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1. Introduction 

Modern scientific research depends on computer technology to organize and analyze large 
data sets. This is more true for evolutionary bioinformatics—a relatively new discipline that 
has been developing rapidly as a sub-discipline of bioinformatics. Evolutionary 
bioinformatics devotes to leveraging the power of nature’s experiment of evolution to 
extract key findings from sequence and experimental data. Recent advances in high-
throughput genotyping and sequencing technologies have changed the landscape of data 
collection. Acquisition of genomic data at the population scale has become increasingly cost-
efficient. Genomic data sets are accumulating at an exponential rate and new types of 
genetic data are emerging. These come with the inherent challenges of new methods of 
statistical analysis and modeling. Indeed new technologies are producing data at a rate that 
outpaces our ability to analyze its biological meanings. 
Researchers are addressing this challenge by adopting mathematical and statistical software, 
computer modeling, and other computational and engineering methods. As a result, 
bioinformatics has become the latest engineering discipline. As computers provide the 
ability to process the complex models, high-performance computer languages have become 
a necessity for implementing state-of-the-art algorithms and methods. 
This chapter introduces one of such emerging programming languages—Matlab. Examples 
are provided to demonstrate Matlab-based solutions for preliminary and advanced analyses 
that are commonly used in molecular evolution and population genetics. The examples 
relating to molecular evolution focus on the mathematical modeling of sequence evolution; 
the examples relating to population genetics focus on summary statistics and neutrality 
tests. Several examples use functions in toolboxes specifically developed for molecular 
evolution and population genetics—MBEToolbox (Cai, Smith et al. 2005; Cai, Smith et al. 
2006) and PGEToolbox (Cai 2008). The source code of some examples is simplified for the 
publication purpose. 

2. Starting Matlab 

Matlab is a high-level language and computing environment for high-performance numerical 
computation and visualization. Matlab integrates matrix computation, numerical analysis, 
signal processing, and graphics in an easy-to-use environment and simplifies the process of 
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solving technical problems in a variety of disciplines. With Matlab, users access very extensive 
libraries (i.e., toolboxes) of predefined functions to perform computationally intensive tasks 
faster than with traditional programming languages such as C, C++, and Fortran. Over the 
years, Matlab has evolved as a premier program in industrial and educational settings for 
solving practical engineering and mathematical problems. Researchers in bioinformatics are 
increasingly relying on Matlab to accelerate scientific discovery and reduce development time. 

2.1 Creating & manipulating vectors and matrices 
Matlab was designed in the first instance for the purposes of numerical linear algebra. Since 

its conception, it has acquired many advanced features for the manipulation of vectors and 

matrices. These features make Matlab an ideal computing language for manipulating 

genomic data. The basic data type of Matlab is the matrix. Many commonly used genomic 

data, such as sequences, genotypes, and haplotypes, can be naturally represented as 

numeric matrices in the computer memory. Therefore, highly efficient basic functions of 

Matlab can be applied directly to handling many kinds of genomic data. Here is an example 

of aligned DNA sequences: 

 
Seq1 ATCAGGCATCGATGAATCGT 
Seq2 ATCGGGCATCGATCAAGCGT 
Seq3 ATCGGTCATCTATGAAGGCT 
Seq4 ATCGGTCATCGAAGAAGGCG 
Seq5 ATCGGTCATCGATCAAGGCG 
 

As these sequences are in the same length and are aligned, the alignment can be represented 
by a Matlab matrix of integers: 
 
seq=[1 4 2 1 3 3 2 1 4 2 3 1 4 3 1 1 4 2 3 4 
     1 4 2 3 3 3 2 1 4 2 3 1 4 2 1 1 3 2 3 4 
     1 4 2 3 3 4 2 1 4 2 4 1 4 3 1 1 3 3 2 4 
     1 4 2 3 3 4 2 1 4 2 3 1 1 3 1 1 3 3 2 3 
     1 4 2 3 3 4 2 1 4 2 3 1 4 2 1 1 3 3 2 3]; 
 

The simple mapping converts nucleotide sequences from letter representations (A, C, G, and 
T) to integer representations (1, 2, 3, and 4). Similarly, genotypic data can be converted into a 
matrix of integers. The genotypic data below contains nine markers (SNPs) sampled from 
eight diploid individuals. 
 
Idv1 CT GT AG AT AG AG CT AG AG 
Idv2 CT GT AG AT AG AG CT AG AG 
Idv3 CC GG GG AA AA AA TT GG GG 
Idv4 TT TT AA TT GG GG CC AA AA 
Idv5 CT GT AG AT AG AG CT AG AG 
Idv6 CT GT AG AT AG AG CT AG AG 
Idv7 CC GG GG AA AA AA TT GG GG 
Idv8 CT GT AG AT AG AG CT AG AG 
 

This genotypic data can be converted into the following matrix of integers: 
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geno=[2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      4 4 4 4 1 1 4 4 3 3 3 3 2 2 1 1 1 1 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3]; 
 
Structures and cell arrays in Matlab provide a way to store dissimilar types of data in the 
same array. In this example, information about markers, such as the chromosomal position 
and SNP identification, can be represented in a structure called mark: 
 
mark.pos=[38449934,38450800,38455228,38456851,38457117,38457903,... 
          38465179,38467522,38469351]; 
 
mark.rsid={'rs12516','rs8176318','rs3092988','rs8176297',... 
           'rs8176296','rs4793191','rs8176273','rs8176265',... 
           'rs3092994'}; 
 
In the same way, you can represent haplotypes with an integer matrix, hap, and represent 

makers’ information of the haplotype with a mark structure. The difference between 

sequences of hap and seq is that hap usually contains only sites that are polymorphic and 

chromosomal positions of these sites are likely to be discontinuous; whereas, seq includes 
both monoallelic and polymorphic sites, which are continuous in their chromosomal 
position. 
Matlab supports many different data types, including integer and floating-point data, 
characters and strings, and logical true and false states. By default, all numeric values are 
stored as double-precision floating point. You can choose to build numeric matrices and 
arrays as integers or as single-precision. Integer and single-precision arrays offer more 
memory-efficient storage than double-precision. You can convert any number, or array of 
numbers, from one numeric data type to another. For example, a double-precision matrix 

geno can be converted into an unsigned 8-bit integer matrix by using command 

uint8(geno) without losing any information. The output matrix takes only one-eighth the 
memory of its double-precision version. The signed or unsigned 8-bit integer, like logical 
value, requires only 1 byte. They are the smallest data types. Sparse matrices with mostly 
zero-valued elements, such as adjacency matrices of most biological networks, occupy a 
fraction of the storage space required for an equivalent full matrix. 

2.2 Numerical analysis 
Matlab has many functions for numerical data analysis, which makes it a well suited 
language for numerical computations. Typical uses include problem solving with matrix 
formulations, general purpose numeric computation, and algorithm prototyping. Using 
Matlab in numerical computations, users can express the problems and solutions just as they 
are written mathematically—without traditional programming. As a high-level language, 
Matlab liberates users from implementing many complicated algorithms and commonly 
used numerical solutions, and allows users to focus on the “real” problems they want to 
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solve, without understanding the details of routine computational tasks. This section 
introduces three numerical routines: optimization, interpolation, and integration. 

2.2.1 Optimization 
Matlab built-in functions and specific toolboxes provide widely used algorithms for 
standard and large-scale optimization, solving constrained and unconstrained continuous 
and discrete problems. Users can use these algorithms to find optimal solutions, perform 
tradeoff analyses, balance multiple design alternatives, and incorporate optimization 
methods into algorithms and models. Here I use two functions fminbnd and fminsearch 
to illustrate the general solutions to the problems of constrained linear optimization and 
unconstrained nonlinear optimization, respectively. 

Function fminbnd finds the minimum of a single-variable function, min ( )
x

f x , within a 

fixed interval x1 < x < x2. In Matlab, 
 
[x,fval]=fminbnd(@fun,x1,x2); 
 
returns scalar x a local minimizer of the scalar valued function, which is described by a 
function handle @fun, in the interval between x1 and x2. The second returning variable 

fval is the value of the objective function computed in @fun at the solution x. Function 
fminsearch finds minimum of unconstrained multivariable function using a derivative-

free method. As above, the minimum of a problem is specified by min ( )
x

f x


, where x


 is a 

vector instead of a scalar, and f is a function of several variables. In Matlab this is written  
as: 
 
[x,fval]=fminsearch(@fun,x0); 
 

where x0 is a vector of initial values of x. Note that fminsearch can often handle 
discontinuities particularly if they do not occur near the solution. 
Depending on the nature of the problem, you can choose to use fminbnd, fminsearch, or 
other optimization functions to perform likelihood inference. When doing this, you first 
need to write a likelihood function that accepts initial parameters as inputs. The likelihood 
function typically returns a value of the negative log likelihood. Input parameters that 
produce the minimum of the function are those that give the maximum likelihood for the 
model. Here is an example showing how to use function fminbnd. 
 
options=optimset('fminbnd'); 
[x,fval]=fminbnd(@likefun,eps,20,options,tree,site,model); 
 

where @likefun is a function handle of the following negative log-likelihood function:  
 
function [L]=likefun(x,tree,site,model) 
rate=x(1); 
L=-log(treelike(tree,site,model,rate)); 
 
This function takes four parameters: the evolutionary rate, rate, (which is what we are 
going to optimize), a phylogenetic tree, a site of alignment of sequences, and a substitution 

www.intechopen.com



 
Evolutionary Bioinformatics with a Scientific Computing Environment 

 

55 

model. fminbnd returns estimate x(1), which is the optimized rate that gives maximum 
likelihood fval. The function treelike computes the likelihood of a tree for a given site 
under the substitution model (see Section 3.4 for details). 

2.2.2 Interpolation 
Interpolation is one of the classical problems in numerical analysis. Here I show how a one 

dimensional interpolation problem is formulated and how to use the interpolation technique 

to determine the recombination fraction between two chromosomal positions. The 

relationships between physical distance (Mb) and genetic distance (cM) vary considerably at 

different positions on the chromosome due to the heterogeneity in recombination rate. A 

recombination map correlates the increment of genetic distance with that of physical 

distance. The distances between two points in a recombination map are defined in terms of 

recombination fractions. The incremental step of the physical distance is fixed by the 

distance between each pair of consecutive makers. Given a set of n makers [xk, yk], 1 ≤ k ≤ n, 

with x1 < x2 < … < xn, the goal of interpolation is to find a function f(x) whose graph 

interpolates the data points, i.e., f(xk) = yk, for k = 1, 2,…, n. The general form of Matlab 

function interp1 is as follows: 

 
yi=interp1(x,y,xi,method) 

 

where x and y are the vectors holding x-coordinates (i.e., the chromosomal positions) and y-
coordinates (i.e., the cumulative recombination rate) of points to be interpolated, 

respectively. xi is a vector holding points of evaluation, i.e., yi=f(xi) and method is an 
optional string specifying an interpolation method. Default interpolation method 'linear' 
produces a piecewise linear interpolant. If xi contains two positions on the chromosome, 
xi=[pos1,pos2], yi computed will contain two values [rec1,rec2]. The local 
recombination rate (cM/Mb) can then be calculated as (rec2-rec1)/(pos2-pos1). 

2.2.3 Integration 
The basic problem considered by numerical integration is to compute an approximate 

solution to a definite integral ( )
b

a
f x dx . If f(x) is a smooth well-behaved function, integrated 

over a small number of dimensions and the limits of integration are bounded, there are 
many methods of approximating the integral with arbitrary precision. quad(@fun,a,b) 
approximates the integral of function @fun from a to b to within an error of 1e-6 using 
recursive adaptive Simpson quadrature. You can use function trapz to compute an 

approximation of the integral of Y via the trapezoidal method. To compute the integral with 
unit spacing, you can use Z=trapz(Y); for spacing other than one, multiply Z by the 
spacing increment. You can also use Z=trapz(X,Y) to compute the integral of Y with 
respect to X using trapezoidal integration.  

2.3 Data visualization & graphical user interfaces 

Matlab adopts powerful visualization techniques to provide excellent means for data 
visualization. The graphics system of Matlab includes high-level commands for two-
dimensional and three-dimensional data visualization, image processing, animation, and 
presentation graphics. The graphic system of Matlab is also highly flexible as it includes 
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low-level commands that allow users to fully customize the appearance of graphics. Fig. 1 
gives some examples of graphic outputs from data analyses in evolutionary bioinformatics. 
 

 

Fig. 1. Examples of graphic outputs and GUIs. 

Matlab is also a convenient environment for building graphical user interfaces (GUI). A 
good GUI can make programs easier to use by providing them with a consistent appearance 
and intuitive controls. Matlab provides many programmable controls including push 

buttons, toggle buttons, lists, menus, text boxes, and so forth. A tool called guide, the GUI 
Development Environment, allows a programmer to select, layout and align the GUI 
components, edit properties, and implement the behavior of the components. Together with 

guide, many GUI-related tools make Matlab suitable for application development. PGEGUI 

and MBEGUI are two menu-driven GUI applications in PGEToolbox and MBEToolbox, 
respectively. 

2.4 Extensibility & scalability 

Matlab has an open, component-based, and platform-independent architecture. Scientific 

applications are difficult to develop from scratch. Through a variety of toolboxes, Matlab 

offers infrastructure for data analyses, statistical tests, modeling and visualization, and other 

services. A richer set of general functions for statistics and mathematics allows scientists to 

manipulate and view data sets with significantly less coding effort. Many special-purpose 
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tool boxes that address specific areas are provided and developers choose only the tools and 

extensions needed. Thus extensibility is one of the most important features of the Matlab 

environment. Matlab functions have a high degree of portability, which stems from a 

complete lack of coupling with the underlying operating system and platform. Matlab 

application deployment tools enable automatic generation and royalty-free distribution of 

applications and components. You can distribute your code directly to others to use in their 

own Matlab sessions, or to people who do not have Matlab. 

You can run a Matlab program in parallel. The parallel computing toolbox allows users to 
offload work from one Matlab session (the client) to other Matlab sessions (the workers). It 
is possible to use multiple workers to take advantage of the parallel processing on a remote 
cluster of computers. This is called “remote” parallel processing. It is also possible to do 
parallel computing with Matlab on a single multicore or multiprocessor machine. This is 
called “local” parallel computing. Fig. 2 is a screenshot of the task manager showing the 
CPU usage on a single 8-core PC in local parallel computing with Matlab. 
 

 

Fig. 2. CPU usage of a single 8-core PC in local parallel computing with Matlab. 

With a copy of Matlab that has the parallel computing features, the simplest way of 

parallelizing a Matlab program is to use the for loops in the program. If a for loop is 

suitable for parallel execution, this can be indicated simply by replacing the word for by 

the word parfor. When the Matlab program is run, and if workers have been made 

available by the matlabpool command, then the work in each parfor loop will be 
distributed among the workers. Another way of parallelizing a Matlab program is to use a 

spmd (single program, multiple data) statement. Matlab executes the spmd body denoted 

by statements on several Matlab workers simultaneously. Inside the body of the spmd 

statement, each Matlab worker has a unique value of labindex, while numlabs denotes 

the total number of workers executing the block in parallel. Within the body of the spmd 

statement, communication functions for parallel jobs (such as labSend and 

labReceive) can transfer data between the workers. In addition, Matlab is developing 
new capabilities for the graphics processing unit (GPU) computing with CUDA-enabled 
NVIDIA devices. 
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3. Using Matlab in molecular evolution 

Molecular evolution focuses on the study of the process of evolution at the scale of DNA, 
RNA, and proteins. The process is reasonably well modeled by using finite state continuous 
time Markov chains. In Matlab we obtain compact and elegant solutions in modeling this 
process. 

3.1 Evolutionary distance by counting 

Before explicitly modeling the evolution of sequences, let’s start with simple counting 
methods for estimating evolutionary distance between DNA or protein sequences. If two 
DNA or protein sequences were derived from a common ancestral sequence, then the 
evolutionary distance refers to the cumulative amount of difference between the two 
sequences. The simplest measure of the distance between two DNA sequences is the number 
of nucleotide differences (N) between the two sequences, or the portion of nucleotide 
differences (p = N/L) between the two sequences. In Matlab, the p-distance between two 
aligned sequences can be computed like this: 
 
p=sum(seq(1,:)~=seq(2,:))/size(seq,1); 
 
To correct for the hidden changes that have occurred but cannot be directly observed from 
the comparison of two sequences, the formula for correcting multiple hits of nucleotide 
substitutions can be applied. The formulae used in these functions are analytical solutions of 
a variety of Markov substitution models. The simplest model is the JC model (Jukes and 
Cantor 1969). Analytic solution of the JC model corrects p-distance when p < 0.75: 
 
d=-(3/4)*log(1-4*p/3); 
 
Other commonly used models include Kimura-two-parameter (K2P)(Kimura 1980), 
Felsenstein (F84)(Felsenstein 1984), and Hasegawa-Kishono-Yano (HKY85)(Hasegawa, 
Kishino et al. 1985). When the numbers of parameters used to define a model increase with 
the complicity of the model, we reach a limit where there is no analytical solution for the 
expression of evolutionary distance. In these cases, we can use the maximum likelihood 
method, as described in Section 3.3, to estimate the evolutionary distance. 
For protein sequences, the simplest measure is the p-distance between two sequences. Assume 
that the number of amino acid substitutions at a site follows the Poisson distribution; a simple 
approximate formula for the number of substitutions per site is given by: 
 
d=-log(1-p); 
 
This is called Poisson correction distance. Given that different amino acid residues of a 
protein have different levels of functional constraints and the substitution rate varies among 
the sites, it is suggested that the rate variation can be fitted by the gamma distribution (Nei 
and Kumar 2000). The gamma distance between two sequences can be computed by: 
 
d=a*((1-p)^(-1/a)-1); 
 

where a is the shape parameter of the gamma distribution. Several methods have been 
proposed to estimate a (Yang 1994; Gu and Zhang 1997). The gamma distance with a=2.4 
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is an approximate of the JTT distance based on the 20×20 amino acid substitution matrix 
developed by Jones, Taylor et al. (1992). The maximum likelihood estimation of JTT distance 
is described in Section 3.3.2. 
Protein sequences are encoded by strings of codons, each of which is a triplet of nucleotides 
and specifies an amino acid according to the genetic code. Codon-based distance can be 
estimated by using the heuristic method developed by Nei and Gojobori (1986). The method 
has been implemented with an MBEToolbox function called dc_ng86. The function counts 
the numbers of synonymous and nonsynonymous sites (LS and LA) and the numbers of 
synonymous and nonsynonymous differences (SS and SA) by considering all possible 
evolutionary pathways. The codon-based distance is measured as KS = SS/LS and KA = SA/LA 
for synonymous and nonsynonymous sites, respectively. Comparison of KS and KA provide 
useful information about natural selection on protein-coding genes: KA/KS = 1 indicates 
neutral evolution, KA/KS < 1 negative selection, and KA/KS > 1 positive selection. 

3.2 Markov models of sequence evolution 
Markov models of sequence evolution have been widely used in molecular evolution. A 
Markov model defines a continuous-time Markov process to describe the change between 
nucleotides, amino acids, or codons over evolutionary time. Markov models are flexible and 
parametrically succinct. A typical Markov model is characterized by an instantaneous rate matrix 
R, which defines the instantaneous relative rates of interchange between sequence states. 

R has off-diagonal entries Rij equal to the rates of replacement of i by j: ( )ijR r i j  , i ≠ j. 

The diagonal entries, Rii, are defined by a mathematical requirement that the row sums are 

all zero, that is, ( )ii ijj i
R R


  . The dimension of R depends on the number of statuses of 

the substitution: 4×4 for nucleotides, 20×20 for amino acids, and 61×61 for codons. We 

denote Π the vector that contains equilibrium frequencies for 4 nucleotides, 20 amino acids, 

or 61 sense codons, depending on the model. By multiplying the diagonal matrix of Π, R is 

transformed into a “frequency-scaled” rate matrix Q=diag(Π)*R. Subsequently, we can 

compute the substitution probability matrix P according to the matrix exponential 

( ) QtP t e , where P(t) is the matrix of substitution probabilities over an arbitrary time (or 

branch length) t. 

3.3 Model-based evolutionary distance 
3.3.1 Nucleic acid substitutions 
For a nucleotide substitution probability matrix P(t), Pi→j(t) is the probability that nucleotide 
i becomes nucleotide j after time t. An example of divergence of two sequences (each 
contains only 1 base pair) from a common ancestral sequence is shown in Fig. 3. 
 

A

A C

t

 

Fig. 3. Divergence of two sequences. Sequences 1 (left) and 2 (right) were derived from a 
common ancestral sequence t years ago. PA→C(t) is the probability that nucleotide A becomes 
C after time t. PA→A(t) is the probability that no substitution occurs at the site during time t. 

www.intechopen.com



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

60

In order to construct the substitution probability matrix P in Matlab, let’s first define an 
instantaneous rate matrix R: 
 
>> R=[0,.3,.4,.3;.3,0,.3,.4;.4,.3,0,.3;.3,.4,.3,0] 
 
R = 
 
         0    0.3000    0.4000    0.3000 
    0.3000         0    0.3000    0.4000 
    0.4000    0.3000         0    0.3000 
    0.3000    0.4000    0.3000         0 
 
We can use the following command to normalize the rate matrix so that the sum of each 
column is one:  
 
x=sum(R,2); for k=1:4, R(k,:)=R(k,:)./x(k); end 
 

This step is unnecessary in this particular example, as original R meets this requirement. 
Let’s assume the equilibrium frequencies of four nucleotides are known (that is, πA=0.1, 
πC=0.2, πG=0.3, and πT=0.4). 
 
freq=[.1 .2 .3 .4]; 
 
Here is how to compute and normalize matrix Q: 
 
function [Q]=composeQ(R,freq) 
PI=diag(freq); 
Q=R*PI; 
Q=Q+diag(-1*sum(Q,2)); 
Q=(Q./abs(trace(Q)))*size(Q,1); 
 

In Matlab, function EXPM computes the matrix exponential using the Padé approximation. 
Using this function we can compute substitution probability matrix P for a given time t.  
 
P=expm(Q*t); 
 
For one site in two aligned sequences, without knowing the ancestral status of the site, we 
assume one of them is in the ancestral state and the other is in the derived state. If two 
nucleotides are C and T, and we pick C as the ancestral state, that is, the substitution from C 
to T, then the probability of substitution PC→T(t) = P(2,4). In fact, P(2,4) equals to 
P(4,2), which means the process is reversible. So it does not matter which nucleotide we 
picked as ancestral one, the result is the same. The total likelihood of the substitution model 
for the two given sequences is simply the multiplication of substitution probabilities for all 
sites between the two sequences. In order to estimate the evolutionary distance between two 

sequences, we try different t-s and compute the likelihood each time until we find the t 
that gives the maximum value of the total likelihood. This process can be done with 
optimization functions in Matlab (see Section 2.2.1). The optimized value of t is a surrogate 
of evolutionary distance between two sequences. 
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The model of substitution can be specified with two variables R and freq. So we can define 
the model in a structure: 
 
model.R=R; 
model.freq=freq; 
 

The general time reversible (GTR) model has 8 parameters (5 for rate matrix and 3 for 
stationary frequency vector). There is no analytical formula to calculate the GTR distance 
directly. We can invoke the optimization machinery of Matlab to estimate the 
evolutionary distance and obtain the best-fit values of parameters that define the 
substitution model.  
A convenient method that does not depend on the optimization to compute GTR distance 

also exists (Rodriguez, Oliver et al. 1990). The first step of this method is to form a matrix 

F, where Fij denotes the number of sites for which sequence 1 has an i and sequence 2  

has a j. The GTR distance between the two sequences is then given by the following 

formula: 

1( log( ))d tr F    , 

where   is the diagonal matrix with values of nucleotide equilibrium frequencies on the 

diagonal, and tr(X) is the trace of matrix X. Here is an example: 

 
seq1=[2 3 4 2 3 3 1 4 3 3 3 4 1 3 3 2 4 2 3 2 2 2 1 3 1 3 1 3 3 3]; 
seq2=[4 2 2 2 3 3 2 4 3 3 2 4 1 2 3 2 4 4 1 4 2 2 1 3 1 2 4 3 1 3]; 
X=countntchange(seq1,seq2) 
 
X = 
 
     3     0     2     0 
     1     4     4     1 
     0     0     8     0 
     1     3     0     3 
 

The formula for computing GTR distance is expressed in Matlab as: 
 
F=((sum(sum(X))-trace(X))*R)./4; 
F=eye(4)*trace(X)./4+F; 
PI=diag(freq); 
d=-trace(PI*logm(inv(PI)*F)); 

3.3.2 Amino acid substitutions 

For an amino acid substitution probability matrix P(t), Pi→j(t) is the probability that amino 

acid i becomes amino acid j after time t. In order to compute P, we need to specify the 

substitution model. As in the case of nucleotides, we need an instantaneous rate matrix 

model.R and equilibrium frequency model.freq for amino acids. Commonly used R and 

freq are given by empirical models including Dayhoff, JTT (Jones, Taylor et al. 1992)(Fig. 

4), and WAG (Whelan 2008). 
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Fig. 4. Visual representations for instantaneous rate matrix R. The JTT model of amino acid 
substitutions (Jones, Taylor et al. 1992) is shown on the left, and the GY94 model of codon 
substitutions (Goldman and Yang 1994) on the right. The circle size is proportional to the 
value of the relative rate between pairs of substitutions. 

Here I present a function called seqpairlike that computes the log likelihood of distance 
t (i.e., branch length, or time) between two protein sequences seq1 and seq2 using the 
model defined with R and freq. The function countaachange is a countntchange 
counterpart for amino acid substitutions. 
 
function [lnL]=seqpairlike(t,model,seq1,seq2) 
Q=composeQ(model.R,model.freq); 
P=expm(Q*t); 
X=countaachange(seq1,seq2); 
lnL=sum(sum(log(P.^X))); 
 

Using the likelihood function, you can adopt an optimization technique to find the 

optimized t as the evolutionary distance between the two sequences. 

3.3.3 Codon substitutions 

Codon substitutions can be modeled using a Markov process similar to those that are used 

to describe nucleotide substitutions and amino acid substitutions. The difference is that 

there are 61 states in the Markov process for codon substitutions as the universal genetic 

code contains 61 sense codons or nonstop codons. Here I describe a simplified model of 

Goldman and Yang (1994)(gy94 model). The rate matrix of the model accounts for the 

transition-transversion rate difference by incorporating the factor κ if the nucleotide change 

between two codons is a transition, and for unequal synonymous and nonsynonymous 

substitution rates by incorporating ω if the change is a nonsynonymous substitution. Thus, 

the rate of relative substitution from codon i to codon j (i ≠ j) is: 
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if i and j differ at two or three codon positions, 

if i and j differ by a synonymous transversion, 

if i and j differ by a synonymous transition, 

if i and j differ by a nonsynonymous transversion, 

if i and j differ by a nonsynonymous transition, 

A schematic diagram representing the codon-based rate matrix R with ω = 0.5 and κ = 3.0 is 
given in Fig. 4. The function modelgy94 in MBEToolbox generates the matrix R from given 
ω and κ: 
 
model=modelgy94(omega,kappa); 
 
Now let πj indicate the equilibrium frequency of the codon j. In the GY94 model, πj = 1/61,  
j = 1, 2, …, 61.  
Here is how we can use GY94 model to estimate dN and dS for two protein-coding 
sequences. Two sequences are encoded with 61 integers—each represents a sense codon. For 
example, the following two protein-coding sequences: 
 
Seq1 AAA AAC AAG AAT ACA ACC 
Seq2 AAT AAC AAG TTA TCA CCC 
 
are represented in Matlab with seq1 and seq2 like this: 
 
seq1=[1 2 3 4 5 6]; 
seq2=[4 2 3 58 51 22]; 
 

The codons in original sequences are converted into corresponding indexes in the 61 sense 
codon list (when the universal codon table is used). This conversion can be done with the 

function codonise61 in MBEToolbox: seq1=codonise61('AATAACAAGTTATCACCC'); 
You also need a 61×61 mask matrix that contains 1 for every synonymous substitution 
between codons, and 0 otherwise. 
 
% Making a mask matrix, M 
T='KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYYSSSSCWCLFLF'; 
M=zeros(61); 
for i=1:61 
for j=i:61 
 if i~=j 
 if T(i)==T(j) % synonymous change 
  M(i,j)=1; 
 end 
 end 
end 
end 
M=M+M'; 

www.intechopen.com



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

64

In the above code, T is the universal code translation table for 61 codons and the 
corresponding amino acids. Below is the likelihood function that will be used to obtain the 
three parameters (t, kappa and omega) for the given sequences seq1 and seq2. The input 
variable x is a vector of [t, kappa,omega]. 
 
function [lnL]=codonpairlike(x,seq1,seq2) 
lnL=inf; 
if (any(x<eps)||any(x>999)), return; end 
t=x(1); kappa=x(2); omega=x(3); 
if (t<eps||t>5), return; end 
if (kappa<eps||kappa>999), return; end 
if (omega<eps||omega>10), return; end 
md=modelgy94(omega,kappa); 
R=md.R; freq=md.freq; 
Q=composeQ(R,freq); 
P=expm(Q*t); 
lnL=0; 
for k=1:length(seq1) 
 s1=seq1(k); s2=seq2(k); 
 p=P(s1,s2); 
 lnL=lnL+log(p*freq(s1)); 
end 
lnL=-lnL; 
 
Given all these, you can now compute the synonymous and nonsynonymous substitution 
rates per site, dS and dN, using maximum likelihood approach: 
 
et=0.5; ek=1.5; eo=0.8; % initial values for t, kappa and omega 
options=optimset('fminsearch'); 
[para,fval]=fminsearch(@codonpairlike,[et,ek,eo],options,seq1,seq2); 
lnL=-fval; 
t=para(1); 
kappa=para(2); 
omega=para(3); 
 
% build model using optimized values 
md=modelgy94(omega,kappa);   
Q=composeQ(md.R,md.freq)./61; 
 
% Calculate pS and pN, assuming omega=optimized omega 
pS=sum(sum(Q.*M)); 
pN=1-pS; 
 
% Calculate pS and pN, assuming omega=1 
md0=modelgy94(1,kappa); 
Q0=composeQ(md0.R,md0.freq)./61; 
pS0=sum(sum(Q0.*M)); 
pN0=1-pS0; 
 
% Calculate dS and dN 
dS=t*pS/(pS0*3); 
dN=t*pN/(pN0*3); 
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3.4 Likelihood of a tree 
You have learned how to compute the likelihood of substitutions between pairs of 
sequences. Here I show how to calculate the likelihood of a phylogenic tree given nucleotide 
sequences. Same technique applies to protein and codon sequences. Imagine you have a tree 
like the one in Fig. 5. In this example, the four sequences are extremely short, each 
containing only one nucleotide (i.e., G, A, T, and T). For longer sequences, you can first 
compute the likelihood for each site independently, and then multiply them together to get 
the full likelihood for the sequences. The tree describes the evolutionary relationship of the 
four sequences. 
 

G

G T

t
1

G A T T

t
2

 

Fig. 5. One path of a tree with 4 external nodes and 3 internal nodes with known states. 

Suppose that all internal nodes of the tree are known, which means the ancestral or 
intermediate states of the site are known. In this case, the likelihood of the tree is: 

L = PG→G(t1)·PG→T(t1)·PG→G(t2)·PG→A(t2)·PT→T(t2)·PT→T(t2) 

Thus the likelihood of a phylogenetic tree with known internal nodes at one site can be 
calculated once the transition probability matrix P is computed as described in Section 3.3.1. 
In reality, the internal nodes of a tree are unlikely to be known, and the internal nodes can 
be any of nucleotides. In this case, we need to let every internal node be one of four possible 
nucleotides each time and compute the likelihood for all possible combinations of nodes. 
Each distinct combination of nucleotides on all nodes is called a path. Fig. 5 is an instance of 
one possible path. To get the likelihood of the tree, we multiply all likelihood values (or sum 
over log likelihood values) that are computed from all possible paths. 
Here I use an example to illustrate how to do it using Matlab. Suppose the tree is given in 
the Newick format: 
 
tree='((seq1:0.0586,seq2:0.0586):0.0264,(seq3:0.0586,seq4:0.0586):0.
0264):0.043;'; 
 

The function parsetree in MBEToolbox reads through the input tree and extracts the 
essential information including the topology of the tree, treetop, the total number of 
external nodes, numnode, and the branch lengths, brchlen. 
 
[treetop,numnode,brchlen]=parsetree(tree); 
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The outputs of parsetree are equivalent to the following direct assignment for the three 
variables: 
 
treetop='((1,2),(3,4))'; 
numnode=4; 
brchlen=[0.0586 0.0586 0.0586 0.0586 0.0264 0.0264 0]'; 
 

Then we prepare an array of transition matrices P. Each transition matrix stacked in P is for 
one branch.  The total number of branches, including both external and internal branches, is 
2*numnode-2. 
 
n=4; % number of possible nucleotides 
numbrch=2*numnode-2; 
P=zeros(numbrch*n,n); 
for j=1:numbrch 
 P((j-1)*n+1:j*n,:)=expm(Q*brchlen(j)); 
end 
 

In the next step, we use a function called mbelfcreator, which is adapted from Phyllab 
(Morozov, Sitnikova et al. 2000), to construct an inline function LF. The function 
mbelfcreator takes two inputs, treetop and numnod, and “synthesizes” the function 
body of LF. The major operation encoded in the function body is the multiplication of all 
sub-matrices of the master P matrix. Each sub-matrix is 4×4 in dimension and is pre-
computed for the corresponding branch of the tree. The order of serial multiplications is 
determined by the topology of tree. 
 
>>LF=inline(mbelfcreator(treetop,numnode),'P','f','s','n') 
 
LF = 
 
     Inline function: 
     LF(P,f,s,n) =  
(f*(eye(n)*((P((4*n+1):(5*n),:)*(P((0*n+1):(1*n),s(1)).*P((1*n+1):(2
*n),s(2)))).*(P((5*n+1):(6*n),:)*(P((2*n+1):(3*n),s(3)).*P((3*n+1):(
4*n),s(4))))))) 
 
The constructed inline function LF takes four parameters as inputs: P is the stacked matrix, 
f is the stationary frequency, s is a site of the sequence alignment, and n equals 4 for 
nucleotide data. With the inline function, we can compute the log likelihood of a site as 
follows: 
 
siteL=log(LF(P,freq,site,n)); 
 
Finally, we sum over siteL for all sites in the alignment to get the total log likelihood of the 
tree for the given alignment. 
Computing the likelihood of a tree is an essential step from which many further analyses 
can be derived. These analyses may include branch length optimization, search for best tree, 
branch- or site-specific evolutionary rate estimation, tests between different substitution 
models, and so on. 
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4. Using Matlab in population genetics 

Population genetics studies allele frequency distribution and change under the influence of 
evolutionary processes, such as natural selection, genetic drift, mutation and gene flow. 
Traditionally, population genetics has been a theory-driven field with little empirical data. 
Today it has evolved into a data-driven discipline, in which large-scale genomic data sets 
test the limits of theoretical models and computational analysis methods. Analyses of 
whole-genome sequence polymorphism data from humans and many model organisms are 
yielding new insights concerning population history and the genomic prevalence of natural 
selection. 

4.1 Descriptive statistics 

Assessing genetic diversity within populations is vital for understanding the nature of 
evolutionary processes at the molecular level. In aligned sequences, a site that is 
polymorphic is called a “segregating site”. The number of segregating sites is usually denoted 
by S. The expected number of segregating sites E(S) in a sample of size n can be used to 
estimate population scaled mutation rate θ = 4Neμ, where Ne is the diploid effective 
population size and μ is the mutation rate per site: 

1

1
(1 / )

n

W i
S i 


  . 

In Matlab, this can be written as: 
 
[n,L]=size(seq); 
S=countsegregatingsites(seq); 
theta_w=S/sum(1./[1:n-1]); 
 
In the above code, countsegregatingsites is a function in PGEToolbox. 
Nucleotide diversity, π, is the average number of pairwise nucleotide differences between 
sequences: 

1

[ ( 1) / 2]

N N

ij
i j i

d
n n





  , 

where dij is the number of nucleotide differences between the ith and jth DNA sequences 

and n is the sample size. The expected value of π is another estimator of θ, i.e.,   . 

 
n=size(seq,1); 
x=0; 
for i=1:n-1 

for j=i+1:n 
  d=sum(seq(i,:)~=seq(j,:)); 
  x=x+d; 

end 
end 
theta_pi=x/(n*(n-1)/2); 
 
Note that, instead of using the straightforward approach that examines all pairs of 
sequences and counts the nucleotide differences, it is often faster to start by counting the 
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number of copies of each type in the sequence data. Let ni denote the number of copies of 

type i, and let hap in n . To count the number of copies of the type i, we use the function 

counthaplotype in PGEToolbox. The general form of the function call is like this: 
 
[numHap,sizHap,seqHap]=counthaplotype(hap); 

 

where numHap is the total number of distinct sequences or haplotypes, and sizHap is a 
vector of numbers of each haplotypes. Apparently, sum(sizHap) equals numHap. seqHap 
is a matrix that contains the distinct haplotype sequences. Using this function, we can 
calculate nucleotide diversity faster in some circumstances. 
 
[nh,ni,sh]=counthaplotype(seq); 
x=0; 
for i=1:nh-1 
for j=i+1:nh 

d=sum(sh(i,:)~=sh(j,:)); 
x=x+ni(i)*ni(j)*d; 

end 
end 
theta_pi=x/(n*(n-1)/2); 
 

If the sequences are L bases long, it is often useful to normalize θS and θπ by diving them by 
L. If the genotypic data (geno) is given, the corresponding θS and θπ can be calculated as 
follows: 
 
n=2*size(geno,1); % n is the sample size (number of chromosomes). 
p=snp_maf(geno); % p is a vector containing MAF of SNPs. 
S=numel(p); 
theta_w=S/sum(1./(1:n-1)); 
theta_pi=(n/(n-1))*sum(2.*p.*(1-p)); 
 

Haplotype diversity (or heterozygosity), H, is the probability that two random haplotypes are 
different. The straightforward approach to calculate H is to examine all pairs and count the 
fraction of the pairs in which the two haplotypes differ from each other. The faster approach 
starts by counting the number of copies of each haplotype, ni. Then the haplotype diversity 
is estimated by 

2

1

1 1 /

i
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hap

n
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n
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Using the function counthaplotype, we can get the number of copies of each haplotype 
and then compute H as follows: 
 
[nh,ni]=counthaplotype(hap); 
h=(1-sum((ni./nh).^2))./(1-1./nh); 
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Site frequency spectrum (SFS) is a histogram whose ith entry is the number of polymorphic 
sites at which the mutant allele is present in i copies within the sample. Here, i ranges from 1 
to n-1. When it is impossible to tell which allele is the mutant and which is the ancestral one, 
we combine the entries for i and n-i to make a folded SFS. Mismatch distribution is a 
histogram whose ith entry is the number of pairs of sequences that differ by i sites. Here, i 
ranges from 0 through the maximal difference between pairs in the sample. Two functions 
in PGEToolbox, sfs and mismch, can be used to calculate SFS and mismatch distribution, 
respectively. 

4.2 Neutrality tests 
The standard models of population genetics, such as the Wright–Fisher model and related 
ones, constitute null models. Population geneticists have used these models to develop 
theory, and then applied the theory to test the goodness-of-fit of the standard model on a 
given data set. Using summary statistics, they can reject the standard model and take into 
account other factors, such as selection or demographic history, to build alternative 
hypotheses. These tests that compute the goodness-of-fit of the standard model have been 
referred to as “neutrality tests”, and have been widely used to detect genes, or genomic 
regions targeted by natural selection. An important family of neutrality tests is based on 
summary statistics derived from the SFS. The classical tests in this family include Tajima’s D 
test (Tajima 1989), Fu and Li’s tests (Fu and Li 1993), and Fay and Wu’s H test (Fay and Wu 
2000), which have been widely used to detect signatures of positive selection on genetic 
variation in a population. 
Under evolution by genetic drift (i.e., neutral evolution), different estimators of θ, such as, 

θW and θπ, are unbiased estimators of the true value of θ: ˆ ˆ( ) ( )WE E     . Therefore, the 

difference between θW and θπ can be used to infer non-neutral evolution. Using this 
assumption, Tajima’s D test examines the deviation from neutral expectation (Tajima 1989). 
The statistic D is defined by the equation: 

( ) ( )W WD V       , 

where V(d) is an estimator of the variance of d. The value of D is 0 for selectively neutral 
mutations in a constant population infinite sites model. A negative value of D indicates 
either purifying selection or population expansion (Tajima 1989). 
 
% n is the sample size; S is the number of segregating sites 
% theta_w and theta_pi have been calculated 
 
nx=1:(n-1); 
a1=sum(1./nx); 
a2=sum(1./nx.^2); 
b1=(n+1)/(3*(n-1)); 
b2=2*(n*n+n+3)/(9*n*(n-1)); 
c1=b1-1/a1; 
c2=b2-(n+2)/(a1*n)+a2/(a1^2); 
e1=c1/a1; 
e2=c2/(a1^2+a2); 
tajima_d=(theta_pi-theta_w)/sqrt(e1*S+e2*S*(S-1)); 

www.intechopen.com



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

70

The other SFS-based neutrality tests, like Fu and Li’s tests (Fu and Li 1993) and Fay and 
Wu’s H test (Fay and Wu 2000), share a common structure with Tajima’s D test. Many other 
neutrality tests exhibit important diversity. For example, R2 tests try to capture specific tree 
deformations (Ramos-Onsins and Rozas 2002), and the haplotype tests use the distribution 
of haplotypes (Fu 1997; Depaulis and Veuille 1998). 

4.3 Long-range haplotype tests 
When a beneficial mutation arises and rapidly increases in frequency in the process leading 
to fixation, chromosomes harbouring the beneficial mutation experience less recombination 
events. This results in conservation of the original haplotype. Several so called long-range 
haplotype (LRH) tests have been developed to detect long haplotypes at unusually high 
frequencies in genomic regions, which have undergone recent positive selection.  
The test based on the extended haplotype homozygosity (EHH) developed by Sabeti et al. 
(2002) is one of the earliest LRH tests. EHH is defined as the probability that two randomly 
chosen chromosomes carrying an allele (or a haplotype) at the core marker (or region) are 
identical at all the markers in the extended region. EHH between two markers, s and t, is 
defined as the probability that two randomly chosen chromosomes are homozygous at all 
markers between s and t, inclusively. Explicitly, if N chromosomes in a sample form G 
homozygous groups, with each group i having ni elements, EHH is defined as: 
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Equivalently, EHH can be calculated in a convenient form as the statistic haplotype 
homozygosity:  

2( 1 / ) (1 1 / )iHH p n n   , 

where pi is the frequency of haplotype i and n is the sample size. For a core marker, EHH is 
calculated as HH in a stepwise manner. The EHH is computed with respect to a distinct 
allele of a core maker or a distinct formation of a core region. In Fig. 6, for example, we focus 
on allele A of the core maker (a diallelic SNP) at the position x. Variable hap contains A-
carrying haplotypes of size n×m. 
 

◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌

1, 2,       ……         x-1, x, x+1,     ……    m-1, m

n

 

Fig. 6. Calculation of EHH for n haplotypes carrying allele A at the focal position x. 
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The EHH values, ehh1, around x in respect to the allele A, can be computed as follows: 
 
ehh1=ones(1,m); 
for i=1:x-1 
 [n,ni]=counthaplotype(hap(:, i:x-1)); 
 p=ni./n; 
 ehh1(i)=(sum(p.^2)-1/n)/(1-1/n); 
end 
for j=x+1:m 
 [n,ni]=counthaplotype(hap(:, x+1:end)); 
 p=ni./n; 
 ehh1(j)=(sum(p.^2)-1/n)/(1-1/n); 
end 
 
Similarly, the EHH around x with respect to the allele C, ehh2, can be computed using the 
same machinery. Both ehh1 and ehh2 are calculated for all markers around the core maker. 
Fig. 7 shows the EHH curves for two alleles C and T in the core SNP. The EHH values for 
the markers decrease as the distance from the core marker increases. 
 

 

Fig. 7. EHH decay as a function of the distance between a test marker and the core marker. 

Vertical dash line indicates the location of the core marker. Horizontal dash line indicates 
the cut-off=0.05 for computing EHH integral. 

The integrated EHH (iHH) is the integral of the observed decay of EHH away from the 
core marker. iHH is obtained by integrating the area under the EHH decay curve until 

EHH reaches a small value (such as 0.05). Once we obtain ehh1 and ehh2 values for the 
two alleles, we can integrate EHH values with respect to the genetic or physical distance 
between the core marker and other markers, with the result defined as iHH1 and iHH2. 
The statistic ln(iHH1/iHH2) is called the integrated haplotype score (iHS), which is a 
measure of the amount of EHH at a given maker along one allele relative to the other 
allele. The iHS can be standardized (mean 0, variance 1) empirically to the distribution of 
the observed iHS scores over a range of SNPs with similar allele frequencies. The measure 
has been used to detect partial selective sweeps in human populations (Voight, 
Kudaravalli et al. 2006). 
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In Matlab, we invoke the function trapz(pos,ehh) to compute the integral of EHH, ehh, 
with respect to markers’ position, pos, using trapezoidal integration. The position is in units 
of either physical distance (Mb) or genetic distance (cM). The unstandardized integrated 
haplotype score (iHS) can be computed as the log ratio between the two iHHs: 
 
ihh1=trapz(pos,ehh1); 
ihh2=trapz(pos,ehh2); 
ihs=log(ihh1/ihh2); 
 
The cross population EHH (XP-EHH) has been used to detect selected alleles that have risen 
to near fixation in one but not all populations (Sabeti, Varilly et al. 2007). The statistic XP-
EHH uses the same formula as iHS, that is, ln(iHH1/iHH2). The difference is that iHH1 and 
iHH2 are computed for the same allele in two different populations. An unusually positive 
value suggests positive selection in population 1, while a negative value suggests the 
positive selection in population 2. 

4.4 Population differentiation 
Genomic regions that show extraordinary levels of genetic population differentiation may 
be driven by selection (Lewontin 1974). When a genomic region shows unusually high or 
low levels of genetic population differentiation compared with other regions, this may then 
be interpreted as evidence for positive selection (Lewontin and Krakauer 1973; Akey, Zhang 
et al. 2002). The level of genetic differentiation is quantified with FST, which was introduced 
by Wright (Wright 1931) measuring the effect of structure on the genetics of a population. 
There are several definitions of FST in the literature; the simple concept is FST = (HT – HS)/HT, 
where HT is the heterozygosity of the total population and HS is the average heterozygosity 
across subpopulations. 
Suppose you know the frequencies, p1 and p2, of an allele in two populations. The sample 
sizes in two populations are n1 and n2. Wright’s FST can be computed as follows: 
 
pv=[p1 p2]; 
nv=[n1 n2]; 
x=(nv.*(nv-1)/2); 
Hs=sum(x.*2.*(nv./(nv-1)).*pv.*(1-pv))./sum(x); 
Ht=sum(2.*(n./(n-1)).*p_hat.*(1-p_hat)); 
Fst=1-Hs./Ht; 
 
Below is a function that calculates an unbiased estimator of FST, which corrects for the error 
associated with incomplete sampling of a population (Weir and Cockerham 1984; Weir 
1996). 
 
function [f]=fst_weir(n1,n2,p1,p2) 
n=n1+n2; 
nc=(1/(s-1))*((n1+n2)-(n1.^2+n2.^2)./(n1+n2)); 
p_hat=(n1./n).*p1+(n2./n).*p2; 
s=2; % number of subpopulations 
MSP=(1/(s-1))*((n1.*(p1-p_hat).^2 + n2.*(p2-p_hat).^2)); 
MSG=(1./sum([n1-1, n2-1])).*(n1.*p1.*(1-p1)+n2.*p2.*(1-p2)); 
Fst=(MSP-MSG)./(MSP+(nc-1).*MSG); 
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NC is the variance-corrected average sample size, p_hat is the weighted average allele 
frequency across subpopulations, MSG is the mean square error within populations, and 
MSP is the mean square error between populations. 

5. Conclusion 

Matlab, as a powerful scientific computing environment, should have many potential 
applications in evolutionary bioinformatics. An important goal of evolutionary 
bioinformatics is to understand how natural selection shapes patterns of genetic variation 
within and between species. Recent technology advances have transformed molecular 
evolution and population genetics into more data-driven disciplines. While the biological 
data sets are becoming increasingly large and complex, we hope that the programming 
undertakings that are necessary to deal with these data sets remain manageable. A high-
level programming language like Matlab guarantees that the code complexity only increases 
linearly with the complexity of the problem that is being solved.  
Matlab is an ideal language to develop novel software packages that are of immediate 
interest to quantitative researchers in evolutionary bioinformatics. Such a software system is 
needed to provide accurate and efficient statistical analyses with a higher degree of 
usability, which is more difficult to achieve using traditional programming languages. 
Limited functionality and inflexible architecture of existing software packages and 
applications often hinder their usability and extendibility. Matlab can facilitate the design 
and implementation of novel software systems, capable of conquering many limitations of 
the conventional ones, supporting new data types and large volumes of data from 
population-scale sequencing studies in the genomic era. 
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