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1. Introduction  

Acoustic wave propagation in layered media is very important topic for many practical 
applications including medicine, optics and applied geophysics. The key parameter 
controlling all effects in layered media is the scaling factor given by the ratio between the 
wavelength and the layer thickness. Existing theory mostly covers the solutions derived for 
the low-frequency and high-frequency limits. In the first limit, when the wavelength is 
much larger than the layer thickness, the layered medium is substituted by an effective 
medium with the properties given by special technique called the Backus averaging. In the 
second limit, when the wavelength is much smaller than the layer thickness, we can use the 
ray theory to compute both reflection and transmission responses. 
In practice, the wavelength could be comparable with the layer thickness, and application of 
both frequency limits is no longer valid. In this chapter, we will mainly focus on the 
frequency-dependent effects for acoustic waves propagating through the layered media. 
We show that there are distinct periodically repeated patterns consisted of the pass- and 
stop-bands of very complicated configuration defined in frequency-slowness or frequency-
group angle domain that control the reflection and transmission responses. The edges 
between the pass- and stop-bands result in the caustics in the group domain. The quasi-
shear waves in a homogeneous transversely isotropic medium could also results in the high-
frequency caustics, but for the layered media, all wave modes can result in frequency-
dependent caustics. The caustics computed for a specific frequency differ from those 
observed at the low- and high-frequency limits. From physics point of view, the pass-bands 
correspond to the effective medium, while the stop-bands correspond to the resonant 
medium. We distinguish between the effects of scattering and intrinsic attenuation in 
layered media. The propagation of acoustic waves in a layered medium results in the energy 
loss due to scattering effect. The intrinsic attenuation is an additional effect which plays very 
important role in seismic data inversion. We provide the theoretical and numerical study to 
compare both effects for a periodically layered medium. We also investigate the complex 
frequency roots of the reflection/transmission responses. We also derive the phase velocity 
approximations in a layered medium. As the trial model for layered medium, we widely use 
the periodically layered medium with the limited number of parameters. The propagation of 
acoustic waves through a periodic layered medium is analyzed by an eigenvalue 
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decomposition of the propagator matrix. This reveals how the velocity and attenuation of 
the layered medium vary as function of the periodic structure, material parameters and 
frequency. We show that there is one more parameter controlling the wave propagation 
apart of the wavelength to layer thickness ratio that is the acoustic contrast between the 
layers. Multiple scattering in finely layered sediments is important in stratigraphic 
interpretation in seismic, matching of well log-data with seismic data and seismic 
modelling. Two methods have been used to treat this problem in seismic applications: the 
O’Doherty-Anstey approximation and Backus averaging. The O’Doherty-Anstey 
approximation describes the stratigraphic filtering effects, while the Backus averaging 
defines the elastic properties for an effective medium from the stack of the layers.  
Using numerical examples, we show that there is a transition zone between the effective 
medium (low-frequency limit) and the time-average medium (high-frequency limit) and that 
the width of this zone depends on the strength of the reflection coefficient series. Assuming 
that a tubidite reservoir can be approximated by a stack of thin shale-sand layers we use 
standard AVO-attributes to estimate net-to-gross and oil saturation. Necessary input is 
Gassmann rock physics properties for sand and shale as well as the fluid properties for 
hydrocarbons. Required seismic input is AVO intercept and gradient. The method is based 
upon thin layer reflectivity modeling. It is shown that random variability in thickness and 
seismic properties of the thin sand and shale layers does not change the AVO attributes at top 
and base of the turbidite reservoir sequence significantly. The method is tested on seismic data 
from offshore Brazil, and the results show reasonable agreement between estimated and 
observed net-to-gross and oil saturation. The methodology can be further developed for 
estimating changes in pay thickness from time lapse seismic data. We propose the method of 
computation seismic AVO attributes (intercept and gradient) from ultra-thin geological model 
based on the SBED modelling software. The SBED software is based on manipulating sine-
functions, creating surfaces representing incremental sedimentation. Displacement of the 
surfaces creates a three dimensional image mimicking bedform migration, and depositional 
environments as diverse as tidal channels and mass flows can be accurately recreated. The 
resulting modelled deposit volume may be populated with petrophysical information, 
creating intrinsic properties such as porosity and permeability (both vertical and horizontal). 
The Backus averaging technique is used for up-scaling within the centimetre scale (the 
intrinsic net-to-gross value controls the acoustic properties of the ultra-thin layers). It results in 
pseudo-log data including the intrinsic anisotropy parameters. The synthetic seismic 
modelling is given by the matrix propagator method allows us to take into account all pure 
mode multiples, and resulting AVO attributes become frequency dependent. Within this ultra-
thin model we can test different fluid saturation scenarios and quantify the likelihood of 
possible composite analogues. This modelling can also be used for inversion of real seismic 
data into net-to-gross and fluid saturation for ultra-thin reservoirs. 
There are many other issues related to wave propagation in layered media we do not discuss in 

this chapter. For further reading we suggest several books (Aki&Richards, 1980; Brekhovskih, 

1960; Kennett, 1983; Tsvankin, 1995) that cover the problems we did not touch here. 

2. System of differential equations 

To describe the dynamic of the wave propagation in an elastic medium, it is common to use 
the Hook’s law that defines the linear relation between the stress tensor ij  and the strains 
tensor pqe , 
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 ij ijpq pqc e  ,  (1)  

where 
1

2

p q

pq

q p

u u
e

x x

  
     

 and ijpqc  is the stiffness tensor. If there are no volume forces 

within the medium, we can write the moment equation in the following way (Aki and 
Richards, 1980) 

 
2

2

iji

j

u

t x







 
.  (2) 

In equation (1) and (2), it is assumed that the summation is performed over the repeatable 
indices. Since the tensor ijpqc  is symmetrical with respect to index changing    ij pq , 
i j , p q , the relation (1) can be written as 

 p

ij ijpq

q

u
c

x






. (3) 

If we denote i
i

u
v

t





 as the velocity of the particle movement, the equations (2) and (3) can 

be given as 

 iji

j

v

t x







 
, (4) 

 ij p

ijpq

q

v
c

t x

 


 
. (5) 

We can apply the Fourier transform for the variables  , 1x , 2x  to equations (4) and (5) 
according to the following relations 

     1 1 2 2

1 2 1 2 1 23

1
, , , ,

8

i p x p x t
f p p f x x t e dx dx dt





  



    , 

     1 1 2 22

1 2 1 2 1 2, , , ,
i p x p x t

f x x t f p p e dp dp d
  


 



     . 

After substituting the derivatives on 1x , 2x , t  with the coefficients 1i p , 2i p , i , and 
excluding the variables 11 , 12 , 22 , the system of equations (4)-(5) can be given in a vector-
matrix form 

 d
i

dz


b
Mb , (6) 

where vector  1 2 3 13 23 33, , , , ,
T

v v v   b , 3z x , and matrix M  is defined as 

 
1

33

T

 
  

 

A C
M

B A
, (7) 
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with   ,,mn mp nqp q cC ,  1

33 1 31 2 32p p
 A C C C  and  1

3 33 3

, 1,2

m n m n mn

m n

p p 



  B C C C C I , 

where 1p  and 2p  are the horizontal slowness in 1x  and 2x  direction, respectively, and   is 

the density. The matrices 1

33


C  and B  are symmetrical, and matrix M  satisfies the equation  

 TKMK M , (8) 

where T
M  is transposed matrix, 

 
  
 

0 I
K

I 0
 and I  is the unit 3x3 matrix. Equation (6) 

describes the wave propagation in the vertically heterogeneous medium with all parameters 

being dependent on z-coordinate only. Note, even if the parameters  z  and  ijpqc z  are 

discontinuous functions, the components of the vector b  remain continuous functions of 

depth. If the medium is a homogeneous transversely isotropic with vertical symmetry axis 
(a VTI medium), the propagation of waves in qP-qSV system is independent from the qSH-
waves propagation. In this case, there are two equations (6): with dimension 4x4 (qP-qSV 
system) and with dimension 2x2 (qSH wave). For vertical propagation, equation (6) is 
reduced into three independent equations (for qP-, qSV- and qSH-waves). The analytical 

form of matrix M  for different types of media can be found in Aki and Richards (1980), 
Braga and Herrmann (1992) and Fryer and Frazer (1987). 

3. Propagator matrix 

The propagator matrix is the matrix    0 6,z z P GL C  that is the solution of initial-value 

problem 

 
   0

0

,
,

z z
i z z

z






P

MP ,   0 0,z z P I . (9) 

The propagator matrix satisfies the Volterra integral equation 

      
0

0 0, ,

z

z

z z z d    P I M P , (10) 

that can be solved by using the Picard iteration. This leads to the Peano series for  0,z zP  

(Peano, 1888; Pease, 1965) 

        
1

0 0 0

0 1 1 1 2 2 1, ...

z z

z z z

z z d d d



          P I M M M . (11) 

The series (11) converges if   c M  for all  0 ,z z , where ...  is some matrix norm. If 

  M M , the matrix with constant elements, than equation (11) is reduced to the exponent 

    0 0, expz z i z z    P M . (12) 

From equation (9), it follows that for any vector  0zb , the vector      0 0,z z z zb P b  is the 

solution of equation (6). By substituting the basis vectors ie , 1,2,3i  , instead of the vector 
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 0zb , we can prove that the columns of matrix  0,z zP  are the linear independent 

solutions of equation (6), i.e. the propagator matrix describes the fundamental system of 

solutions of equation (6). Since, 

            2 2 0 0 2 1 1 0 0, , ,z z z z z z z z z b P b P P b , (13) 

than, 

      2 0 2 1 1 0, , ,z z z z z zP P P . (14) 

If the medium consists of N layers with matrices iM  and layer thickness ih , the equations 

(12)-(14) gives the propagator matrix from the stack of the layers 

      0 1 1, exp ...expN N Nz z i h i h P M M , (15) 

where 0 1 ...N Nz z h h    . 

Equation (15) was used by Haskell (1953) and Thomson (1950) in their works to describe the 
wave propagation in a layered isotropic medium. 

4. Symmetry relations 

Let us assume that matrices 
k

M  can be diagonalized by using a similarity transformation, 

 ( ) 1

diag
m

k k k k
 M E E . In this case,     ( ) 1

exp diag exp
m

k k k k k k
i h i h   M E E . The 

columns of matrix 
k

E  are the polarization vectors for all types of wave propagating in layer 

k with horizontal slownesses 
1
p  and 

2
p , while 

( )m

k
  are corresponding vertical slownesses. 

Therefore, the vector 
1

( ) ( )
k

z z
w E b  consists of up- and down-going wave amplitudes in 

layer k with 
1 1 1

... ...
k k

h h z h h


      . Let us denote by 
0

E  and 
1N 

E  the matrices that 

consist of the eigen-vectors of matrices 
0

M  and 
1N 

M , respectively, which define the 

properties of the half-spaces surrounding the stack of layers. The matrix 

 
1

1 0






N
Q E PE  (16) 

is called the amplitude propagator matrix, since the equation 
1 0N 
w Qw  provides the 

linear relation between the amplitudes over and under the stack of layers for all wave types. 

The amplitude propagator matrix can be blocked by 3x3 sub-matrices,  
1,2ij ij

Q Q , and the 

amplitude vectors 
0

w  and 
1N 

w  can be blocked by three-component sub-vectors, 

corresponding to up- and down-going waves of different type, 

 
0

0

0


 
 
 

u
w

d
, 

1

1

1

N

N

N








 
 
 

u
w

d
. (17) 

Therefore, we can write 

 
1 011 21

1 021 22

N

N






    
    
    

u uQ Q

d dQ Q
. (18) 

www.intechopen.com



 
Waves in Fluids and Solids 

 

8 

From equation (18), it follows that the amplitudes of waves going away from the stack of 

layers: 
0

u  and 
1N 

d  can be computed from the amplitudes of waves coming to the stack of 

layers: 
1N 

u  and 
0

d , 

 
1 0

0 1

N D U

D U N






    
    
    

d T R d

u R T u
, (19) 

where 

 
1

22 21 11 12D

 T Q Q Q Q , (20) 

 
1

21 11U

R Q Q , (21) 

 
1

11 12D

 R Q Q , (22) 

 
1

11U

T Q . (23) 

The matrices 
U

R , 
U

T  and, 
D

R ,
D

T  are called the reflection and transmission matrices for up- 

and down-going wave, respectively (Figure 1). From equations (20)-(23), the amplitude 

propagator matrix can be rewritten as 

 

1 1

1 1

U U D

U U D U U D

 

 






 
 
 

T T R
Q

R T T R T R

. (24) 

The matrix 

 
D U

D U


 
 
 

T R
S

R T
 (25) 

is called the scattering matrix (Ursin, 1983) and contains all reflection and transmission 

coefficients for up- and down-going waves of all type as sub-matrices. If the layers posses the 

VTI (transverse isotropy with vertical symmetry axis) symmetry, the following relation is valid 

 
T Q JQ J , (26) 

where 


 
 
 

0 I
J

I 0
. In order to prove the relation (26), we represent the amplitude 

propagator matrix Q  as 
1 0

...
N N

Q F Λ Λ F , where 
1

1k k k




F E E ,  ( )

diag
m

k k
Λ  and 

 ( ) ( )

exp
m m

k k k
i h   . To validate the relation (26), it is sufficient to prove that 

T

k k
 Λ J J  

and 
T

k k
F JF J . The first equality follows from the fact that the matrix 

k
Λ  is diagonal, and 

the elements of matrix 
k

Λ  are symmetric, 
( 3 ) ( )

1
m m

k k
   . The second equality can be proven 

by substitution of equations (35) and (36) for matrices 
k

E  and 
1

1k




E  into this equation and 
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using relations (37). The symmetry relations for reflection and transmission matrices for 

stack of layers sandwiched between two half-spaces, 

 
T

D D
R R ,   

T

U U
R R ,   

T

D U
T T , (27) 

can be derived by substitution the expression for amplitude propagator matrix Q  from 

equation (24) into equation (26). It is assumed that all layers and half-spaces posses the VTI 

symmetry, and the presence of attenuation is allowed. The symmetry relations (27) are also 

derived by Ursin (1983) for a stack of isotropic layers. If we consider the single interface 

between the half-spaces, than the diagonal sub-matrices in equation (24) are equal (see 

equations (35) and (36)), and, therefore, 
1 1

U U U D

  R T T R  and 
1 1

U D U U D

  T T R T R  (Ursin, 

1983). These relations result in 

 0
U U D U

 T R R T ,    
2

D U U
 T T R I . (28) 

By using 
1

U U D U

 R T R T  and equations (27) we can derive two additional symmetry 

relations 

 0
U D D D

 R T T R ,   
2

U D D
 T T R I . (29) 

The symmetry relations (28) and (29) are derived by Frasier (1970), Kennett et al. (1978) and 
Ursin (1983). 

5. Reflection and transmission responses of layered transversely isotropic 
media 

This chapter is mostly based on the paper Stovas and Ursin (2003). The major point in this 

chapter is wave field decomposion into up- and down-going waves (Kennett, 1983; Ursin, 

1983) scaled such that, for an elastic medium, the vertical energy flux is constant. This 

results in important symmetries in the transformation matrix and also in the reflection and 

transmission (R/T) coefficients (Chapman, 1994; Ursin and Haugen, 1996). The equations of 

motion and Hook’s law in a source free VTI medium (radially symmetric about the vertical, 

z  axis) for qP- and qSV-waves in 1 3X X  plane after applying a Fourier transform can be 

expressed as an ordinary first-order matrix-vector differential equation as shown in 

equation (6), where   denotes circular frequency,  3 13 33 1, , ,
T

v v b  is the displacement 

velocity - stress vector, the superscript " "T  indicating the transpose, and the matrix M  has 

the blocked structure, 

 
0

0

 
  

 

A
M

B
, (30) 

composed of the 2x2 symmetric matrices A  and B  are given by 

  
1 1

33 13 33

11 2 2 1
5513 33 11 13 33

,
c pc c p

p cpc c p c c c




 

 

   
         

A B , (31) 
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which are dependent on the horizontal slowness p , the stiffness coefficients ijc  from the 
stiffness matrix and the density  . In order to decompose into up- and down-going waves 
(Ursin, 1983, Ursin and Stovas, 2002), we make the linear transformation 

 
 

  
 

u
b E

d
. (32) 

Then equation (6) becomes 

 
id

idz




        
         

        

u Δ 0 F G u

d 0 Δ G F d
, (33) 

where u  and d  are the up- and down-going wave amplitudes, and 

  ,qP qSVdiag  Δ  (34) 

contains the vertical slownesses for qP- and qSV-waves, qP  and qSV . The transformation 
matrix 

 1 1

2 2

1

2

 
   

E E
E

E E
 (35) 

is normalized with respect to the vertical energy flux so that the inverse has the simple form 

 
1 1 T T

1 1 2 2 1

1 1 T T

1 2 2 1

1 1

2 2

 


 

   
    

    

E E E E
E

E E E E
. (36) 

Matrices 1E  and 2E  posses the symmetries 

 2 1 2 1

T T E E E E I . (37) 

Therefore, the layer propagator matrix can be given as 

    
( ) ( )

1 11 12

( ) ( )

21 11

exp exp
k k

k k k k

i
i h i h

i
    

    
 

P P
P M E Λ E

P P
, (38) 

where  ( ) 1cosk

mm m mh P E Δ E  and  ( ) 1sink

mn m nh P E Δ E , , , 1,2m n m n  . From equation (37) 

and (38), it follows that 

    
( ) ( )

1 1 11 12

( ) ( )

21 11

exp exp
k k

k k k k

i
i h i h

i
    

      
 

P P
P M E Λ E

P P
, (39) 

and 

 

    

    

    

( ) 1 1 ( )

11 1 1 2 2 22

( ) 1 1 ( )

21 2 1 2 1 21

( ) 1 1 ( )

12 1 2 1 2 12

cos cos

sin sin

sin sin

TTk k

TTk k

TTk k

h h

h h

h h

 

 

 

 

 

 

  

  

  

P E Δ E E Δ E P

P E Δ E E Δ E P

P E Δ E E Δ E P

. (40) 
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The product of matrices of this type indicates that the propagator matrix P  for the stack of 
layers can be blocked as follows 

 11 12

21 22

i

i

 
  
 

P P
P

P P
, (41) 

where the elements of 2x2 matrices klP  are real functions of horizontal slowness p  and 

frequency  . The elements of matrices  kl P  are even/odd functions of frequency if k+l is 

an even/odd number, respectively. Matrix kM  possesses the following symmetries  

 ,T

k k k k  KM K M TM T M  , (42) 

where 
 

   

I 0
T

0 I
. Therefore, 

     1exp , expT T

k k k k k k
i h i h      KP K M P TP T M P . (43) 

For an elastic medium, the elements of matrix kM  are real, and, therefore, * 1

k k

P P , and 
equations (43) can be rewritten as 

  * *,
T

k k k k


 KP K P TP T P . (44) 

Multiplications of equations (44) for 1,...,k N , gives similar symmetry relations for 
propagator matrix for the stack of layers, 

  * *,
T

 KPK P TPT P . (45) 

The scattering matrices F  and G  are given by 

 1 2 1 2
2 1 2 1

1 1
,

2 2

T T T Td d d d

dz dz dz dz

              

E E L E
F E E G E E , (46) 

with symmetries 

 ,T T  F F G G , (47) 

so that F  and G  have the form 

 11 12

12 22

0
,

0

g gf

g gf

  
       

F G . (48) 

To compute the scattering matrices F  and G , we express them as functions of 

perturbations in the elements of the matrices A  and B  in equation (31). The eigenvector 

matrices satisfy the following equations 

 2 1 1 2,  AE E Δ BE E Δ . (49) 

From equations (35) and (36), we obtain 
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    1 1 2 2,     E E G F E E G F . (50) 

Differentiating equations (49) and substituting equations (50), we obtain 

 

 
 

 

 
 

 

11 12

2 2 1 1

12 22

2 2 1 1

2 1

22

0 1

20

qP qP qSV
T T

qP qSV qSV

qP qSV T T

qP qSV

g g

g g

f

f

  

  

 

 

 
       
  
 
        
  

ΔG GΔ E A E E B E

ΔF FΔ E AE E B E Δ

. (51) 

From equations (51) we can compute all elements of matrices F  and G . 
Equation (6) can be solved not only by propagator matrix technique described in previous 
chapter, but also by a layer-recursive scheme described in Ursin and Stovas (2002). We let 

DjR , DjT , UjR  and UjT  denote the R/T matrices for the interface at jz z  (Figure 1). For the 
layer thickness 1j j jz z z    , the layer propagator matrix is given by 

  expj j ji z L Λ . (52) 

Assume that the generalized reflection matrix from the top of layer j+1 to the bottom of the 
stratified medium,  ,D j Nz z 

R , is known; then the new reflection matrix up to the top of 
layer j is given by the recursive relation (Ursin, 1983) 

       1

1, , ,D j N j Dj Uj D j N Dj D j N Dj jz z z z z z


     


    R L R T R I R R T L . (53) 

It is started with the initial value  , 0D j Nz z  R , satisfying the radiation condition in the 
elastic half-space. By considering a plane interface between two homogeneous media, we 
can define the transmission and reflection coefficient matrices. Continuity of the wavefields 
gives the 2x2 reflection and transmission matrices (Ursin, 1983): 

     1 1
2 ,

DPP DPS DPP DPS

D D

DSP DSS DSP DSS

t t r r

t t r r

    
         
   

T C D R C D C D , (54) 

with  

        1 2 1 2

2 1 1 2,
T T

       C E E D E E , (55) 

where superscripts 
 1

 and 
 2

 denote the upper and lower medium, respectively.  
 

R
D

T
D

T
U

R
U

I

I

zz

00

 

Fig. 1. Definition of the reflection and transmission response matrices (Ursin&Stovas, 2002). 
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The symmetry equations (37) imply that 

 T CD I . (56) 

Using equation (55), the reflection and transmission matrices are given by 

   
   

   

11 22 21 12

12 21 22 11

2 2 2 2 2

11 12 21 22 11 21 12 22

2 2 2 2 2

11 21 12 22 11 12 21 22

det det2

det detdet( )det

det 1 21

det( )det 2 det 1

D

D

c c c c

c c c c

c c c c c c c c

c c c c c c c c

  
     

      
 
        

C C
T

C CC D C

C
R

C D C C

  (57) 

where ijc  are elements of matrix C  and 

    2 2 2 2 2

11 12 21 22det det det 1 c c c c      C D C C . (58) 

The matrices UR  and UT  can be computed by interchanging the superscripts 1 and 2 or 

using the symmetry relations (37) and (56) (Ursin and Stovas, 2001), which gives 

 1,T

U D U D D D

  T T R T R T . (59) 

The weak-contrast approximations for reflection and transmission matrices an be derived by 

assuming weak contrast in elastic parameters above and below the interface. We consider a 

plane interface with a discontinuity in the parameters 

    2 1

k k km m m    (60) 

and average parameters 

 
   2 1

2

k k
k

m m
m


 , (61) 

where  1

km  and  2

km  characterize the medium above and below the interface, respectively. 

To approximate the reflection and transmission matrices in equation (54), we proceed as in 

Stovas and Ursin (2001) and expand the matrices  
, 1,2, 1,2

j

k k j E , into second-order 

Taylor series with respect to the average medium. This gives the second-order approximations  

 
   

   
 

 

 

2 2 2

11 12 12 11 22 11 12 12 11 22
2 2

2 2 2

12 11 22 12 22 12 11 22 22 12

1 1 1
1

2 2 2
,

1 1 1
1

2 2 2

D D

g g f f g g g g g f g f g g

f g g g g g f g f g g g g f

             
     
              
   

T R
. (62) 

From the symmetries of the matrices 1E  and 2E , the second-order derivatives of these 

matrices with respect to the medium parameters cancel; therefore they do not appear in the 

second-order approximations for the R/T coefficients. In the equations above, the elements 

f  and ijg  are as defined in equation (46), but the derivatives of the medium parameters 

kdm

dz
 are replaced by km . Neglecting the second-order terms gives the linear approximations 
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    1 1
,D D   T I F R G . (63) 

These correspond to ones given in Ursin and Haugen (1996) for VTI media and in Aki and 

Richards (1980) for isotropic media, except that they are normalized with respect to the 

vertical energy flux and not with respect to amplitude. 

6. Periodically layered media 

Let us introduce the infinite periodically layered VTI medium with the period thickness 

1

N

j

j

H h



 , where 
j

h  is the thickness of 
th

j  layer in the sequence of N  layers comprising the 

period. The dispersion equation for this N layered medium is given by (Helbig, 1984) 

   det exp 0i H  P I , (64) 

and the period propagator matrix P  is specified by formula (15). The equation (64) is known 

as the Floquet (1883) equation. 

The parameter  ,p    is effective and generally complex vertical component of the 

slowness vector. For plane waves with horizontal slowness p , the real part of   which satisfies 

equation (64), Re q  , defines the vertical slowness of the envelope, while the imaginary part, 

Im  , characterizes the attenuation due to scattering. Note that for propagating waves, 

0

lim 0





 . This indicates that there is no scattering in the low frequency limit.  

The low and high frequency limits 

In the low-frequency asymptotic of the propagator matrix P  has the following form 

  exp i H P M  with 

      
2

1

1

2

N

k k j j j

k j

i
h h h o

H H


 

 

    M M M M M M
  



  (65) 

Therefore, the dispersion equation (64) in the low-frequency limit has roots similar to those 
defined for a homogeneous VTI medium given by the averaged matrix 

  
1

1
0

N

k k

k

h
H 

 M M  . (66) 

One can see from observing the elements of the matrices in equation (31) that equation (66) 

is equivalent to the Backus averaging. The propagator matrix P , which defines the 

propagation of mode 
k

m  in the 
th

k  layer, 1, ...,k N , can be defined as 

      
1 1

exp exp exp
N N k k

i h i h i h  P F F F   , (67) 

where 
( ) ( ) ( )

k k k
m m m T

k k k k
F n m  is a 4x4 matrix of rank one, 

( )
k

m T

k
m  and 

( )
k

m

k
n  are the left- and right 

hand side eigenvectors of matrix 
k

M  with eigenvalue 
( )m

k
 . Substituting 

k
F  into equation (67) 

results in 
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                 1 1 1

1 1 1

1 1

exp ... exp
T T T

k N N k N

N N

m m m m mm m m

k k N N k k N

k k

i h i h    
 

     
       P n m n m n m , (68) 

where the number  1
( ) ( )

1
ln ...N

m T m

N
  m n . In this case, the dispersion equation (64), which 

defines the vertical slowness for the period of the layered medium, has the root given by 

 
 

1

1
k

N

m

k k

k

i
h

H H


 



  , (69) 

where the term i H   is responsible for the transmission losses for propagating waves 

which is frequency independent. This can be shown by considering the single mode plane 

wave, 

        exp exp expi pr z t i pr q z t z H        , (70) 

where 

 
 

1

1
k

N

m

k k

k

q h q
H 

  . (71) 

This equation defines the vertical slowness for a single mode transmitted wave initiated by a 

wide-band  - pulse, since it is frequency-independent. The caustics from multi-layered VTI 

medium in high-frequency limits are discussed in Roganov and Stovas (2010). Note, that 

propagator matrix in equation (68) describes the downward plane wave propagation of a 

given mode within each layer, i.e. the part of the full wave field. All multiple reflections and 

transmissions of other modes are ignored. Therefore, this notation is valid for the case of the 

frequency independent single mode propagation of a wide band   pulse. In the low 

frequency limit, the wave field consists of the envelope with all wave modes. For an 

accurate description of this envelope and obtaining the Backus limit we have to use the 

formula (15) for complete propagator P . 

6.1 Dispersion equation analysis 

From the relations (45), one can see that the matrices P , *
P  and  *

T
P  are similar. These 

matrices have the same eigen-values. So, if x  is eigen-value of matrix P , than *x , 1x  and 

 *1
x
  are also eigen-values. Additionally, taking into account the identity,  det 1P , it can 

be shown, that equation 

  det 0x P I  (72) 

reduces to 

    2
1 1

1 2 2 0x x a x x a
       , (73) 

and the roots of equation (64) corresponding to qP- and qSV-waves, P  and S , satisfy 

the equations 
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             1 2

1 1 1
cos cos , , cos cos , .

2 4 2
qP qSV qP qSVH H a p H H a p              (74) 

The real functions  1 ,a p   and  2 ,a p   can be computed using the trace and the sum of 

the principal second order minors of the matrix P , respectively. Using equation (41) and 

taking into account that  11 P  and  22 P  are even functions of frequency, and  12 P  and 

 21 P  are odd functions of frequency, the functions  1 ,a p   and  2 ,a p   are even 

functions of frequency and horizontal slowness. The system of equations (74) defines the 

continuous branches of functions  Re ,qP qPq p     and  Re ,qSV qSVq p     which 

specify the vertical slowness of four envelopes with horizontal slowness p  and frequency 

 . Let us denote    1 1, , 4b p a p  ,    2 2, , 4 1 2b p a p    and 
1

2

x x
y


 . Note that 

the functions  1 ,b p   and  2 ,b p   are also even functions of frequency and horizontal 

slowness. 
 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

M
3

M
2

M
1

M
0

N
2N

1

f=25Hz

f=50Hz f=15Hz

2

43
5

1

1,2: no roots

3: one root (qP)

4: one root (qSV)

5: two roots

b
2

b
1  

Fig. 2. Propagating and evanescent regions for qP   and qSV   waves in the  
1 2
,b b  domain. 

The points  
1

1,1N   and  
2

1,1N  denote the crossings between 
2 1

1 2b b    and 
2

2 1
b b . 

The paths corresponding to f const  are given for frequencies of 15, 25 and 50f Hz  are 

shown in magenta, red and blue, respectively. The starting point 
0

M  (that corresponds to zero 

horizontal slowness) and the points corresponding to crossings of the path and boundaries 

between the propagating regions, , 1, 2, 3
j

M j  , are shown for the frequency 15f Hz . 

Points 
4

M  and 
5

M  are outside of the plotting area (Roganov&Stovas, 2011). 

All envelopes are propagating, if the roots of quadratic equation 

 2

1 22 0y b y b    (75) 

are such that 1 1y   and 2 1y  . On the boundaries between propagating and evanescent 

envelopes, we have 1y    or discriminator of equation (75),   2
1 2, 0D p b b    . In the 

first case we have, 2 11 2b b   , and in the second case, 2

2 1b b  (Figure 2). If 1y  , the 

equation  cosy H   has the following solutions 
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 

 

2

2

1
2 ln 1 , , 1

1
(2 1) ln 1 , , 1

n i y y n y
H

n i y y n y
H

 


 


         

            

Z

Z

, (76) 

and Req const   in this area. The straight lines 2 11 2b b    and the parabola 2

2 1b b  

defined between the tangent points  1 1,1N   and  2 1,1N  split the coordinate plane  1 2,b b  

into five regions (Figure 2). If parameters 1b  and 2b  are such that the corresponding point 

 1 2,b b  is located in region 1 or 2, the system of equations (74) has no real roots, and 

corresponding envelopes do not contain the propagating wave modes. The envelopes with 

one propagating wave of qP-or qSV- wave mode correspond to the points located in region 

3 or region 4, respectively. The points from region 5 result in envelopes with both 

propagating qP- and qSV-wave modes. If a specific frequency is chosen, for instance, 

30 Hz   (or 15f Hz ), and only the horizontal slowness is varied, the point with 

coordinates  1 2,b b  will move along some curve passing through the different regions. 

Consequently, the number of propagating wave modes will be changed. In Figure 2, we 

show using the points iM   0, 5i    with the initial position 0M  defined by 0p   and the 

following positions crossing the boundaries for the regions occurred at 1 0.172p s km , 

2 0.217p s km  and 3 0.246p s km . This curve will also cross the line 2 11 2b b    at 

4 0.332p s km  and 5 0.344p s km . Between the last two points, the curve is located in the 

region 2 with no propagating waves for both modes. The frequency dependent positions of 

the stop bands for p const  can be investigated using the curve,      1 2,b b b      . 

Since the propagator in the zero frequency limit is given by the identity matrix, 

 
0

lim





P I , than    1 20 0 1b b  , and all curves  b   start at the point  2 1,1N . For 

propagating waves, the functions  1b   and  2b   are given by linear combinations of 

trigonometric functions and therefore are defined only in a limited area in the  1 2,b b  

domain. 
 

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

c
o

s
(

 P

)

cos(
S
)

-1.0 -0.5 0.0 0.5 1.0
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b
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b
1  

Fig. 3. The normal incidence case ( 0p  ). The dependence of  cos
qP

H   on  cos
qSV

H   

(a Lissajous curve) is shown (left) and similar curve is plotted in the  
1 2
,b b  domain (right). 

Both of these plots correspond to frequency range 0 50Hz . Note, that the stop bands exist 

only for qP   wave and can be seen for  cos 1
qP

H    in the left plot and for 

2 1
1 2b b    in the right one (Roganov&Stovas, 2011).  
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The simplest case occurs at the normal incidence where 0p  . At this point the quadratic 

equation    2

1 22 0y b y b     has two real roots  qPy   and  qSVy   for each value 

of  . The functions    cosqP qPy H    and    cosqSV qSVy H    are the right side of 

the dispersion equation for qP- and qSV- wave, respectively. If these trigonometric 

functions have incommensurable periods, the parametric curve     ,qSV qPy y   densely 

fills the area that contains rectangle 1,1 1,1          and is defined as a Lissajous curve 

(Figure 3, left). The mapping  , ,
2

qSV qP
qSV qP qSV qP

y y
y y y y

 
   

 
 has the Jacobian 

2

qSV qPy y 
  
 

 with a singularity at qSV qPy y . This point is located at the discriminant 

curve, 2

2 1b b . We can prove that the curve 
       ,

2

qSV qP
qSV qP

y y
y y

 
 

 
  
 

 is tangent 

to parabola 2

2 1b b  at the singular point and is always located in the region 2

2 1b b . In fact, 

i f ,       
1

2

qSV qPy y
b

 



 ,       2 qSV qPb y y    a n d     0 0qP qSVy y   t h a n 

          2
2

1 2 0

1
0

4
qP qSVb b y y          .  In Figure 3 ( left) ,  i t  is  shown the 

parametric curve     ,qSV qPy y   computed for our two layer model described in Table 1. 

Since both layers have the same vertical shear wave velocity and density, 

  cosqSV qSVy t  with  1 2 0qSVt h h   . In the qP- wave case, 

        2
1 2 1 2cos cos 1qP qP qP qP qPy t t r t t r       where 1 1 01qPt h  , 2 2 02qPt h   

and    02 01 01 02r       . The solutions of this equation and has been studied by Stovas 

and Ursin (2007) and Roganov and Roganov (2008). The plot of this curve in  1 2,b b  domain 

is shown in Figure 3 (right). It can be seen that the stop bounds are characterized by the 

values 2 11 2b b   . If  , 0D p   , equation (64) has the complex conjugate and dual roots. 

Let us denote one of them as 1y C . Then, equation (74) has four complex roots:  ,  , 
* and * , where   1cos H y   . In these cases, the energy envelope equals zero. The up 

going and down going wave envelopes have different signs for Im   that correspond to 

exponentially damped and exponentially increasing terms. 

6.2 Computational aspects 

The computation of the slowness surface at different frequencies is performed by computing 

the propagator matrix (15) for the entire period and analysis of eigenvalues of this matrix. 

To define the direction for propagation of the envelope with eigenvectors  3 13 33 1, , ,
T

v v b  

and non-zero energy is done in accordance with sign of the vertical energy flux (Ursin, 1983; 

Carcione, 2001)  

  * *

1 13 3 33

1
Re

2
E v v    . (77) 
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If 0E  , the direction of the envelope propagation depends on the absolute value of 

 exp i H  ;  exp 1i H    (up going envelope) and  exp 1i H    (down going 

envelope). The mode of envelope can be defined by computing the amplitude propagators  

 1

1 1

Q E PE . (78) 

The absolute values of the elements of the matrix Q  are the amplitudes of the different 

wave modes composing the envelope and defined in the first layer within the period. 

Therefore, the envelope of a given mode contains the plane wave of the same mode with the 

maximum amplitude (when compared with other envelopes). 

6.3 Asymptotic analysis of caustics 
Let us investigate the asymptotic properties for the vertical slowness of the envelope in the 
neighborhood of the boundary between propagating and evanescent waves when 
approaching this boundary from propagating region. 

If  0 1y p   and 0 0dy dp   , than in the neighborhood of the point 0p p  the following 

approximation of equation  cosy H   is valid 

 
2 2 2

1 1
2

H d
dp

     , (79) 

where 0dp p p  , 0d     and  0 0p  . Therefore,  d O dp  ,  1d dp O dp  , 

and the curve  p  at the 0p p  has the vertical tangent line,  
0

lim
p p

d dp


  . In the 

group space   ,x t x , it leads to an infinite branch represented by caustic. In the area of 

propagating waves, we have  
0

lim
p p

d dp


  . Therefore,  ( ) /x p H d dp     and 

     t p H p px p    . Furthermore, for large values of x ,    0 0t x p x H p  . This 

fact follows from existence of limit,     
0

0lim
p p

p p 


 . As a consequence, every continuous 

branch of the slowness surface limited by the attenuation zones (stop bands) results in the 

caustic in group space which looks like an open angle sharing the same vertex (Figure 4). 

When we move from one point of discontinuity to another in the increasing direction of p , 

the plane angle figure rotates clockwise since the slope of the traveltime curve 0dt dx p  is 

increasing. The case where  0 1y p    can be discussed in the same manner. If  0 0D p  , 

than      1 1cos h b D p b O p      . Therefore, the asymptotic behavior of  p  as 

0p p  is the same as discussed above. 

6.4 Low frequency caustics 

In Figure 5 we show the propagating, evanescent and caustic regions in p f  domain for 
qP- and qSV- waves ( / 2f   ). Figure 5 displays contour plots of the vertical energy flux 
in the p f  domain for qP- and qSV- waves. 

From Figure 5 one can see that the caustic area has weak frequency dependence in the low 

frequency range (almost vertical structure for caustic region in  ,p f  domain, Figures 5 and 

6). This follows from more general fact that for VTI periodic medium,     is even function 
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Fig. 4. Sketch for the stop band limited branch of the slowness surface and corresponding 
branch on the traveltime curve. The correspondence between characteristic points is shown 
by dotted line (Roganov&Stovas, 2011). 

of frequency. Last statement is valid because  y   satisfies the equation (75) and functions 

   cosy H   ,  1b   and  2b   are even. Therefore,  

      0 o     , (80) 

and the slowness surface at low frequencies is almost frequency independent. 
 

 

Fig. 5. The propagating, evanescent and caustic regions for the qP   wave (left) and the 

qSV   wave (right) are shown in the  ,p f  domain. The regions are indicated by colors: 

red – no waves, white – both waves, magenta – qSV   wave only and blue – caustic 

(Roganov&Stovas, 2011). 

 

 

Fig. 6. The vertical energy flux for qP   wave (left) and qSV  - wave (right) shown in the  ,p f  

domain. The zero energy flux zones correspond to evanescent waves (Roganov&Stovas, 2011). 
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Fig. 7. The qP   and qSV   wave slowness surfaces (left) and the corresponding traveltime 

curves (right) corresponding frequency of 15Hz . The branches on the slowness surfaces and 

on the traveltime curves are denoted by I, II and III (for the qSV   wave) and I and II (for 

the qP   wave) (Roganov&Stovas, 2011). 
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Fig. 8. The phase velocities for qSV   wave (left) and qP   wave (right) computed for a 

frequency of15Hz (Roganov&Stovas, 2011). 
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Fig. 9. Comparison of the qSV   slowness surface and traveltime curves computed for 

frequencies of 15, 25 and 50f Hz  (shown in magenta, red and blue colors, respectively) 

(Roganov&Stovas, 2011). 
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Fig. 10. Comparison of the qSV   slowness surfaces and traveltime curves computed for 

frequencies of 15, low and high frequency limits (shown in black, red and blue, 

respectively). Note, the both effective media in low and high frequency limits have 

triplications for traveltime curves (Roganov&Stovas, 2011). 

To illustrate the method described above we choose two-layer transversely isotropic 

medium with vertical symmetry axis which we used in our previous paper (Roganov and 

Stovas, 2010). The medium parameters are given in Table 1. Each single VTI layer in the 

model has its own qSV- wave triplication. In Figure 7 (left), we show the slowness surfaces 

for the qP- and qSV- waves computed for a single frequency of 15 Hz. The discontinuities in 

both slowness surfaces correspond to the regions with evanescent waves or zero vertical 

energy flux, 0E   (equation (77)). The first discontinuity has the same location on the 

slowness axis for both qP- and qSV- wave slowness surfaces. In the group space (Figure 7, 

right), we can identify each traveltime branch with correspondent branch of the slowness 

surface. In Figure 8, we show the phase velocities for qP- and qSV- waves versus the phase 

angle  . The discontinuities in the phase velocity are clearly seen for both qP- and qSV- 

waves in different phase angle regions. Comparisons of the qSV- wave slowness surface and 

traveltime curves computed for different frequencies, 15,25f   and 50Hz  are given in 

Figure 9. One can see that higher frequencies result in more discontinuities in the slowness 

surface. Only the branches near the vertical and horizontal axis remain almost the same. In 

Figure 10, we show the slowness surfaces and traveltime curves computed for frequency 

15f Hz  and those computed in the low and high frequency limits. The vertical slowness 

and traveltime computed in low and high frequency limits are continuous functions of 

horizontal slowness and offset, respectively. 

7. Reflection/transmission responses in periodicaly layered media 

The problem of reflection and transmission responses in a periodically layered medium is 

closely related to stratigraphic filtering (O’Doherty and Anstey,1971; Schoenberger and 

Levin, 1974; Morlet et al., 1982a, b; Banik et al., 1985a, b; Ursin, 1987; Shapiro et al., 1996; 

Ursin and Stovas, 2002; Stovas and Ursin, 2003; Stovas and Arntsen, 2003). Physical 

experiments were performed by Marion and Coudin (1992) and analyzed by Marion et al 

(1994) and Hovem (1995). The key question is the transition between the applicability of 

low- and high-frequency regimes based on the ratio between wavelength (  ) and thickness 

( d ) of one cycle in the layering. According to different literature sources, this transition 

www.intechopen.com



 
Acoustic Waves in Layered Media - From Theory to Seismic Applications  

 

23 

occurs at a critical d  value which Marion and Coudin (1992) found to be equal to 10. 

Carcione et al. (1991) found this critical value to be about 8 for epoxy and glass and to be 6 to 7 

for sandstone and limestone. Helbig (1984) found a critical value of d  equal to 3. Hovem 

(1995) used an eigenvalue analysis of the propagator matrix to show that the critical value 

depends on the contrast in acoustic impedance between the two media. Stovas and Arntsen 

(2003) showed that there is a transition zone from effective medium to time-average medium 

which depends on the strength of the reflection coefficient in a finely layered medium.  
To compute the reflection and transmission responses, we consider a 1D periodically 
layered medium. Griffiths and Steinke (2001) have given a general theory for wave 
propagation in periodic layered media. They expressed the transmission response in terms 
of Chebychev polynomials of the second degree which is a function of the elements of the 
propagator matrix for the basic two-layer medium. They also provided an extensive 
reference list. 

7.1 Multi-layer transmission and reflection responses 

We consider one cycle of a binary medium with velocities 
1
v  and 

2
v , densities 

1
  and 

2
  

and the thicknesses 
1
h  and 

2
h  as shown in Figure 11. For a given frequency f  the phase 

factors are: 2 2
k k k k

fh v f t     , where 
k
t  is the traveltime in medium k for one cycle. 

The normal incidence reflection coefficient at the interface between the layers is given by 

 2 2 1 1

2 2 1 1

v v
r

v v

 

 





. (81) 

The amplitude propagator matrix for one cycle is computed for an input at the bottom of the 
layers (Hovem, 1995)  

 

1 2

1 2

* *2

1 10 01

1 11 0 0

i i

i i

r r a be e

r r b ar e e

 

  


 



        
                

Q , (82) 

and  

 

       1 2 2 1 2 2

1

2 22

2

2 2 2

1 1 2 sin
,

1 1 1
.

i i i i

i
e r e re e ir

a b e
r r r

     


    

   
  

 (83) 

We also compute the real and imaginary part of a  (Brekhovskikh, 1960) and absolute value 

of b , resulting in 
 

v
2


2

v
1


1

d

d
2

d
1

 

Fig. 11. Single cycle of the periodic medium (Stovas&Ursin, 2007). 
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 

 

2 2

1 2 1 2 1 2 1 22 2

2 2

1 2 1 2 1 2 1 22 2

2

2

2 1
Re cos sin sin cos cos sin sin

1 1

2 1
Im sin cos sin sin cos cos sin

1 1

2 sin

1

r r
a

r r

r r
a

r r

r
b

r

       

       




    

 


    

 




 (84)  

We note, that 
2 2

det 1a b  Q  as shown also by Griffiths and Steinke (2001). The 

amplitude propagator matrix can be represented by the eigenvalue decomposition (Hovem, 

1995) 

 
1Q EΣE , (85) 

where  
1 2
,diag  Σ  with 

  
 

 

2

1,2

2

Re 1 Re Re 1

Re Re 1 Re 1

a i a for a

a a for a


  



 



 

 (86) 

and the matrix 

 
   

1 2

1 1

a b a b 


 

 
 
 

E  (87) 

 

A stack of M cycles of total thickness  
1 2

D Mh M h h    has the propagator matrix 

  
 

1 22 2 21 2 11

22 21 21 22 2 1 2 22 1 21

1
M M M M

M M

M M M M

u u
M

u u u u u u

   

   


 

  
   

 
 
 

Q Q EΣ E  (88) 

 

with  
21 1

u a b   and  
22 2

u a b  . Another way to compute the propagator or 

transfer matrix is to exploit the Cailey-Hamilton theorem to establish relation between 
2

Q  

and Q  (Wu et al., 1993) which results in the recursive relation for Chebychev polynomials. 

The transmission and reflection responses for a down-going wave at the top of the layers are 

(Ursin, 1983) 

 
   

 
   

2 11 12 1

22 12 22

2 2 1 1 2 2 1 1

,

M M

D DM M M M

b
t p r p p

a a a a

  

       

 


   
     

 (89) 

with , , 1, 2
ij

p i j   being the elements of propagator matrix  MQ  given in (88). After 

algebraic manipulations equation (89) can be written as 
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 1
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e
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


 

 
 

  




 

   

 


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 

 

  
 

       , (90) 

where   and C  are the phase and amplitude factors, respectively, and   is the phase of 

the eigen-value. The equation for transmission response in periodic structure was 

apparently first obtained in the quantum mechanics (Cvetich and Picman, 1981) and has 

been rediscovered several times. For extensive discussion see reference 13 in Griffiths and 

Steinke (2001). The reflection and transmission response satisfy 

 
2 2

1
D D
t r  , (91)  

which is conservation of energy. When Re 1a  , the eigen-values give a complex phase-

shift, representing a propagating regime. Then equation (86) gives 

 
1,2

i

e
   (92) 

with cos Re a  , which may be obtained from Floquet solution for periodic media, but for 

first time appeared in Brekhovskikh (1960), equation (7.25). Then we use 

 
2

cos sin
cos

sin1

,
M M

C b

C

 



 


, (93) 

in equation (90). Equation (93) for the amplitude factor is given in a form of Chebychev 

polynomials of the second kind written in terms of sinusoidal functions. When Re 1a  , 

the eigen-values are a damped or increasing exponential function, representing an 

attenuating regime. Then equation (86) gives 

  
1,2

e
  

 (94) 

with cosh Re a  . Then the reflection and transmission responses are still given by 

equation (90) but with phase and amplitude factors now given by 

  
2

cosh sinh
cos

sinh1

,
M M

C b

C

 



 


, (95) 

For the limiting cases with Re 1a  , there is a double root 

  
1 , 2

Re a   (96)  
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and then we must use 

  
2 2

1
cos

1

, C b M

b M

  


 (97) 

Note, that in this case  2 2

Imb a . To compute expressions (93) and (95) for even number 

M  we use (Gradshtein and Ryzhik, 1995, equation 1.382) 

    
 
 

   
2

2 2
2 2

2
2 21 1

1 1 Re 1 Re
cos 1 Re 1

2 1
1 sin sin

2

,

M M

k k

a a
C b M a

k k
C

M M


 



 

 
   



   
   
   
   
   

   (98) 

The transmission response from equation (84) can be expressed via the complex phase factor 

   : 

    i

D
t e

    (99) 

with  

      2
1

ln 1
2
i C      . (100) 

The angular wavenumber is denoted k . With  RekD    or  cos coskD   , the 

phase velocity is given by 

     v k D      . (101) 

Using notations from Carcione (2001), the dispersion equation can be written as 

   , cos cos 0F k kD     , and the expression for group velocity is 

  
 

F k D
V

F


   

 
  

   
. (102) 

7.2 Equivalent time-average and effective medium 

The behaviour of the reflection and transmission responses is determined by Re a  which is 

one for 0f  . The boundaries between a propagating and attenuating regime are at 

Re 1a    (see equation (84)) given by the equation 

  1 2
1

tan tan
2 2 1

r

r

 





. (103) 

For low frequencies the stack of the layers behaves as an effective medium with a velocity 

defined by (Backus, 1962; Hovem, 1995) and can be defined as the zero-frequency limit 

(  0
EF
v v    from equation (101)) 
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2

1 2

2 2 2 2

1 2

1 1 4 1

1
EF TA

h h r

v v h v v r
 


. (104) 

 

This occurs for frequencies below the first root of the equation Re 1a   . For higher 

frequencies the stack of the layers is characterized by the time-average velocity defined by 

the infinite frequency limit (  
TA
v v     from equation (101)) 

  1 2

1 2 1 2

1 1

TA

h h

v h h v v
 



 
 
 

. (105) 

 

This occurs for frequencies above the second root of the equation Re 1a   . There is a 

transition zone between these two roots in which the stack of layers partly blocks the 

transmitted wave. 
The behaviour of the medium is characterized by the ratio between wavelength and layer 

thickness. This is given by 

  
 

1 2

1
TA
v

h f h h f t


   

 
, (106) 

 

where t  is the traveltime through the two single layers. To estimate the critical ratio of 

wavelength to layer thickness we assume 
1 2

2t t t     . The effective medium limit the 

occurs at 

  

1

1

1
tan

1

r
a

r
 








 
 
 

, (107) 

 

and the time-average limit the occurs at 

  

1

2

1
tan

2 1

r
a

r


 




 



 
 
 

, (108) 

 

For small values of 1r   we obtain  

     
1

1,2

2
tan 4 1

4 2

r r
a


 





   . (109) 

 

The transition between an effective medium to time average medium is schematically 

illustrated in Figure 12. Since the boundaries for the transmission zone in equation (103) are 

periodic functions of frequency, the low wavelength zone (high frequencies) is more 

complicated than shown in this figure. 
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Fig. 12. Schematic representation of the critical d   ratio as function of reflection 

coefficient (
1 2
  ) (Stovas&Ursin, 2007).  

7.3 Reflection and transmission responses versus layering and layer contrast 

We use a similar model as in Marion and Coudin (1992) with three different reflection 

coefficients: the original 0.87r  and 0.48r   and 0.16r  . We use m  and Hz  instead of 

mm  and kHz . The total thickness of the layered medium is 51
k k

D M h m   is constant. 

, 1, 2, 4, ..., 64
k

M k   is the number of cycles in the layered medium, so that the individual layer 

thickness is decreasing as k is increasing. The ratio    
1 2 1 2 1 2 2 1

0.91t t h v h v       . The 

other model parameters are given in Stovas and Ursin (2007). 
 

0 100 200 300 400 500 600 700

-1

0

1

Frequency [Hz]

-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1

M1

M2

M4

M8

M16

M32

M64

r=0.16

  

0 100 200 300 400 500 600 700

-1

0

1

Frequency [Hz]

-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1

M1

M2

M4

M8

M16

M32

M64

r=0.48

 
 

0 100 200 300 400 500 600 700

-1

0

1

Frequency [Hz]

-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1
-1

0

1

M1

M2

M4

M8

M16

M32

M64

r=0.87

 

Fig. 13. Re a  as function of frequency. Re 1a   is only plotted with area filled under the 

curve (Stovas&Ursin, 2007). 
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Fig. 14. The phase function cos  as a function of frequency (from equation (98)) shown by 

solid line and cos corresponding to the single layer with time-average velocity shown by 

dashed line (Stovas&Ursin, 2007). 

The very important parameter that controls the regime is Re a  (equation (84)). The plots of 

Re a  versus frequency are given in Figure 13 for different models. One can see that the 

propagating and attenuating regimes are periodically repeated in frequency. The higher 

reflectivity the more narrow frequency bands are related to propagating regime ( Re 1a   ). 

One can also follow that the first effective medium zone is widening as the index of model 

increases and reflection coefficient decreases, and that the wavelength to layer thickness 

ratio   is the parameter which controls the regime. The gaps between the propagating 

regime bands become larger with increase of reflection coefficient. These gaps correspond to 

the blocking or attenuating regime. The graphs for the phase factor cos  and amplitude 

factor C  (equation (98)) are shown in Figure 14 and 15, respectively. The dotted lines in 

Figure 14 correspond to the time-average phase behaviour. One can see when the computed 

phase becomes detached from the time-average phase. Note also the anomalous phase 

behaviour in transition zones. The amplitude factor C  (Figure 15) has periodic structure, 

and periodicity increase with increase of reflection coefficient. In transition zones the 

amplitude factor reaches extremely large values which correspond to strong dampening. 

The transmission and reflection amplitudes are shown in Figure 16. The larger reflection 

coefficient the more frequently amplitudes change with frequency. The transition zones can 

be seen by attenuated values for transmission amplitudes. With increase of reflection 
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Fig. 15. The amplitude function C  (from equation (98)) as a function of frequency (very 

large values of C  are not shown) (Stovas&Ursin, 2007). 

coefficient the dampening in transmission amplitudes becomes more dramatic. The exact 

transmission and reflection responses are computed using a layer recursive algorithm (Ursin 

and Stovas, 2002). We use a Ricker wavelet with a central frequency of 500 Hz. The 

transmission and reflection responses are shown in Figure 17 and 18, respectively. No 

amplitude scaling was used. One can see that these plots are strongly related to the 

behaviour of Re a  (Figure 13). The upper seismogram in Figure 17 is similar to the Marion 

and Coudin (1992) experiment and the Hovem (1995) simulations. The effects related to the 

effective medium (difference between the first arrival traveltime for model 
1

M  and 
64

M  and 

the transition between effective and time average medium, models 
4 16

M M ) are the more 

pronounced for the high reflectivity model. For this model the first two traces (models 
1

M  

and 
2

M ) are composed of separate events, and then the events become more and more 

interferential as the thickness of the layers decrease. Model 
8

M  gives trains of nearly 

sinusoidal waves (tuning effect). The transmission response for model 
16

M  is strongly 

attenuated, and models 
32

M  and 
64

M  behave as the effective medium. From Figures 13-16 

and the transmission and reflection responses (Figures 17 and 18) one can distinguish 

between time average, effective medium and transition behaviour. This behaviour can be 

seen for any reflectivity, but a decrease in the reflection coefficient results in the convergence 

of the traveltimes for time-average and effective medium. This makes the effective medium 

arrival very close to the time average one. Note also that for the very much-pronounced 
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Fig. 16. The transmission amplitude (solid line) and reflection amplitude (dotted line) as 
function of frequency (Stovas&Ursin, 2007). 
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Fig. 17. Numerical simulations of the transmission response (Stovas&Ursin, 2007).  
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Fig. 18. Numerical simulations of the reflection response (Stovas&Ursin, 2007). 

effective medium (model 
64

M , 0.87r ) one can see the effective medium multiple on the 

time about 0.085s. The reflection responses (Figure 18) demonstrate the same features as the 

transmission responses (for example strongly attenuated transmission response is related to 

weak attenuated reflection response). Effective medium is represented by the reflections 

from the bottom of the total stack of the layers. The phase velocities are computed from the 

phase factor (equation (100)) and shown in Figure 19 as a function of frequency. The phase 

velocity curve starts from the effective medium velocity and at the critical frequency it 

jumps up to the time-average velocity. One can see that the width of the transition zone is 

larger for larger values of reflection coefficient. The difference between the effective medium 

velocity and time-average velocity limits also increases with reflection coefficient increase. 

In Figure 20, one can see time-average velocity, effective medium velocity, phase velocity 

(equation (100)) and group velocity (equation (102)) computed for reflection coefficients 0.16, 

0.48 and 0,87 and model 
64

M . In this case we are in the effective medium zone. The larger 

reflection coefficient is, the lower effective medium velocity, the larger difference between 

the phase and group velocity and the velocity dispersion becomes more pronounced. The 

effective medium velocity limit also depends on the volume fraction (  
2 1 2

h h h   ) for 

one cycle (see equation (104)). This dependence is illustrated in Figure 21 for different values 

of reflection coefficient. The maximum difference between the time-average and effective 

medium velocity reaches 2.191 km/s at 0.18   ( 0.87r ), 0.513 km/s at 0.24   ( 0.48r  ) 

and 0.053 km/s at 0.26   ( 0.16r  ). One can see that for the small values of reflection 

coefficient the difference between the time-average velocity (high-frequency limit) and 

effective medium velocity (low frequency limit) becomes very small. For large values of 

reflection coefficient and certain range of volume fraction the effective medium velocity is 
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Fig. 19. The phase velocity (equation (101)) in m/s as function of frequency (Stovas&Ursin, 
2007).  

smaller than the minimum velocity of single layer constitutes. The effective medium is related 

to the propagating regime. The effective medium velocity depends on the reflection coefficient. 

The lesser contrast the higher effective medium velocity (the more close to the time-average 

velocity). One can also distinguish between effective medium, transition and time average 

frequency bands (Figure 22). These bands are separated by the frequencies given by conditions 

from the first two roots of equation Re 1a   . The first root (equation (107)) gives the limiting 

frequency for effective medium. The second one (equation (108)) gives the limiting frequency 

for time average medium. From Figure 22, one can see that the transition zone converges to the 

limit 4   with decreasing reflection coefficient. The first transition zone results in the most 

significant changes in the phase velocity and the amplitude factor C . 

8. High-frequency caustics in periodically layered VTI media 

The triplications (caustics) in a VTI medium can also be observed for high-frequencies. They 
are physically possible for qSV-wave propagation only. The qSV-wave triplications in a 
homogeneous transversely isotropic medium with vertical symmetry axis (VTI medium) 
have been discussed by many authors (Dellinger, 1991; Schoenberg and Daley, 2003; 
Thomsen and Dellinger, 2003; Vavrycuk, 2003; Tygel and et. 2007; Roganov, 2008). The 
condition for incipient triplication is given in Dellinger (1991) and Thomsen and Dellinger 
(2003). According to Musgrave (1970), we consider axial (on- axis vertical), basal (on-axis 
horizontal) and oblique (off-axis) triplications. He also provided the conditions for 
generation of all the types of triplications. The approximate condition for off-axis triplication 
is derived in Schoenberg and Daley (2003) and Vavrycuk (2003). The condition for on-axis 
triplication in multi-layered VTI medium is shown in Tygel et al. (2007). 
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Fig. 20. The time average velocity (equation (105), solid line), the effective medium velocity 

(equation (104)), the phase velocity (equation (101), dashed line) and the group velocity 

(equation (102), dotted line) as function of frequency computed for model 
64

M  and different 

reflection coefficients (Stovas&Ursin, 2007) shown to the left. The time-average velocity 

(equation (105)) and effective medium velocity (equation 104) as a function of volume 

fraction shown in the middle. Behaviour of the model 
4

M  as function of frequency and 

reflection coefficient shown to the right. 

8.1 qSV- wave in a homogeneous VTI medium  

In a homogeneous anisotropic medium, the plane wave with the slowness surface defined 

by ( )q q p  and the normal ( , )p q  is given by 

  px q p h t  . (110) 

The envelope of a family of plane waves given in (110) can be found by differentiation of 

equation (110) over the horizontal slowness p  

   0x q p h  . (111) 

Equations (110) and (111) define the parametric offset-traveltime equations in a this medium 

at the depth h  and can be written as follows 

      ,x p h q t p h pq q       ,  (112) 

where q dq dp   is the derivative of vertical slowness. The condition for triplication 

(caustic in the group space or concavity region on the slowness curve) is given by setting the 

curvature of the vertical slowness to zero, 0q   , or by setting the first derivative of offset 

to zero, 0x  . These points at slowness surface have the curvature equal to zero. If the 
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triplication region is degenerated to a single point, it is called incipient triplication. At that 

point we have 0q   and 0q  . For the incipient horizontal on-axis triplication, it is not 

true, because at that point q  equal to infinity, and we have to take the corresponding limit. 

The triplications can be also related to the parabolic points on the slowness surface with one 

of the principal curvatures being zero. The exception is the incipient vertical on-axis 

triplication with both principal curvatures equal to zero. The phase velocity can be written 

(Schoenberg and Daley, 2003) as a function of phase angle   

    
2

2 0

2

S
v

v f
g

  ,  (113) 

where 
0 S
v  is the vertical S-wave velocity, and function  f   is defined as 

          2 2

1 1 1
P S

f f eu g eu g E u          , (114) 

where + and – correspond to qP- and qSV-wave, respectively, cos 2u  , and parameters 

11 33

11 33

c c
e

c c





, 55

11 33

2c
g

c c



 and 

2

11 55 33 55 13 55

2

11 33

4( )( ) 4( )

( )

c c c c c c
E

c c

   



, which can be written 

in terms of Thomsen (1986) anisotropy parameters 

        2

0
1 1 2 1 1, ,e g E e e g                (115) 

and 
0 0 0S P

v v   is the S- to P-wave vertical velocity ratio. Note, that 0 1g   and 

1e g  . Parameter E  is also known as anelliptic parameter (Schoenberg and Daley, 

2003) since it is proportional to the parameter  ,     2

0
2 1E g e g        , 

which is responsible for the anellipticity of the slowness surface and for the non-

hyperbolicity of the traveltime equation. Vavrycuk (2003) used parameter   to estimate the 

critical strength of anisotropy for the off-axis triplications in a homogeneous VTI medium. 

For the waves propagating for entire range of the phase angles, it is required that the 

function ( , )
S
f u E  and the expression under the square-root in equation (114) 

 
2 2

( , ) (1 ) (1 )s u E eu g E u      (116) 

should be non-negative for all | | 1u  . Solving equations ( , ) 0
S
f u E   and ( , ) 0s u E   for 

the parameter E , results in the following explicit functions 
2

4 (1 )
( )

1
f

g eu
E u

u


 


 and 

2

2

(1 )
( )

1
s

eu g
E u

u

 



, where the sub-indices f  and s  indicate the solutions for the  

equations 0f   and 0s  , respectively. Function ( )
f

E u  defines the minimum plausible 

values for the parameter E  in order to satisfy the condition  2

0v   , while the function 

( )
s

E u  defines the maximum plausible values for the parameter E  in order to satisfy the 

condition  2

Im 0v   . By setting derivatives 0
f

dE du   and 0
s

dE du  , we obtain that, 
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for the range 1u  , implicit functions ( , ) 0
S
f u E   and ( , ) 0s u E   have the maximum and 

the minimum at the points 
1

A  (from 0f   and 0
f

dE du  ) and 
2

A (from 0s   and 

0
s

dE du  ), respectively (Figure 21). The coordinates for these points are 

    
2 2 2 2

1 1 2 2
(1 1 ) / , 2 (1 1 ), /(1 ), (1 )

A A A A
u e e E g e u e g E g e            . (117) 

 

 

Fig. 21. Schematic plot of the triplication conditions on  ,u E  space. The graphs for 

( , ) 0
S
f u E   and ( , ) 0s u E   are shown by dash line, and the graph for ( , ) 0

S
u E   is 

shown by solid line. Points 
1

A  and 
2

A  correspond to the extrema of the functions 

( , ) 0
S
f u E   and ( , ) 0s u E  , respectively. Points 

1
B  and 

2
B  are the limiting points on the 

lower branch of ( , ) 0
S
u E   from the left and from right, respectively. Points 

2
A , 

1
C  and 

2
C  correspond to the extrema of the function ( , ) 0

S
u E   which has two branches limiting 

the triplication areas: 1 – vertical on-axis, 2 – horizontal on-axis and 3 – off-axis. The 

condition 
1 2A A

E E E   is a necessary and sufficient condition for existence of qP- and qSV-

waves for entire range of the phase angles (Roganov&Stovas, 2010). 

Therefore, the parameter E  is limited as follows 
1 2A A

E E E  . Note, that 
1

0
A

u   if 0e  . 

The equation for 
2A

u  was shown in Schoenberg and Daley (2003). The lower limit yields the 

condition  2

0v   , while the upper limit is related to the Thomsen’s (1986) definition of 

parameter  , i.e. 
2

0
1 2 0    . The range for parameter E  yields a necessary and 

sufficient condition for the Christoffel matrix being positive definite for the entire range of 

the phase angles. Therefore, this condition is valid for all physically plausible medium 

parameters. Using equation (113) and 

sin ( ) , cos ( ) , cos 2p V q V u       , 

we obtain that for both types of waves we have the following equalities p  

 

0 0

1 (1 ) 1 (1 )
,

S S

u g u g
p q

v f v f

 
  , (118) 

where  P S
f f  depending on the wave-mode (see equation (114)). The first and second 

derivatives of the vertical slowness are given by 
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/

/

( (1 ))

( (1 ))

u

u

dq p f f u

dp q f f u

   


  
,  (119) 

 

2

2 2 3 3

0

2

S

d q g

dp v q




 ,  (120) 

where 
/

u
f df du  and 

            1 1 1 1 ,
P S P S

e g eu g E u e g s m n s                    (121) 

with s  given in equation (116) and  

             

          

2 32 2 3 2 2 2 2 2 2

2 22 2 2 2 2 2 2 2

2 2 2 3 1 3 1 1 1 2 2 1 1

1 1 6 4 1 1 2 1 1

m E e e g g u e g u e g u g g e g e g eu g

n u E e g g u e g u e g E g e eu g

                

                



  

.  (122) 

 

For qSV and qP waves propagating in a homogeneous VTI medium, the triplication 

condition is given by (Roganov, 2008) 

 ( , ) 0
S
u E  ,  (123) 

 ( , ) 0
P
u E  . (124) 

Equations (121)-(122) are too complicated to define the influence of parameters e  and g  on 

the form of the curves given by equations (123) and (124). Nevertheless, these equations can be 

used for numerical estimation of the position for triplications with any given values for e  and 

g , as well as for the following theoretical analysis. It is well known that qP waves never have 

triplications in a homogeneous VTI medium (Musgrave, 1970; Dellinger, 1991; Vavrycuk, 

2003), and, therefore, the equation (124) has no roots for propagating qP waves. By taking all 

the physically possible values for u , e , g  and E , one can prove that if ( , ) 0s u E  , 1u  , 

0 1g   and 1e g  , the following inequality always takes place, ( , ) 0
P
u E  . 

The product of ( , )
P
u E  and ( , )

S
u E   

 
2 2

( , ) ( , ) ( , )
P S

u E u E u E m sn        (125) 

given by polynomial with the sixth order in u  and fifth order in E , can also be used to 

define the triplications for qSV-waves. For elliptical anisotropy, 0E  , we have the 

equalities ( , ) 2
S
f u E g  and 

2

55
( )V c  . In this case, both the slowness and the group 

velocity surfaces are circles, and qSV-waves have no triplications. The straight line given by 

0E  , separate the plane ( , )u E  into sub-planes with non-crossing branches of the curve 

( , ) 0
S
u E  . One of these branches is located in the range of values 

1
0

A
E E   and 1u   

and is limited from the left and the right by the points 
1

B  and 
2

B , respectively. The 

coordinates of these points are (Figure 23) 
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    
1 1 2 2

1, 1 1, 1,
B B B B

u E g e g u E g e g           ,  (126) 

while the second branch is closed and located in the range of values 
2

0
A

E E  . The 

limited values 
1

0
B

E   and 
2

0
B

E  , that follows from inequalities 0 1g   and 1e g  . 

Under the lower branch of the curve ( , ) 0
S
u E   on the plane ( , )u E , there are two 

parameter areas resulting in the on-axis triplications (both for vertical and horizontal axis), 

while the upper branch of the curve ( , ) 0
S
u E   defines the parameter area for the off-axis 

triplications. In Figure 23, these areas are denoted by numbers 1, 2 and 3, respectively. 

Therefore, the on-axis triplications can simultaneously happen for both axis, if 0E  , while 

the off-axis triplications can exist only alone, if 0E  . Let us define the critical values for 

parameter E  in ( , )u E  space with horizontal tangent line (
1A

E , 
2A

E , 
1C

E  and 
2C

E  in Figure 

23) that define the incipient triplications. In order to do so we need to solve the system of 

equations 

 

( , ) 0

( , )
0

S

S

u E

u E

u
















.  (127) 

For the range of parameters 
1 2A A

E E E   and 1u  , system of equations (127) has four 

solutions, where the first two solutions  
1 1
,

A A
u E  and  

2 2
,

A A
u E  are defined above. For 

the second two solutions  
1 1
,

C C
u E  and  

2 2
,

C C
u E  we have 

1 2 2C C A
u u u  , while 

1C
E  and 

2C
E  are the largest (always positive) and intermediate (always negative) roots of the cubic 

equation  

           23 2 2 2 2 2 2 2 2

3 3 2 3 8 1 16 1 1 0t E E g e g E g g e E g e g e             .  (128) 

Equations similar to our equation (128) are derived in (Peyton, 1983; Schoenberg and Helbig, 

1997; Thomsen and Dellinger, 2003; Vavrycuk, 2003; Roganov, 2008). To prove that equation 

( ) 0t E   gives the positions for the critical points of the curve ( , ) 0u E   one can 

substitute 
2A

u u . Consequently, we have 

 
  
 

2 2

2

2 22

1
( , ) ( ) ( , )

1
A A

g e
u E t E p u E

g


 



  (129) 

and 

 2

22 2

( , ) 6 (1 )
( , )

(1 )

A

A

u E e g
u E

u g e




 


  
.  (130) 

Therefore, if ( ) 0t E   and 
2A

u u , then system of equations (127) is obeyed. The least root 

of equation (128) is located in the area defined by 1E    and holds also equation 

( , ) 0
P
u E  . It is located outside the region 

1 2A A
E E E   and does not define any qSV 

wave triplication. The intermediate root defines the critical point 
2

C  on the lower branch of 

the curve (123). The minimum point 
1

A  (dividing the triplication domain 1 and 2) is also 
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located on the same branch. The largest root corresponds to the minimum point 
1

C  on the 

upper branch of the curve (123). If 
1 1C A

E E E  , we have off-axis triplications. The 

coordinates 
1C

E  and 
2C

E  are given by equations 

    
1 2

2 sin 2 / 3 / 6 , 2 sin 2 / 3 5 / 6
C C

E Q d E Q d         ,   (131) 

where 

 
2 2 2 2

2 2 2 2

3 / 2

[(1 ) ](1 )
1 2 / 3 1 2 / 3 arccos, ,

g e e g
d g g e Q e g g

Q


   
         .  (132) 

 

The case for the qSV-wave vertical on-axis incipient triplication can be obtained by setting 

1u   ( 0  ) with condition (120) being simplified to 
2B

E E  or 0.5    or 
2

0
nmo
v   

(Tygel et al., 2007). The case for the qSV-wave horizontal on-axis incipient triplication can be 

obtained by setting 1u    ( 2  ) with condition (118) being simplified to 
1B

E E  or 

   2 2

0 0
1 2 2 1        . If 

1 1 2
min( , )

A B B
E E E E  , we have both on-axis triplications. 

If 0e   (or 0  ), then we have the following equality 
1 2B B

E E , and, therefore, both on-

axis triplications are incipient. 

8.2 Extension of qSV-wave triplications for multilayered case 

From the ray theory it follows that for any vertically heterogeneous medium including 

horizontally layered medium, kinematically effective vertical slowness is always the average 

of the vertical slownesses from the individual layers. We have to stress that our approach is 

based on the high-frequency limit of the wave propagation, not on the low-frequency one 

which results in effective medium averaging. Since the wave propagates through the 

layered medium with the same horizontal slowness p , the effective vertical slowness has 

very simple form 

 q q ,  (133) 

where  denotes the arithmetic thickness averaging, 
i i i

m m h h  , with 

, 1,
i
h i N  being the thickness of layer i in the stack of N layers. With notation (133), 

equations (112) are valid for the multilayered case. Similar approach is used in Stovas (2009) 

for a vertically heterogeneous isotropic medium. If a layered VTI medium results in more 

then one caustic, there is no any kinematically effective VTI medium given in equation (133), 

which can reproduce the same number of caustics. This statement follows from the fact that 

a homogeneous VTI medium might have only one off-axis triplication. Therefore, the second 

derivative of the effective vertical slowness is given by  

 

2

2 2 3 3

0

2

S

d q g

dp v q







. (134) 

With equation (134) the condition for off-axis, vertical on-axis and horizontal on-axis 

triplications in multi-layered VTI medium takes the form (Roganov and Stovas, 2010) 

www.intechopen.com



 
Waves in Fluids and Solids 

 

40

 
2 3 3

0

0
S

S S S

g

v q




 .  (135) 

To obtain the condition for incipient vertical triplications, we have to substitute 1u   и 

0p   into equation (135). After some algebraic manipulations, we obtain 

 

2

0 2

2

1, 0 2

( )
0

S B

u p B

d q v E E

dp E
 


  


.   (136) 

Similar equation can be derived by using the traveltime parameters. Tygel et al. (2007) 

shown that the vertical on-axis triplications in the multilayered VTI medium are defined by 

the normal moveout velocity (representing the curvature of the traveltime curve  t x  taken 

at zero offset): 
2

0
nmo
v  , where 

2 2 1 1

0 0nmo nmo S S
v v v v

   is the overall normal moveout velocity 

squared. In order to use equation (135), the function  u p  has to be defined in terms of 

horizontal slowness for each layer 

    
2 2

0 S

S

a p v b
u p u p

c


  , (137) 

where 

 

        

2 2 2 4 4

0 0

22 2 2 2 2 2 4 4

0 0

2 2 2 4 4

0 0

1 2

1 2 2 1 1 4 4

2

S S

S S

S S

a g g e g p v egp v

b g e g g eg e g e g E p v E Eg e g p v

c g egp v Ep v

    

          

  

 . (138) 

 

Function   0b p   if 0E  . We are going to prove that the function  b b p  from 

equation (138) is positive for all physically plausible parameters e  and g , if anelliptic 

parameter 0E  . Solving bi-quadratic equation   0b p   yields 

     
        22 2

1, 2 ,3 , 4 2 2 2

0 ,

1 2 1 2 1 11

4 4
S

Eg e g eg e g E e e E g

p
v E Eg e g

         
 

 
   (139) 

The expression under the inner square root in equation (139) can be written as 

     22 2 2

0 0
1 4 1 1 2e E g             (140) 

Note, that 
2

0
1 2 0     (it follows from Thomsen’s (1986) definition of parameter  ). 

Taking into account that 1e  , and    22

0 1 0b p g e g      and 

     2 2

0
1 1 1 0

S
b p v e e g      , one can see that if 0E  , the expression under the 

square root in equation (139) is negative, and the equation   0b p   has no roots. Function 

 c c p  can take zero value at 
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  2

0

1

S

g
p p e e E

v E
       (141) 

 

To compute  u u p   from equation (137) we need to take the limit given by 

   
    

    

2 2 2 2

3 2 2 2 2

4 2 4 1
Lim

4 3 4 1
p p

e g E e e g eg E e E eg E e g
u p u p

e g E e e eg E e E e g E e g


         


        




 .  (141) 

 

If   0c p  , that happens at  

  2

0

1

S

g
p p e e E

v E
     , (142) 

function  u p  takes the value 

  
    

    

2 2 2 2

3 2 2 2 2

4 2 4 1

4 3 4 1

e g E e e g eg E e E eg E e g
u p

e g E e e eg E e E e g E e g
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Note that in the presence of on-axis triplication (for the horizontal axis), function ( )u p  has 

two branches when 
0

1
S

p v , and the second branch is defined by 

     2 2

0P S
u p u p a p v b c   . The incipient off-axis triplication condition in a multi-

layered medium is given by equation (Roganov and Stovas, 2010) 

 

3 3

0

0

S

S S

S

d
g q

v dp






 
 
 

.   (144) 

Functions 
S
q  and 

S
 , 

S
  defined in equations (118) and (121), respectively, are given in 

terms of u . To compute the derivatives in equation above one need to exploit equation (117) 

for  u u p  and apply the chain rule, i.e.    
S S

dq dp dq du du dp . For a given model this 

equation can be resolved for horizontal slowness and used to estimate the limits for the 

vertical slowness approximation or traveltime approximation. For multilayered case, the 

parametric offset-traveltime equations (112) take the following form 

       ,x p H q t p H pq q          ,  (145) 

where 
i

H h  is the total thickness of the stack of layers. 
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8.3 Converted wave case 

In the special case of converted qP-qSV waves (C-waves) in a homogeneous VTI medium, 
the condition (113) reduces to 

 
3 3 3 3

0
S P

S S P P
q q

 

 
  .  (146) 

To compute functions 
P

 , 
P

q  and 
P

  we need to define  
P

u p  which can be computed 

similar to equation (117) 

  
2 2

0 S

P

a p v b
u p

c


 ,  (147) 

where functions a , b  and c  can be computed from equation (138). One can show that for 

the range of horizontal slowness corresponding to propagating qP-wave, the sum 

 
3 3 3 3

0
S P

S S P P
q q

 

 
  ,  (148) 

which means that the converted qP-qSV waves in a homogeneous VTI medium have no 

triplications. In Figure 22 one can see the functions 
3 3

2
S S S

q   (controlling the triplications 

for qSV-wave), 
3 3

2
P P P

q   (controlling the triplications for qP-wave) and 
3 3 3 3

S S S P P P
q q     

(controlling the triplications for converted waves). The model parameters are taken from the 

case 1 model 1. One can see that the only function crossing the u  axis is the qSV-wave 

related one. 
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Fig. 22. The functions controlled the qP- (red line), qSV- (blue line) and qPqSV-wave (black 
line) triplications. The data are taken from the case 1 model 1 (Roganov&Stovas, 2010). 

8.4 Single-layer caustics versus multi-layer caustics 

For our numerical tests we consider the off-axis triplications only, because the vertical on-
axis triplications were discussed in details in Tygel et. al (2007), while the horizontal on-axis 
triplications have only theoretical implications. 

First we illustrate the transition from the vertical on-axis triplication to the off-axis 

triplication by changing the values for parameter E  only, 0.3, 0.2, ..., 0.5E    . Since the 

other parameters remain constant, this change corresponds to the changing in Thomsen’s 
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(1986) parameter  . The slowness surfaces, the curvature of the slowness surfaces and the 

traveltime curves are shown in Figure 23. One can see how the anomaly in the curvature 

moves from zero slowness to non-zero one.  
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Fig. 23. The slowness surface (to the left), the curvature of slowness surface (in the middle) 

and the traveltime versus offset (to the right) from the homogeneous VTI media with change 

in parameter E  only. The model parameters are taken from the model 1 in Table 1. 

Parameter E  takes the values -0.3, -0.2,…, 0.5. The curves with positive and negative values 

for E  are shown with red lines and blue lines, respectively. The elliptically isotropic case, 

0E  , is shown by black line (Roganov&Stovas, 2010). 

Next we test the qSV-wave slowness-surface approximations from Stovas and Roganov 
(2009). The slowness-surface approximations for qSV waves (similar to acoustic 
approximation for qP waves) are used for processing (in particular, phase-shift migration) 
and modeling purpose with reduced number of medium parameters. With that respect, it is 
important to know how the slowness-surface approximations reproduce the triplications. 
We notice that if the triplication is located for short offset, it can partly be shown up by 
approximation 1 (short spread approximation). The wide-angle approximations 2 and 3 can 
not treat the triplications. 
In the numerical examples provided in Roganov and Stovas (2010), we considered four cases 
with two layer models when each layer has parameters resulting in triplication for qSV-
wave. With changing the fraction ratio from 0 to 1 with the step of 0.1, we can see the 
transition between two different triplications for cases 1-4. For given numbers of the fraction 
ratio we can observe the different cases for two-layer triplications. For the overall 
propagation we can have no triplication (case 1), one triplication (case 2), two triplications 
(case 3) and one ”pentaplication” or two overlapped triplications (case 4). Intuitively, we can 
say that the most complicated caustic from N VTI layers can be composed from N 
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overlapped triplications or one “(2N+1)-plication”. The examples shown in Roganov and 
Stovas (2010) provide the complete set of situations for off-axis triplications in two-layer VTI 
media and give a clue what we can expect to see from multilayered VTI media. 

9. Phase velocity approximation in finely layered sediments 

The effect of multiple scattering in finely layered sediments is of importance for 
stratigraphic interpretation, matching of well log-data with seismic data and seismic 
modelling. This problem was first studied in the now classical paper by O'Doherty and 
Anstey (1971) and further investigated by Shapiro and Treitel (1997). In this paper I derive a 
new approximation for the phase velocity in an effective medium which depends on three 
parameters only and show how it depends on the strength of the reflection coefficients 
(Stovas, 2007). Approximation is tested on the real well log data example and shows very 
good performance. 

9.1 Vertical propagation through the stack of the layers 

The transmission and reflection responses of normal-incident plane wave from the stack of 
N layers are given by the following expressions (Stovas and Arntsen, 2006) 
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 , (149) 

where 
k
r  are reflection coefficients, the cumulated phases 

1 1

N N

i i i i

i i

h V   
 

   , with 
j

h   

and 
j

V  are thickness and velocity in the layer j, respectively, and the reflection coefficient 

correlation function  
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The exponential factors in denominators for transmission and reflection response are the phase 

delays for direct wave, the product function in transmission response gives the direct 

transmission loss and the sum function in reflection response corresponds to contributions 

from the primary reflections (first order term) and interbedded multiples (higher order terms). 

The phase velocity is given by 
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, (151) 

where D  is the total thickness of the stack and 
TA N

V D   is time-average velocity. The 

velocity in zero-frequency limit is given by (Stovas and Arntsen, 2006) 
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9.2 Weak-contrast approximation 

The weak-contrast approximation means that we neglect the higher order terms in the 

scattering function   (equation 150), 
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This function can be expanded into Taylor series 
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with coefficients 
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which can be considered as correlation moments for reflection coefficients series. To 
approximate equation (155) we use 
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where 
N N

    is total one-way propagation time and parameter   will be explained 

later. The form of approximation (156) has been chosen due to the exponential nature of 

the reflection coefficient correlation moments (O’Doherty and Anstey, 1971), and the term 
n

N
  is introduced simply to preserve the dimension for 

n
u . Substituting (156) into (154) 

results in 
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Equation (151) in weak contrast approximation is reduced to (Stovas, 2007) 
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with 
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as the zero-order auto-correlation moment for reflection coefficients series 
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 and   is the parameter in correlation moments approximation. For practical  

use we need the limited number of terms M in equation (160). The zero-frequency limit from 

equation (152) is given by  1 1

0 1
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Substituting this limit into equation (158) we obtain 
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Parameter 0  , therefore, describes the relation between two limits 
0

1
TA

V V    and 

function  S   can be interpreted as the normalized relative change in the phase slowness 

     1 1 1 1

0 0 TA
S V V V V        . 

The phase velocity approximation is described by three parameters only: one-way 

propagation time 
N

 ; 2) parameter   which is ratio of low and high frequency velocity 

limits; 3) parameter   which describes the structure of the stack. 
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Fig. 24. Elastic parameters and reflection coefficients for Tilje formation (to the left), the 
correlation moments approximation (in the middle) and the phase velocity and its 
approximations computed from limited series of  S  . (Stovas, 2007). 

For numerical application we use 140m of the real well-log data sampled in 0.125m (Figure 

24). This interval related to the Tilje formation from the North Sea. In Figure 24, we also 

show how to compute parameters for approximation (156). The one way traveltime is 
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0.0323
N

s  , 0.04    and 0.03468  . In particular it means that the time-average 

velocity is only 4% higher than the zero frequency limit. The results of using this 

approximation with the limited number of terms (M = 3, 7, 11 and 15) in equation (157) are 

shown in Figure 24. The exact phase velocity function is obtained from the transmission 

response computed by the matrix propagator method (Stovas and Arntsen, 2006). One can 

see that with increase of M the quality of approximation increases with frequency. 

10. Estimation of fuid saturation in finely layered reservoir 

The theory of reflection and transmission response from a stack of periodically layered 
sediments can be used for inversion of seismic data in turbidite reservoirs. In this case, the 
model consists of sand and shale layers with quasi-periodical structure. The key parameters 
we invert for are the net-to-gross ratio (the fractural amount of sand) and the fluid 
saturation in sand. The seismic data are decomposed into the AVO (amplitude versus offset) 
or AVA (amplitude versus incident angle) attributes. The following notations are used: AVO 
intercept is the normal reflectivity and AVO gradient  is the first order term in Taylor series 
expansion of reflectivity with respect to sine squared of incident angle. 
For simultaneous estimation of net-to-gross and fluid saturation we can use the PP AVO 

parameters (Stovas, Landro and Avseth, 2006). To model the effect of water saturation we 

use the Gassmann model (Gassmann, 1951). Another way of doing that is to apply the 

poroelastic Backus averaging based on the Biot model (Gelinsky and Shapiro, 1997). Both 

net-to-gross and water saturation can be estimated from the cross-plot of AVO parameters. 

This method is applied on the seismic data set from offshore Brazil. To build the AVO cross-

plot for the interface between the overlaying shale and the turbidite channel we used the 

rock physics data. These data were estimated from well logs. The AVO cross-plot contains 

the contour lines for intercept and gradient plotted versus net-to-gross and water saturation. 

The discrimination between the AVO attributes depends on the discrimination angle (angle 

between the contour lines, see Stovas and Landrø, 2004).One can see that the best 

discrimination is observed for high values of net-to-gross and water saturation, while the 

worst discrimination is for low net-to-gross and water saturation (where the contour lines 

are almost parallel each other). Note, that the inversion is performed in the diagonal band of 

AVO attributes. Zones outside from this band relate to the values which are outside the 

chosen sand/shale model. Our idea is that the top reservoir reflection should give relatively 

high values for net-to-gross regardless to water saturation values. The arbitrary reflection 

should give either low values for net-to-gross with large uncertainties in water saturation or 

both net-to-gross and saturation values outside the range for the chosen model. The data 

outside the diagonal band are considered as a noise. To calibrate them we use well-log data 

from the well. The P-wave velocity, density and gamma ray logs are taken from the well-

log. One can say that the variations in the sand properties are higher than we tested in the 

randomization model. Nevertheless, the range of variations affects more on the applicability 

of the Backus averaging (which is weak contrast approximation) than the value for the 

Backus statistics. The AVO attributes were picked from the AVO sections (intercept and 

gradient), calibrated to the well logs and then placed on the cross-plot. One might therefore 

argue that the AVO-attributes themselves can be used as a hydrocarbon indicator, and this 

is of course being used by the industry. However, the attractiveness of the proposed method 

is that we convert the two AVO-attributes directly into net-to-gross and saturation 
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attributes, in a fully deterministic way. Furthermore the results are quantitative, given the 

limitations and simplifications in the model being used.  

11. Seismic attributes from ultra-thin reservoir 

Here we propose the method of computation seismic AVO attributes (intercept and 

gradient) from ultra-thin geological model based on the SBED modelling software (Stovas, 

Landro and Janbo, 2007). The SBED software is based on manipulating sine-functions, 

creating surfaces representing incremental sedimentation. Displacement of the surfaces 

creates a three dimensional image mimicking bedform migration, and depositional 

environments as diverse as tidal channels and mass flows can be accurately recreated. The 

resulting modelled deposit volume may be populated with petrophysical information, 

creating intrinsic properties such as porosity and permeability (both vertical and 

horizontal). The Backus averaging technique is used for up-scaling within the centimetre 

scale (the intrinsic net-to-gross value controls the acoustic properties of the ultra-thin 

layers). It results in pseudo-log data including the intrinsic anisotropy parameters. The 

synthetic seismic modelling is given by the matrix propagator method allows us to take into 

account all pure mode multiples, and resulting AVO attributes become frequency 

dependent. Within this ultra-thin model we can test different fluid saturation scenarios and 

quantify the likelihood of possible composite analogues. This modelling can also be used for 

inversion of real seismic data into net-to-gross and fluid saturation for ultra-thin reservoirs. 

11.1 SBED model 
The SBED software is based on manipulating sine-functions, creating surfaces representing 

incremental sedimentation (Wen, 2004; Nordahl, 2005). Displacement of the surfaces creates 

a three-dimensional image mimicking bedform migration, and depositional environments 

as diverse as tidal channels and mass flows can be accurately recreated. Due to the high-

resolution output, common practice is to generate models that are volumetrically slightly 

larger than real core data (30 x 30 cm in x and y directions). The resulting modelled deposit 

volume may be populated with petrophysical information, creating intrinsic properties such 

as porosity and permeability (both vertical and horizontal). These petrophysical properties 

are based on empirical Gaussian distributions that can be further customized to fit observed 

data. In addition, a detailed net-to-gross ratio is produced for each modelled case. 

11.2 AVO attributes 

To test our method we use the porosity and net-to-gross synthetic logs computed in SBED 
model with sedimentation conditions based on the turbidite system from the Glitne Field. In 
Figure 25, we show these plots for 80 m thickness of reservoir. First, we consider the 
homogeneous fluid saturation in reservoir. The anisotropy parameters logs are computed by 
using available rock physics data. The water saturation results in increase in both anisotropy 
parameters, but parameter   remains negative. Water saturation results in amplitude 
increase in the mid-reservoir section for both central frequencies. The oil-water contact 
(OWC) scenario (20% water saturation above and 90 percent water saturation below the 
OWC) results in elastic properties can easily be seen on the upscaled log data. The position 
for OWC is quite pronounced in elastic properties. The synthetic near- and far-offset traces 
results in more smooth reflection in the mid-reservoir section.The advantages of proposed 
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technology are following: 1) the sedimentology scenario, 2) the fluid saturation scenario, 3) 
the AVO attributes from ultra-thin layered reservoirs taking into account the interbedded 
multiples. 
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Fig. 25. The porosity (to the left) and net-to-gross (to the right) vertical profiles generated by 
SBED for the reservoir zone (Stovas et al., 2007). 

12. Conclusions 

In this chapter we discuss different issues related to wave propagation in layered media 
with major focus on finely (thin) layered media. We widely use the matrix propagator 
technique and discuss very important symmetries of propagator and reflection/ 
transmission matrices. The weak-contrast reflection and transmission coefficients are 
derived in first- and second-order approximations. The periodically layered medium is a 
fundamental example to illustrate the effect of periodicity on the wavefield, and we use this 
example to derive reflection and transmission responses. We analyze the caustics of the 
shear waves in a single layer and in multilayered media. Few seismic applications mostly 
related to seismic upscaling problem are discussed at the end of this chapter. 
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