. (2.7) 

It can easily be deduced from (2.7)  

    1
3 1det( ) det det G A A . (2.8) 

In the right-hand side of (2.7) 0  and I  are the corresponding 3 3  matrices. By means of 

(2.7), the general solution of Eq. (2.6) can be represented in the form  

 

0

ir xe C 
  

 
G

f

w


, (2.9) 

where C


 is the six-dimensional complex vector, defined up to a scalar multiplier by 

boundary conditions (1.5). Taking into account (2.9), representation (2.3) takes the form  

   ( )( , )

( , )
ir ctir xt

e C e
t

   
  

 
n xG

u x

v x


, (2.10) 

where ( )( , ) ( ) ir ctt x e   n x
v x w .  

Remarks 2.2. a) Representation (2.10) remains valid if matrix G  is a non-semisimple matrix, i.e. 

when matrix G  has Jordan blocks in its Jordan normal form.  

b) Computing exponential matrix ir xe G  can be done by different numerical methods; see, 

Moler and Van Loan (1978, 2003) Higham (2001) and Zanna and Munthe-Kaas (2002), where 

different numerical schemes are discussed. For analytical purposes the exponential matrix 

can be constructed by applying two alternative methods: (1) the Taylor series expansion, or 

(2) reducing matrix G  to the Jordan canonical form and taking exponent of the diagonal 

matrix (assuming that G  is a semisimple matrix) 

 1ir x ir xe e   G D
W W . (2.11) 

where  D  is diagonal matrix, and W  is a non-degenerate matrix needed to reduce G  to the 

Jordan canonical form; see, Meyer (2002). If matrix G  is not semisimple, representation 

(2.11) changes; see, Meyer (2002, §7.3). 

3. Vanishing frequency Lamb wave in a homogeneous anisotropic plate 

Substituting solution (2.10) into boundary conditions (1.5) yields  

 0C M


, (3.1) 

where  
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 
 

4 1

4 1

,

,

ir h

ir h

e

e





 
 
   

G

G

A A
M

A A

. (3.2) 

In (3.2)  

 
4   A C n . (3.3) 

Existence of a non-trivial solution for Eq. (3.2) is equivalent to the following condition  

 det( ) 0M  (3.4) 

Equation (3.4) is known as the dispersion equation for Lamb wave, since it implicitly defines 
speed of propagation as a function of frequency or wave number.  
Proposition 3.1. At 0r   and at arbitrary anisotropy, Eq. (2.14) is trivially satisfied.  

Proof flows out Eq. (3.2), which ensures at 0r  :  

 4 1

4 1

 
    

A A
M

A A
. (3.5) 

It is clear that for matrix (3.5) condition (3.4) is satisfied.  

However, the obtained at 0r   solution is meaningless; firstly, it does not satisfy Eq. (3.4) at 
small 0r  ; and secondly, it does not define speed of the wave at 0r  . To construct the 
solution valid at 0r  , the condition (1.1) will be used. Taking into account (3.4) and 
Proposition 3.1, condition (1.1) can be rewritten as a sequence of the following conditions 
imposed on the phase speed ( )c r , that is implicitely defined by Eq. (3.4)  

    
0

( ) det( ) / det( ) 0, 1,...,
k

k
r ck r

d
c r k n

dr 
     M M . (3.6) 

Conditions (3.6) are equivalent to   

 
0

det( ) 0, 1,...,k
r

r
k n


  M . (3.7) 

Taking Taylor’s expansion (with respect to r ) of the exponential mappings in (3.2), yields  

 

4 1 3 4 2

4 1 3 4 2

1 1 1 12
4 1 3 2 1 3 4 1 2 3 2 1 2

1 1 1 1
4 1 3 2 1 3 4 1 2 3 2 1 2

1 1 1 1 1
4 1 2 1 3 3 1 3 4 1 3 4 1

21
2 1 33

1!

( )

2!

( )

3!

irh

irh

irh

   

   

    



    
           

     
  
    

   




A A A A A
M

A A A A A

A A A A A A A A A A A A A

A A A A A A A A A A A A A

A A A A A A A A A A A A A

A A A

 
 

 
 

 

2
1

2 3 1 2

2
1 1

2 1 3 2 1 2 4

21 1 1 1 1 1
4 1 2 1 3 3 1 3 4 1 3 4 1 2 3 1 2

2 21 1 1
2 1 3 2 1 3 2 1 2

( )O r



 

     

  

   
 
  
  
       
 
   

A A A A

A A A A A A

A A A A A A A A A A A A A A A A A

A A A A A A A A A

. (3.8) 
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Substituting the first four terms of Taylor’s series (3.8) into (3.7) and applying Schur’s 
formulas; see, Meyer (2002), yields conditions (3.7) in the form  

     1

0 0
det( ) det det 0, 1,...,k k

r r
r r

k n

 
     M W Z XW Y , (3.9) 

where  

 

 

 

 

 

 

2
1 1

4 3 4 1 3 2 1 3

3 21 1 1 1
4 1 2 1 3 3 1 3 2 1 3

2
1 1

4 3 4 1 3 2 1 3

3 2
1 1 1 1

4 1 2 1 3 3 1 3 2 1 3

2

1 4 2 4

( )
( )

2

( )

3!

( )
( )

2

( )

3!

( )
( )

2

irh
irh

irh

irh
irh

irh

irh
irh

 

   

 

   

     

    
 

     

    
 

    

W A A A A A A A A

A A A A A A A A A A A

X A A A A A A A A

A A A A A A A A A A A

Y A A A A 

   

   

   

1 1
1 2 3 2 1 2

3 2 2
1 1 1 1 1

4 1 3 4 1 2 3 1 2 2 1 3 2 1 2

2
1 1

1 4 2 4 1 2 3 2 1 2

3 2 21 1 1 1 1
4 1 3 4 1 2 3 1 2 2 1 3 2 1 2

( )

3!

( )
( )

2

( )

3!

irh

irh
irh

irh

 

    

 

    

  

       
 

       

       
 

A A A A A A

A A A A A A A A A A A A A A A

Z A A A A A A A A A A

A A A A A A A A A A A A A A A

. (3.10) 

Matrices in (3.9) and (3.10) are correctly defined, if the phase speed c  does not coincide with 

any of the bulk wave speeds propagating in the direction of the wave normal n . 

Henceforth, this is assumed to hold. Equations (3.9) are the necessary and sufficient 

conditions for existing a vanishing frequency Lamb wave that satisfies (1.1).  

Remark 3.1. Parameter 1n   in conditions (3.6) and (3.7) is dependent on anisotropy, and it 

characterizes attenuation of the phase speed ( )c r  at 0r  . Necessity of conditions (3.6) can 

be explained by analyzing Taylor’s expansion of det( )M  at small r , yielding  

 det( ) ( ), 0n n
nr V o r r  M , (3.11) 

where nV  is an independent on r  constant. Taking into account (3.11), it becomes clear that 

conditions (3.6) and (3.7) define the phase speed, at which vanishes the lowest non-trivial 

coefficient nV  of expansion (3.11).  

4. Vanishing frequency Lamb wave in a homogeneous isotropic plate 

For an isotropic elastic plate  

 

1 2

2 2
3

4

( 2 ) ( ), ( )( )

( 2 ) ( )( )c c

    

    
 

           

        
    

A n n w w A n n

A n n w w

A n n

   

 
 

, (4.1) 
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where  w n .  

Substituting matrices (4.1) into (2.7) gives matrix G  in a form  

 

2

2

2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0
2 2

( 2 )
0 0 0 0

0 0 0 0 0

c

c

c

   
   

    
 

 


 
 
 
 
 

  
    

   
 

 
   
 

G . (4.2) 

For the isotropic plate the fundamental matrix ir xe G  can also be constructed explicitly by 

reducing matrix G  to the Jordan normal form  

 1  G W D W , (4.3) 

where W  is a matrix containing (right) eigenvectors of matrix G  stored columnwise  

 

1 1

1 1

2 2

1 1 1 1 0 0

0 0

0 0 0 0

0 0

1 1 0 0

0 0 0 0 1 1

a a b b

a a

a a b b

a a

 

 

 
 
  

  
  
 
  
 
 

W , (4.4) 

and D  is a diagonal matrix  

  diag , , , , ,a a b b a a   D . (4.5) 

In (4.4), (4.5) parameters a  and b  take the following values  

 2 2 2 2/ 1, / 1S Pa c c b c c    , (4.6) 

where 

 
2

,P Sc c
  

 


   (4.7) 

are speeds of bulk primary ( Pc ) and secondary ( Sc ) waves.  
It can be proved that at any admissible values of   and   satisfying condition (2.2´), matrix 
(4.2) is a semisimple matrix. Taking into account Eqs. (4.3) – (4.6) the fundamental matrix 
takes the form given by (2.11). Now, combining Eqs. (3.2) and (4.1 - (4.7), it is possible to 
represent matrix M  in a complicated, but closed form.  
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Considering Eqs. (4.2), (4.5), and (4.7), the dispersion equation (3.7) gives the following 

values for the phase speed of the vanishing frequency waves propagating in a homogeneous 

isotropic plate:  

 
1 2

( )
2 ,

( 2 )
s sc c

   
   


 


. (4.8) 

Remarks 4.1. a) Ewing, Jardetsky, and Press (1957) determined speed 
1sc  by applying 

asymptotic analysis based on Papkovich – Neuber potentials (and thus, confined to the 

isotropic plate only).  

b) It can be shown from analyzing Eqs. (4.1) – (4.7) that a wave propagating with speed 
2sc  

is polarized in direction normal to the sagittal plane (SH wave). Soliton-like SH-waves were 

studied in (Kuznetsov and Djeran-Maigre, 2008).  

c) The phase speed 
1sc  does not depend upon depth of the layer. Analysis of (4.8) shows, 

that at any admissible values of Lamé’s constants   and  , the speed 
1sc  lies in the interval 

1

bulk bulk
T s Lc c c  , where ,bulk bulk

T Lc c  are speeds of the transverse and longitudinal bulk waves 

respectively. The phase speed 
1sc  coincides with bulk

Lc  only at 0  .  

d) At 
1sc  parameters a  and b  in (4.6) take the following values:  

 
3 2

,
2 2

a b i
 

   


 
 

. (4.9) 

The inequality (2.2´) ensures parameter a  in (4.9) to be real.  

The eigenvectors (4.4) enable to obtain polarization of the vanishing frequency Lamb wave. 

Substituting the wave number 0r   and the phase speed sc c  into matrix M , yields (up 

to a scalar constant) two eigenvectors C


 corresponding to the (multiple) zero-eigenvalue of 

matrix M :  

  1 21, 0, 0, 1, 0, 0 ; 0, 1, , 0, 0, 0
2

C C


 
 

     

 
. (4.10) 

The first eigenvector 1C


 ensures existence at 0r   the Lamb wave, linearly polarized in the 

n -direction. Such a wave resembles the longitudinal bulk wave with respect to 

polarization, but naturally differs in the phase speed. According to (4.9) the second 

eigenvector in (4.10) also leads to a linearly polarized wave with the following complex (not 

normalized) amplitude: 

 
2 3 2

sign( )
2 2

i
   

   
   

          
m n . (4.11) 

The real part of (4.11) leads to the slanted wave with respect to vectors   and n , while the 

imaginary part corresponds to a wave defined by the first eigenvector 1C


.  

Since both 1C


 and 2C


 correspond to the zero eigenvalue, we can make a liner combination 

of them. This allows us to construct a vanishing frequency wave arbitrary (indefinitely) 

polarized in the sagittal plane. Summarizing, we arrive at  
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Proposition 4.1. For the arbitrary isotropic traction-free plate and at 0  there exists a 

nontrivial wave propagating with the phase speed 
1sc  independent of the thickness of a 

plate and indefinetely polarized in the sagittal plane.  

5. Vanishing frequency Lamb wave in a multilayered anisotropic plate 

At first a two-layered plate will be considered, and aftrewards the generalization to a plate 
with arbitrary number of anisotropic layeres will be given.  
Let the two-layered plate consists of two homogeneous anisotropic layers with the ideal 
mechanical conact at the interface:   

 
1 2

1 2

( ) ( )

( ) ( )

h h

h h 

  


    

u u

t t

, (5.1) 

where 2 , 1,2kh k   are the depths of the corresponding layers.  
The outer surfaces of the plate are assumed to be traction-free:  

 
1

2

( ) 0

( ) 0

h

h





 


  

t

t

. (5.2) 

By analogy with (2.10), the six-dimensional field in each of the layers can be represented in 

terms of the fundamental matrices kir xe G :  

   ( )

( , )

( , )

k

k
ir x ir ct

k

k

t

e C e

t

  
 
    
 
 

G n x

u x

v x


. (5.3) 

Substituting representation (5.3) into interface conditions (5.1) yields:  

            1 1 2 2
1 2

4 1 4 11 1 2 2

ir h ir he C e C    
          

   

G G
I 0 I 0

A A A A

 
 (5.4) 

It is easy to see that under condition of positive definiteness (2.2) for tensors , 1,2k k C , all 

6 6  matrices appearing in (5.4), are non-degenerate. That allows us to represented the six-

dimensional vector 2C


 in terms of 1C


: 

            2 2 1 1

1

2 1
4 1 4 12 2 1 1

ir h ir hC e e C


    

          
   

G G
I 0 I 0

A A A A

 
 (5.5) 

Remark 5.1. Expression (5.5) constitutes the basis of the Modified Transfer Matrix method, 
while the matrices appearing in the right-hand side of (5.5) are known as the transfer 
matrices.  
Taking into account (5.5), the boundary conditions (5.2) can be expressed in the following 
form:  
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 1 0C M


, (5.6) 

where 6 6  matrix M  is  

 

      

                

1 1

2 2 1 1

4 11 1

1

2
4 12 2

4 1 4 12 2 1 1

,

,

ir h

ir h ir h

e

e e




 

 
 
                     

G

G G

A A

M I 0 I 0
A A

A A A A

. (5.7) 

In (5.7)     4 1, , 1,2
k k

k A A  are 3 6  matrices. Existing (at 0r  ) the nontrivial solutions 

for Eq. (5.6) is equivalent to satisfying condition (3.4). However, for the vanishing frequency 

wave propagating at 0r  , condition (3.4) becomes meaningless, as it was for a single 

homogeneous layer, for such a wave the additional conditions (3.6) should be applied to 

matrix (5.7).  

For a plate consisting of 2n   homogeneous monoclinic layers in a contact, the secular 

matrix M  becomes:  

      

                

1 1

1 1

4 11 1

1

2
4 1

4 1 4 12 1 1

,

, k k

ir h

n
ir h ir h

n n
k k k k k

e

e e




 

  

 
 
                          



G

G G

A A

M I 0 I 0
A A

A A A A

 (5.8) 

6. Vanishing frequency Lamb wave in a multilayered isotropic plate 

Adopting the general method developed in the previous section and applying Eqs. (4.1) – 
(4.7) to construct the fundamental matrices, we arrive at the following two values for the 
limiting phase speed:  

 
1 22

1 1 1 1

2 / , /k k

k k

n n n n

s k k k k s k k k k
k k k k

c h h c h h
 
    


   

       
        

       
    . (6.1) 

Analysing polarization of the corresponding waves reveals that a wave propagating with 

speed 
1sc  is polarized in the sagittal plane, whereas wave propagating with speed 

2sc  is a 

SH wave.  

Confining ourselves to the genuine Lamb wave propagating with speed 
1sc , we can formulate: 

Proposition 6.1. a) Let 
1

max
sc  and 

1

min
sc  be maximal and minimal limiting wave speeds in the 

distinct layers (according to Proposition 4.1 these speeds are independent of thickness of the 

layers), then  

 
1 1 1

min max
s s sc c c  . (6.2) 

b) Supposing that depth of the n -th layer tends to infinity (halfspace) we arrive at the 

following value for the limiting wave speed  

 
1

( )
2

( 2 )
n n n

s
n n n

c
  
  





. (6.3) 
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Proof a) flows out from considering the right-hand-side of (6.1), it ensures that all the terms  

 
 
 1,...,

0
2

k k k

k n k k k

k
  
  


 


 (6.4) 

are positive at the assumption of positive definiteness of the elasticity tensor. Proof b) also 

follows from the right-hand-side of (6.1) by passing to a limit at nh  .  

Remarks 6.1. a) Expression (6.1)1 for the limiting speed 
1sc  was apparently obtained for the 

first time; expression for the limiting speed 
2sc  was obtained by Kuznetsov (2006) and 

Kuznetsov and Djeran-Maigre (2008) with a different asymptotic scheme.  
b) It follows from the right-hand side of (6.3) that the corresponding limiting speed is 
independent of physical and geometrical properties of other layers. It can be said that the 
limiting wave is insensitive to the layers of finite thickness in a contact with a halfspace.  

c) Assuming in Eq. (6.1)1 that the plate is single-layered with 1n   and taking 

1 11, 1   , and 1 1h   we arrive at the following one-parametric expression for the 

speed 
1sc : 

 
1

1 1

12
sc





, (6.5) 

where   is Poisson’s ratio. The plot on Fig.1 shows variation of the longitudinal bulk wave 

speed and the limiting speed 
1sc  versus Poisson’s ratio. The plot reveals that in the whole 

admissible range of  1
21;   , the speed 

1sc  remains substantially lower than the 

longitudinal bulk wave speed. The speed 
1sc  approaches speed of the shear bulk wave only 

at 1 /2  , where actually 
1s Sc с .  

 

 

Fig. 1. Single layered isotropic plate: dependencies of the limiting speed  
1sc  (bold curve) 

and the longitudinal bulk wave speed (dotted curve) on Poisson’s ratio.  
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d) For a triple-layered plate with the outer layers of the same physical and geometrical 

properties (such a case often occurs in practice) the limiting speed 
1sc  is  

  
1

1 1 2 2
1 1 2 2 1 1 2 2

1 1 2 2

2 2 / 2
2 2

sc h h h h
      
   

  
   

  
 (6.6) 

and 
2sc  is  

 
2

1 1 2 2

1 1 2 2

2

2
s

h h
c

h h

 
 





, (6.7) 

where index 1 is referred to the outer layers, and 2 corresponds to the inner layer. Assuming 

in Eq. (6.7) that 1 2h h , while other physical properties of the layers have comparable 

values, yields coincidence of  
2sc  with the shear bulk wave speed of the inner layer.  

Remarks 6.2. a) Expression (6.1)1 for the limiting speed 
1sc  was apparently obtained for the 

first time; expression for the limiting speed 
2sc  was obtained by Kuznetsov (2006) and 

Kuznetsov and Djeran-Maigre (2008) with a different asymptotic scheme.  
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