
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Evolutionary Bioinformatics with a
Scientific Computing Environment

James J. Cai
Texas A&M University,

College Station, Texas
USA

1. Introduction

Modern scientific research depends on computer technology to organize and analyze large
data sets. This is more true for evolutionary bioinformatics—a relatively new discipline that
has been developing rapidly as a sub-discipline of bioinformatics. Evolutionary
bioinformatics devotes to leveraging the power of nature’s experiment of evolution to
extract key findings from sequence and experimental data. Recent advances in high-
throughput genotyping and sequencing technologies have changed the landscape of data
collection. Acquisition of genomic data at the population scale has become increasingly cost-
efficient. Genomic data sets are accumulating at an exponential rate and new types of
genetic data are emerging. These come with the inherent challenges of new methods of
statistical analysis and modeling. Indeed new technologies are producing data at a rate that
outpaces our ability to analyze its biological meanings.
Researchers are addressing this challenge by adopting mathematical and statistical software,
computer modeling, and other computational and engineering methods. As a result,
bioinformatics has become the latest engineering discipline. As computers provide the
ability to process the complex models, high-performance computer languages have become
a necessity for implementing state-of-the-art algorithms and methods.
This chapter introduces one of such emerging programming languages—Matlab. Examples
are provided to demonstrate Matlab-based solutions for preliminary and advanced analyses
that are commonly used in molecular evolution and population genetics. The examples
relating to molecular evolution focus on the mathematical modeling of sequence evolution;
the examples relating to population genetics focus on summary statistics and neutrality
tests. Several examples use functions in toolboxes specifically developed for molecular
evolution and population genetics—MBEToolbox (Cai, Smith et al. 2005; Cai, Smith et al.
2006) and PGEToolbox (Cai 2008). The source code of some examples is simplified for the
publication purpose.

2. Starting Matlab

Matlab is a high-level language and computing environment for high-performance numerical
computation and visualization. Matlab integrates matrix computation, numerical analysis,
signal processing, and graphics in an easy-to-use environment and simplifies the process of

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

52

solving technical problems in a variety of disciplines. With Matlab, users access very extensive
libraries (i.e., toolboxes) of predefined functions to perform computationally intensive tasks
faster than with traditional programming languages such as C, C++, and Fortran. Over the
years, Matlab has evolved as a premier program in industrial and educational settings for
solving practical engineering and mathematical problems. Researchers in bioinformatics are
increasingly relying on Matlab to accelerate scientific discovery and reduce development time.

2.1 Creating & manipulating vectors and matrices
Matlab was designed in the first instance for the purposes of numerical linear algebra. Since

its conception, it has acquired many advanced features for the manipulation of vectors and

matrices. These features make Matlab an ideal computing language for manipulating

genomic data. The basic data type of Matlab is the matrix. Many commonly used genomic

data, such as sequences, genotypes, and haplotypes, can be naturally represented as

numeric matrices in the computer memory. Therefore, highly efficient basic functions of

Matlab can be applied directly to handling many kinds of genomic data. Here is an example

of aligned DNA sequences:

Seq1 ATCAGGCATCGATGAATCGT
Seq2 ATCGGGCATCGATCAAGCGT
Seq3 ATCGGTCATCTATGAAGGCT
Seq4 ATCGGTCATCGAAGAAGGCG
Seq5 ATCGGTCATCGATCAAGGCG

As these sequences are in the same length and are aligned, the alignment can be represented
by a Matlab matrix of integers:

seq=[1 4 2 1 3 3 2 1 4 2 3 1 4 3 1 1 4 2 3 4
 1 4 2 3 3 3 2 1 4 2 3 1 4 2 1 1 3 2 3 4
 1 4 2 3 3 4 2 1 4 2 4 1 4 3 1 1 3 3 2 4
 1 4 2 3 3 4 2 1 4 2 3 1 1 3 1 1 3 3 2 3
 1 4 2 3 3 4 2 1 4 2 3 1 4 2 1 1 3 3 2 3];

The simple mapping converts nucleotide sequences from letter representations (A, C, G, and
T) to integer representations (1, 2, 3, and 4). Similarly, genotypic data can be converted into a
matrix of integers. The genotypic data below contains nine markers (SNPs) sampled from
eight diploid individuals.

Idv1 CT GT AG AT AG AG CT AG AG
Idv2 CT GT AG AT AG AG CT AG AG
Idv3 CC GG GG AA AA AA TT GG GG
Idv4 TT TT AA TT GG GG CC AA AA
Idv5 CT GT AG AT AG AG CT AG AG
Idv6 CT GT AG AT AG AG CT AG AG
Idv7 CC GG GG AA AA AA TT GG GG
Idv8 CT GT AG AT AG AG CT AG AG

This genotypic data can be converted into the following matrix of integers:

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

53

geno=[2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3
 2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3
 2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3
 4 4 4 4 1 1 4 4 3 3 3 3 2 2 1 1 1 1
 2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3
 2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3
 2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3
 2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3];

Structures and cell arrays in Matlab provide a way to store dissimilar types of data in the
same array. In this example, information about markers, such as the chromosomal position
and SNP identification, can be represented in a structure called mark:

mark.pos=[38449934,38450800,38455228,38456851,38457117,38457903,...
 38465179,38467522,38469351];

mark.rsid={'rs12516','rs8176318','rs3092988','rs8176297',...
 'rs8176296','rs4793191','rs8176273','rs8176265',...
 'rs3092994'};

In the same way, you can represent haplotypes with an integer matrix, hap, and represent

makers’ information of the haplotype with a mark structure. The difference between

sequences of hap and seq is that hap usually contains only sites that are polymorphic and

chromosomal positions of these sites are likely to be discontinuous; whereas, seq includes
both monoallelic and polymorphic sites, which are continuous in their chromosomal
position.
Matlab supports many different data types, including integer and floating-point data,
characters and strings, and logical true and false states. By default, all numeric values are
stored as double-precision floating point. You can choose to build numeric matrices and
arrays as integers or as single-precision. Integer and single-precision arrays offer more
memory-efficient storage than double-precision. You can convert any number, or array of
numbers, from one numeric data type to another. For example, a double-precision matrix

geno can be converted into an unsigned 8-bit integer matrix by using command

uint8(geno) without losing any information. The output matrix takes only one-eighth the
memory of its double-precision version. The signed or unsigned 8-bit integer, like logical
value, requires only 1 byte. They are the smallest data types. Sparse matrices with mostly
zero-valued elements, such as adjacency matrices of most biological networks, occupy a
fraction of the storage space required for an equivalent full matrix.

2.2 Numerical analysis
Matlab has many functions for numerical data analysis, which makes it a well suited
language for numerical computations. Typical uses include problem solving with matrix
formulations, general purpose numeric computation, and algorithm prototyping. Using
Matlab in numerical computations, users can express the problems and solutions just as they
are written mathematically—without traditional programming. As a high-level language,
Matlab liberates users from implementing many complicated algorithms and commonly
used numerical solutions, and allows users to focus on the “real” problems they want to

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

54

solve, without understanding the details of routine computational tasks. This section
introduces three numerical routines: optimization, interpolation, and integration.

2.2.1 Optimization
Matlab built-in functions and specific toolboxes provide widely used algorithms for
standard and large-scale optimization, solving constrained and unconstrained continuous
and discrete problems. Users can use these algorithms to find optimal solutions, perform
tradeoff analyses, balance multiple design alternatives, and incorporate optimization
methods into algorithms and models. Here I use two functions fminbnd and fminsearch
to illustrate the general solutions to the problems of constrained linear optimization and
unconstrained nonlinear optimization, respectively.

Function fminbnd finds the minimum of a single-variable function, min ()
x

f x , within a

fixed interval x1 < x < x2. In Matlab,

[x,fval]=fminbnd(@fun,x1,x2);

returns scalar x a local minimizer of the scalar valued function, which is described by a
function handle @fun, in the interval between x1 and x2. The second returning variable

fval is the value of the objective function computed in @fun at the solution x. Function
fminsearch finds minimum of unconstrained multivariable function using a derivative-

free method. As above, the minimum of a problem is specified by min ()
x

f x


, where x


 is a

vector instead of a scalar, and f is a function of several variables. In Matlab this is written
as:

[x,fval]=fminsearch(@fun,x0);

where x0 is a vector of initial values of x. Note that fminsearch can often handle
discontinuities particularly if they do not occur near the solution.
Depending on the nature of the problem, you can choose to use fminbnd, fminsearch, or
other optimization functions to perform likelihood inference. When doing this, you first
need to write a likelihood function that accepts initial parameters as inputs. The likelihood
function typically returns a value of the negative log likelihood. Input parameters that
produce the minimum of the function are those that give the maximum likelihood for the
model. Here is an example showing how to use function fminbnd.

options=optimset('fminbnd');
[x,fval]=fminbnd(@likefun,eps,20,options,tree,site,model);

where @likefun is a function handle of the following negative log-likelihood function:

function [L]=likefun(x,tree,site,model)
rate=x(1);
L=-log(treelike(tree,site,model,rate));

This function takes four parameters: the evolutionary rate, rate, (which is what we are
going to optimize), a phylogenetic tree, a site of alignment of sequences, and a substitution

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

55

model. fminbnd returns estimate x(1), which is the optimized rate that gives maximum
likelihood fval. The function treelike computes the likelihood of a tree for a given site
under the substitution model (see Section 3.4 for details).

2.2.2 Interpolation
Interpolation is one of the classical problems in numerical analysis. Here I show how a one

dimensional interpolation problem is formulated and how to use the interpolation technique

to determine the recombination fraction between two chromosomal positions. The

relationships between physical distance (Mb) and genetic distance (cM) vary considerably at

different positions on the chromosome due to the heterogeneity in recombination rate. A

recombination map correlates the increment of genetic distance with that of physical

distance. The distances between two points in a recombination map are defined in terms of

recombination fractions. The incremental step of the physical distance is fixed by the

distance between each pair of consecutive makers. Given a set of n makers [xk, yk], 1 ≤ k ≤ n,

with x1 < x2 < … < xn, the goal of interpolation is to find a function f(x) whose graph

interpolates the data points, i.e., f(xk) = yk, for k = 1, 2,…, n. The general form of Matlab

function interp1 is as follows:

yi=interp1(x,y,xi,method)

where x and y are the vectors holding x-coordinates (i.e., the chromosomal positions) and y-
coordinates (i.e., the cumulative recombination rate) of points to be interpolated,

respectively. xi is a vector holding points of evaluation, i.e., yi=f(xi) and method is an
optional string specifying an interpolation method. Default interpolation method 'linear'
produces a piecewise linear interpolant. If xi contains two positions on the chromosome,
xi=[pos1,pos2], yi computed will contain two values [rec1,rec2]. The local
recombination rate (cM/Mb) can then be calculated as (rec2-rec1)/(pos2-pos1).

2.2.3 Integration
The basic problem considered by numerical integration is to compute an approximate

solution to a definite integral ()
b

a
f x dx . If f(x) is a smooth well-behaved function, integrated

over a small number of dimensions and the limits of integration are bounded, there are
many methods of approximating the integral with arbitrary precision. quad(@fun,a,b)
approximates the integral of function @fun from a to b to within an error of 1e-6 using
recursive adaptive Simpson quadrature. You can use function trapz to compute an

approximation of the integral of Y via the trapezoidal method. To compute the integral with
unit spacing, you can use Z=trapz(Y); for spacing other than one, multiply Z by the
spacing increment. You can also use Z=trapz(X,Y) to compute the integral of Y with
respect to X using trapezoidal integration.

2.3 Data visualization & graphical user interfaces

Matlab adopts powerful visualization techniques to provide excellent means for data
visualization. The graphics system of Matlab includes high-level commands for two-
dimensional and three-dimensional data visualization, image processing, animation, and
presentation graphics. The graphic system of Matlab is also highly flexible as it includes

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

56

low-level commands that allow users to fully customize the appearance of graphics. Fig. 1
gives some examples of graphic outputs from data analyses in evolutionary bioinformatics.

Fig. 1. Examples of graphic outputs and GUIs.

Matlab is also a convenient environment for building graphical user interfaces (GUI). A
good GUI can make programs easier to use by providing them with a consistent appearance
and intuitive controls. Matlab provides many programmable controls including push

buttons, toggle buttons, lists, menus, text boxes, and so forth. A tool called guide, the GUI
Development Environment, allows a programmer to select, layout and align the GUI
components, edit properties, and implement the behavior of the components. Together with

guide, many GUI-related tools make Matlab suitable for application development. PGEGUI

and MBEGUI are two menu-driven GUI applications in PGEToolbox and MBEToolbox,
respectively.

2.4 Extensibility & scalability

Matlab has an open, component-based, and platform-independent architecture. Scientific

applications are difficult to develop from scratch. Through a variety of toolboxes, Matlab

offers infrastructure for data analyses, statistical tests, modeling and visualization, and other

services. A richer set of general functions for statistics and mathematics allows scientists to

manipulate and view data sets with significantly less coding effort. Many special-purpose

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

57

tool boxes that address specific areas are provided and developers choose only the tools and

extensions needed. Thus extensibility is one of the most important features of the Matlab

environment. Matlab functions have a high degree of portability, which stems from a

complete lack of coupling with the underlying operating system and platform. Matlab

application deployment tools enable automatic generation and royalty-free distribution of

applications and components. You can distribute your code directly to others to use in their

own Matlab sessions, or to people who do not have Matlab.

You can run a Matlab program in parallel. The parallel computing toolbox allows users to
offload work from one Matlab session (the client) to other Matlab sessions (the workers). It
is possible to use multiple workers to take advantage of the parallel processing on a remote
cluster of computers. This is called “remote” parallel processing. It is also possible to do
parallel computing with Matlab on a single multicore or multiprocessor machine. This is
called “local” parallel computing. Fig. 2 is a screenshot of the task manager showing the
CPU usage on a single 8-core PC in local parallel computing with Matlab.

Fig. 2. CPU usage of a single 8-core PC in local parallel computing with Matlab.

With a copy of Matlab that has the parallel computing features, the simplest way of

parallelizing a Matlab program is to use the for loops in the program. If a for loop is

suitable for parallel execution, this can be indicated simply by replacing the word for by

the word parfor. When the Matlab program is run, and if workers have been made

available by the matlabpool command, then the work in each parfor loop will be
distributed among the workers. Another way of parallelizing a Matlab program is to use a

spmd (single program, multiple data) statement. Matlab executes the spmd body denoted

by statements on several Matlab workers simultaneously. Inside the body of the spmd

statement, each Matlab worker has a unique value of labindex, while numlabs denotes

the total number of workers executing the block in parallel. Within the body of the spmd

statement, communication functions for parallel jobs (such as labSend and

labReceive) can transfer data between the workers. In addition, Matlab is developing
new capabilities for the graphics processing unit (GPU) computing with CUDA-enabled
NVIDIA devices.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

58

3. Using Matlab in molecular evolution

Molecular evolution focuses on the study of the process of evolution at the scale of DNA,
RNA, and proteins. The process is reasonably well modeled by using finite state continuous
time Markov chains. In Matlab we obtain compact and elegant solutions in modeling this
process.

3.1 Evolutionary distance by counting

Before explicitly modeling the evolution of sequences, let’s start with simple counting
methods for estimating evolutionary distance between DNA or protein sequences. If two
DNA or protein sequences were derived from a common ancestral sequence, then the
evolutionary distance refers to the cumulative amount of difference between the two
sequences. The simplest measure of the distance between two DNA sequences is the number
of nucleotide differences (N) between the two sequences, or the portion of nucleotide
differences (p = N/L) between the two sequences. In Matlab, the p-distance between two
aligned sequences can be computed like this:

p=sum(seq(1,:)~=seq(2,:))/size(seq,1);

To correct for the hidden changes that have occurred but cannot be directly observed from
the comparison of two sequences, the formula for correcting multiple hits of nucleotide
substitutions can be applied. The formulae used in these functions are analytical solutions of
a variety of Markov substitution models. The simplest model is the JC model (Jukes and
Cantor 1969). Analytic solution of the JC model corrects p-distance when p < 0.75:

d=-(3/4)*log(1-4*p/3);

Other commonly used models include Kimura-two-parameter (K2P)(Kimura 1980),
Felsenstein (F84)(Felsenstein 1984), and Hasegawa-Kishono-Yano (HKY85)(Hasegawa,
Kishino et al. 1985). When the numbers of parameters used to define a model increase with
the complicity of the model, we reach a limit where there is no analytical solution for the
expression of evolutionary distance. In these cases, we can use the maximum likelihood
method, as described in Section 3.3, to estimate the evolutionary distance.
For protein sequences, the simplest measure is the p-distance between two sequences. Assume
that the number of amino acid substitutions at a site follows the Poisson distribution; a simple
approximate formula for the number of substitutions per site is given by:

d=-log(1-p);

This is called Poisson correction distance. Given that different amino acid residues of a
protein have different levels of functional constraints and the substitution rate varies among
the sites, it is suggested that the rate variation can be fitted by the gamma distribution (Nei
and Kumar 2000). The gamma distance between two sequences can be computed by:

d=a*((1-p)^(-1/a)-1);

where a is the shape parameter of the gamma distribution. Several methods have been
proposed to estimate a (Yang 1994; Gu and Zhang 1997). The gamma distance with a=2.4

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

59

is an approximate of the JTT distance based on the 20×20 amino acid substitution matrix
developed by Jones, Taylor et al. (1992). The maximum likelihood estimation of JTT distance
is described in Section 3.3.2.
Protein sequences are encoded by strings of codons, each of which is a triplet of nucleotides
and specifies an amino acid according to the genetic code. Codon-based distance can be
estimated by using the heuristic method developed by Nei and Gojobori (1986). The method
has been implemented with an MBEToolbox function called dc_ng86. The function counts
the numbers of synonymous and nonsynonymous sites (LS and LA) and the numbers of
synonymous and nonsynonymous differences (SS and SA) by considering all possible
evolutionary pathways. The codon-based distance is measured as KS = SS/LS and KA = SA/LA
for synonymous and nonsynonymous sites, respectively. Comparison of KS and KA provide
useful information about natural selection on protein-coding genes: KA/KS = 1 indicates
neutral evolution, KA/KS < 1 negative selection, and KA/KS > 1 positive selection.

3.2 Markov models of sequence evolution
Markov models of sequence evolution have been widely used in molecular evolution. A
Markov model defines a continuous-time Markov process to describe the change between
nucleotides, amino acids, or codons over evolutionary time. Markov models are flexible and
parametrically succinct. A typical Markov model is characterized by an instantaneous rate matrix
R, which defines the instantaneous relative rates of interchange between sequence states.

R has off-diagonal entries Rij equal to the rates of replacement of i by j: ()ijR r i j  , i ≠ j.

The diagonal entries, Rii, are defined by a mathematical requirement that the row sums are

all zero, that is, ()ii ijj i
R R


  . The dimension of R depends on the number of statuses of

the substitution: 4×4 for nucleotides, 20×20 for amino acids, and 61×61 for codons. We

denote Π the vector that contains equilibrium frequencies for 4 nucleotides, 20 amino acids,

or 61 sense codons, depending on the model. By multiplying the diagonal matrix of Π, R is

transformed into a “frequency-scaled” rate matrix Q=diag(Π)*R. Subsequently, we can

compute the substitution probability matrix P according to the matrix exponential

() QtP t e , where P(t) is the matrix of substitution probabilities over an arbitrary time (or

branch length) t.

3.3 Model-based evolutionary distance
3.3.1 Nucleic acid substitutions
For a nucleotide substitution probability matrix P(t), Pi→j(t) is the probability that nucleotide
i becomes nucleotide j after time t. An example of divergence of two sequences (each
contains only 1 base pair) from a common ancestral sequence is shown in Fig. 3.

A

A C

t

Fig. 3. Divergence of two sequences. Sequences 1 (left) and 2 (right) were derived from a
common ancestral sequence t years ago. PA→C(t) is the probability that nucleotide A becomes
C after time t. PA→A(t) is the probability that no substitution occurs at the site during time t.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

60

In order to construct the substitution probability matrix P in Matlab, let’s first define an
instantaneous rate matrix R:

>> R=[0,.3,.4,.3;.3,0,.3,.4;.4,.3,0,.3;.3,.4,.3,0]

R =

 0 0.3000 0.4000 0.3000
 0.3000 0 0.3000 0.4000
 0.4000 0.3000 0 0.3000
 0.3000 0.4000 0.3000 0

We can use the following command to normalize the rate matrix so that the sum of each
column is one:

x=sum(R,2); for k=1:4, R(k,:)=R(k,:)./x(k); end

This step is unnecessary in this particular example, as original R meets this requirement.
Let’s assume the equilibrium frequencies of four nucleotides are known (that is, πA=0.1,
πC=0.2, πG=0.3, and πT=0.4).

freq=[.1 .2 .3 .4];

Here is how to compute and normalize matrix Q:

function [Q]=composeQ(R,freq)
PI=diag(freq);
Q=R*PI;
Q=Q+diag(-1*sum(Q,2));
Q=(Q./abs(trace(Q)))*size(Q,1);

In Matlab, function EXPM computes the matrix exponential using the Padé approximation.
Using this function we can compute substitution probability matrix P for a given time t.

P=expm(Q*t);

For one site in two aligned sequences, without knowing the ancestral status of the site, we
assume one of them is in the ancestral state and the other is in the derived state. If two
nucleotides are C and T, and we pick C as the ancestral state, that is, the substitution from C
to T, then the probability of substitution PC→T(t) = P(2,4). In fact, P(2,4) equals to
P(4,2), which means the process is reversible. So it does not matter which nucleotide we
picked as ancestral one, the result is the same. The total likelihood of the substitution model
for the two given sequences is simply the multiplication of substitution probabilities for all
sites between the two sequences. In order to estimate the evolutionary distance between two

sequences, we try different t-s and compute the likelihood each time until we find the t
that gives the maximum value of the total likelihood. This process can be done with
optimization functions in Matlab (see Section 2.2.1). The optimized value of t is a surrogate
of evolutionary distance between two sequences.

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

61

The model of substitution can be specified with two variables R and freq. So we can define
the model in a structure:

model.R=R;
model.freq=freq;

The general time reversible (GTR) model has 8 parameters (5 for rate matrix and 3 for
stationary frequency vector). There is no analytical formula to calculate the GTR distance
directly. We can invoke the optimization machinery of Matlab to estimate the
evolutionary distance and obtain the best-fit values of parameters that define the
substitution model.
A convenient method that does not depend on the optimization to compute GTR distance

also exists (Rodriguez, Oliver et al. 1990). The first step of this method is to form a matrix

F, where Fij denotes the number of sites for which sequence 1 has an i and sequence 2

has a j. The GTR distance between the two sequences is then given by the following

formula:

1(log())d tr F    ,

where  is the diagonal matrix with values of nucleotide equilibrium frequencies on the

diagonal, and tr(X) is the trace of matrix X. Here is an example:

seq1=[2 3 4 2 3 3 1 4 3 3 3 4 1 3 3 2 4 2 3 2 2 2 1 3 1 3 1 3 3 3];
seq2=[4 2 2 2 3 3 2 4 3 3 2 4 1 2 3 2 4 4 1 4 2 2 1 3 1 2 4 3 1 3];
X=countntchange(seq1,seq2)

X =

 3 0 2 0
 1 4 4 1
 0 0 8 0
 1 3 0 3

The formula for computing GTR distance is expressed in Matlab as:

F=((sum(sum(X))-trace(X))*R)./4;
F=eye(4)*trace(X)./4+F;
PI=diag(freq);
d=-trace(PI*logm(inv(PI)*F));

3.3.2 Amino acid substitutions

For an amino acid substitution probability matrix P(t), Pi→j(t) is the probability that amino

acid i becomes amino acid j after time t. In order to compute P, we need to specify the

substitution model. As in the case of nucleotides, we need an instantaneous rate matrix

model.R and equilibrium frequency model.freq for amino acids. Commonly used R and

freq are given by empirical models including Dayhoff, JTT (Jones, Taylor et al. 1992)(Fig.

4), and WAG (Whelan 2008).

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

62

Fig. 4. Visual representations for instantaneous rate matrix R. The JTT model of amino acid
substitutions (Jones, Taylor et al. 1992) is shown on the left, and the GY94 model of codon
substitutions (Goldman and Yang 1994) on the right. The circle size is proportional to the
value of the relative rate between pairs of substitutions.

Here I present a function called seqpairlike that computes the log likelihood of distance
t (i.e., branch length, or time) between two protein sequences seq1 and seq2 using the
model defined with R and freq. The function countaachange is a countntchange
counterpart for amino acid substitutions.

function [lnL]=seqpairlike(t,model,seq1,seq2)
Q=composeQ(model.R,model.freq);
P=expm(Q*t);
X=countaachange(seq1,seq2);
lnL=sum(sum(log(P.^X)));

Using the likelihood function, you can adopt an optimization technique to find the

optimized t as the evolutionary distance between the two sequences.

3.3.3 Codon substitutions

Codon substitutions can be modeled using a Markov process similar to those that are used

to describe nucleotide substitutions and amino acid substitutions. The difference is that

there are 61 states in the Markov process for codon substitutions as the universal genetic

code contains 61 sense codons or nonstop codons. Here I describe a simplified model of

Goldman and Yang (1994)(gy94 model). The rate matrix of the model accounts for the

transition-transversion rate difference by incorporating the factor κ if the nucleotide change

between two codons is a transition, and for unequal synonymous and nonsynonymous

substitution rates by incorporating ω if the change is a nonsynonymous substitution. Thus,

the rate of relative substitution from codon i to codon j (i ≠ j) is:

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

63

0,

,

,

,

,

j

ij j

j

j

q












 





if i and j differ at two or three codon positions,

if i and j differ by a synonymous transversion,

if i and j differ by a synonymous transition,

if i and j differ by a nonsynonymous transversion,

if i and j differ by a nonsynonymous transition,

A schematic diagram representing the codon-based rate matrix R with ω = 0.5 and κ = 3.0 is
given in Fig. 4. The function modelgy94 in MBEToolbox generates the matrix R from given
ω and κ:

model=modelgy94(omega,kappa);

Now let πj indicate the equilibrium frequency of the codon j. In the GY94 model, πj = 1/61,
j = 1, 2, …, 61.
Here is how we can use GY94 model to estimate dN and dS for two protein-coding
sequences. Two sequences are encoded with 61 integers—each represents a sense codon. For
example, the following two protein-coding sequences:

Seq1 AAA AAC AAG AAT ACA ACC
Seq2 AAT AAC AAG TTA TCA CCC

are represented in Matlab with seq1 and seq2 like this:

seq1=[1 2 3 4 5 6];
seq2=[4 2 3 58 51 22];

The codons in original sequences are converted into corresponding indexes in the 61 sense
codon list (when the universal codon table is used). This conversion can be done with the

function codonise61 in MBEToolbox: seq1=codonise61('AATAACAAGTTATCACCC');
You also need a 61×61 mask matrix that contains 1 for every synonymous substitution
between codons, and 0 otherwise.

% Making a mask matrix, M
T='KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYYSSSSCWCLFLF';
M=zeros(61);
for i=1:61
for j=i:61
 if i~=j
 if T(i)==T(j) % synonymous change
 M(i,j)=1;
 end
 end
end
end
M=M+M';

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

64

In the above code, T is the universal code translation table for 61 codons and the
corresponding amino acids. Below is the likelihood function that will be used to obtain the
three parameters (t, kappa and omega) for the given sequences seq1 and seq2. The input
variable x is a vector of [t, kappa,omega].

function [lnL]=codonpairlike(x,seq1,seq2)
lnL=inf;
if (any(x<eps)||any(x>999)), return; end
t=x(1); kappa=x(2); omega=x(3);
if (t<eps||t>5), return; end
if (kappa<eps||kappa>999), return; end
if (omega<eps||omega>10), return; end
md=modelgy94(omega,kappa);
R=md.R; freq=md.freq;
Q=composeQ(R,freq);
P=expm(Q*t);
lnL=0;
for k=1:length(seq1)
 s1=seq1(k); s2=seq2(k);
 p=P(s1,s2);
 lnL=lnL+log(p*freq(s1));
end
lnL=-lnL;

Given all these, you can now compute the synonymous and nonsynonymous substitution
rates per site, dS and dN, using maximum likelihood approach:

et=0.5; ek=1.5; eo=0.8; % initial values for t, kappa and omega
options=optimset('fminsearch');
[para,fval]=fminsearch(@codonpairlike,[et,ek,eo],options,seq1,seq2);
lnL=-fval;
t=para(1);
kappa=para(2);
omega=para(3);

% build model using optimized values
md=modelgy94(omega,kappa);
Q=composeQ(md.R,md.freq)./61;

% Calculate pS and pN, assuming omega=optimized omega
pS=sum(sum(Q.*M));
pN=1-pS;

% Calculate pS and pN, assuming omega=1
md0=modelgy94(1,kappa);
Q0=composeQ(md0.R,md0.freq)./61;
pS0=sum(sum(Q0.*M));
pN0=1-pS0;

% Calculate dS and dN
dS=t*pS/(pS0*3);
dN=t*pN/(pN0*3);

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

65

3.4 Likelihood of a tree
You have learned how to compute the likelihood of substitutions between pairs of
sequences. Here I show how to calculate the likelihood of a phylogenic tree given nucleotide
sequences. Same technique applies to protein and codon sequences. Imagine you have a tree
like the one in Fig. 5. In this example, the four sequences are extremely short, each
containing only one nucleotide (i.e., G, A, T, and T). For longer sequences, you can first
compute the likelihood for each site independently, and then multiply them together to get
the full likelihood for the sequences. The tree describes the evolutionary relationship of the
four sequences.

G

G T

t
1

G A T T

t
2

Fig. 5. One path of a tree with 4 external nodes and 3 internal nodes with known states.

Suppose that all internal nodes of the tree are known, which means the ancestral or
intermediate states of the site are known. In this case, the likelihood of the tree is:

L = PG→G(t1)·PG→T(t1)·PG→G(t2)·PG→A(t2)·PT→T(t2)·PT→T(t2)

Thus the likelihood of a phylogenetic tree with known internal nodes at one site can be
calculated once the transition probability matrix P is computed as described in Section 3.3.1.
In reality, the internal nodes of a tree are unlikely to be known, and the internal nodes can
be any of nucleotides. In this case, we need to let every internal node be one of four possible
nucleotides each time and compute the likelihood for all possible combinations of nodes.
Each distinct combination of nucleotides on all nodes is called a path. Fig. 5 is an instance of
one possible path. To get the likelihood of the tree, we multiply all likelihood values (or sum
over log likelihood values) that are computed from all possible paths.
Here I use an example to illustrate how to do it using Matlab. Suppose the tree is given in
the Newick format:

tree='((seq1:0.0586,seq2:0.0586):0.0264,(seq3:0.0586,seq4:0.0586):0.
0264):0.043;';

The function parsetree in MBEToolbox reads through the input tree and extracts the
essential information including the topology of the tree, treetop, the total number of
external nodes, numnode, and the branch lengths, brchlen.

[treetop,numnode,brchlen]=parsetree(tree);

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

66

The outputs of parsetree are equivalent to the following direct assignment for the three
variables:

treetop='((1,2),(3,4))';
numnode=4;
brchlen=[0.0586 0.0586 0.0586 0.0586 0.0264 0.0264 0]';

Then we prepare an array of transition matrices P. Each transition matrix stacked in P is for
one branch. The total number of branches, including both external and internal branches, is
2*numnode-2.

n=4; % number of possible nucleotides
numbrch=2*numnode-2;
P=zeros(numbrch*n,n);
for j=1:numbrch
 P((j-1)*n+1:j*n,:)=expm(Q*brchlen(j));
end

In the next step, we use a function called mbelfcreator, which is adapted from Phyllab
(Morozov, Sitnikova et al. 2000), to construct an inline function LF. The function
mbelfcreator takes two inputs, treetop and numnod, and “synthesizes” the function
body of LF. The major operation encoded in the function body is the multiplication of all
sub-matrices of the master P matrix. Each sub-matrix is 4×4 in dimension and is pre-
computed for the corresponding branch of the tree. The order of serial multiplications is
determined by the topology of tree.

>>LF=inline(mbelfcreator(treetop,numnode),'P','f','s','n')

LF =

 Inline function:
 LF(P,f,s,n) =
(f*(eye(n)*((P((4*n+1):(5*n),:)*(P((0*n+1):(1*n),s(1)).*P((1*n+1):(2
n),s(2)))).(P((5*n+1):(6*n),:)*(P((2*n+1):(3*n),s(3)).*P((3*n+1):(
4*n),s(4)))))))

The constructed inline function LF takes four parameters as inputs: P is the stacked matrix,
f is the stationary frequency, s is a site of the sequence alignment, and n equals 4 for
nucleotide data. With the inline function, we can compute the log likelihood of a site as
follows:

siteL=log(LF(P,freq,site,n));

Finally, we sum over siteL for all sites in the alignment to get the total log likelihood of the
tree for the given alignment.
Computing the likelihood of a tree is an essential step from which many further analyses
can be derived. These analyses may include branch length optimization, search for best tree,
branch- or site-specific evolutionary rate estimation, tests between different substitution
models, and so on.

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

67

4. Using Matlab in population genetics

Population genetics studies allele frequency distribution and change under the influence of
evolutionary processes, such as natural selection, genetic drift, mutation and gene flow.
Traditionally, population genetics has been a theory-driven field with little empirical data.
Today it has evolved into a data-driven discipline, in which large-scale genomic data sets
test the limits of theoretical models and computational analysis methods. Analyses of
whole-genome sequence polymorphism data from humans and many model organisms are
yielding new insights concerning population history and the genomic prevalence of natural
selection.

4.1 Descriptive statistics

Assessing genetic diversity within populations is vital for understanding the nature of
evolutionary processes at the molecular level. In aligned sequences, a site that is
polymorphic is called a “segregating site”. The number of segregating sites is usually denoted
by S. The expected number of segregating sites E(S) in a sample of size n can be used to
estimate population scaled mutation rate θ = 4Neμ, where Ne is the diploid effective
population size and μ is the mutation rate per site:

1

1
(1 /)

n

W i
S i 


  .

In Matlab, this can be written as:

[n,L]=size(seq);
S=countsegregatingsites(seq);
theta_w=S/sum(1./[1:n-1]);

In the above code, countsegregatingsites is a function in PGEToolbox.
Nucleotide diversity, π, is the average number of pairwise nucleotide differences between
sequences:

1

[(1) / 2]

N N

ij
i j i

d
n n





  ,

where dij is the number of nucleotide differences between the ith and jth DNA sequences

and n is the sample size. The expected value of π is another estimator of θ, i.e.,   .

n=size(seq,1);
x=0;
for i=1:n-1

for j=i+1:n
 d=sum(seq(i,:)~=seq(j,:));
 x=x+d;

end
end
theta_pi=x/(n*(n-1)/2);

Note that, instead of using the straightforward approach that examines all pairs of
sequences and counts the nucleotide differences, it is often faster to start by counting the

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

68

number of copies of each type in the sequence data. Let ni denote the number of copies of

type i, and let hap in n . To count the number of copies of the type i, we use the function

counthaplotype in PGEToolbox. The general form of the function call is like this:

[numHap,sizHap,seqHap]=counthaplotype(hap);

where numHap is the total number of distinct sequences or haplotypes, and sizHap is a
vector of numbers of each haplotypes. Apparently, sum(sizHap) equals numHap. seqHap
is a matrix that contains the distinct haplotype sequences. Using this function, we can
calculate nucleotide diversity faster in some circumstances.

[nh,ni,sh]=counthaplotype(seq);
x=0;
for i=1:nh-1
for j=i+1:nh

d=sum(sh(i,:)~=sh(j,:));
x=x+ni(i)*ni(j)*d;

end
end
theta_pi=x/(n*(n-1)/2);

If the sequences are L bases long, it is often useful to normalize θS and θπ by diving them by
L. If the genotypic data (geno) is given, the corresponding θS and θπ can be calculated as
follows:

n=2*size(geno,1); % n is the sample size (number of chromosomes).
p=snp_maf(geno); % p is a vector containing MAF of SNPs.
S=numel(p);
theta_w=S/sum(1./(1:n-1));
theta_pi=(n/(n-1))*sum(2.*p.*(1-p));

Haplotype diversity (or heterozygosity), H, is the probability that two random haplotypes are
different. The straightforward approach to calculate H is to examine all pairs and count the
fraction of the pairs in which the two haplotypes differ from each other. The faster approach
starts by counting the number of copies of each haplotype, ni. Then the haplotype diversity
is estimated by

2

1

1 1 /

i

i hap

hap

n

n
H

n

 
   

 



.

Using the function counthaplotype, we can get the number of copies of each haplotype
and then compute H as follows:

[nh,ni]=counthaplotype(hap);
h=(1-sum((ni./nh).^2))./(1-1./nh);

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

69

Site frequency spectrum (SFS) is a histogram whose ith entry is the number of polymorphic
sites at which the mutant allele is present in i copies within the sample. Here, i ranges from 1
to n-1. When it is impossible to tell which allele is the mutant and which is the ancestral one,
we combine the entries for i and n-i to make a folded SFS. Mismatch distribution is a
histogram whose ith entry is the number of pairs of sequences that differ by i sites. Here, i
ranges from 0 through the maximal difference between pairs in the sample. Two functions
in PGEToolbox, sfs and mismch, can be used to calculate SFS and mismatch distribution,
respectively.

4.2 Neutrality tests
The standard models of population genetics, such as the Wright–Fisher model and related
ones, constitute null models. Population geneticists have used these models to develop
theory, and then applied the theory to test the goodness-of-fit of the standard model on a
given data set. Using summary statistics, they can reject the standard model and take into
account other factors, such as selection or demographic history, to build alternative
hypotheses. These tests that compute the goodness-of-fit of the standard model have been
referred to as “neutrality tests”, and have been widely used to detect genes, or genomic
regions targeted by natural selection. An important family of neutrality tests is based on
summary statistics derived from the SFS. The classical tests in this family include Tajima’s D
test (Tajima 1989), Fu and Li’s tests (Fu and Li 1993), and Fay and Wu’s H test (Fay and Wu
2000), which have been widely used to detect signatures of positive selection on genetic
variation in a population.
Under evolution by genetic drift (i.e., neutral evolution), different estimators of θ, such as,

θW and θπ, are unbiased estimators of the true value of θ: ˆ ˆ() ()WE E     . Therefore, the

difference between θW and θπ can be used to infer non-neutral evolution. Using this
assumption, Tajima’s D test examines the deviation from neutral expectation (Tajima 1989).
The statistic D is defined by the equation:

() ()W WD V       ,

where V(d) is an estimator of the variance of d. The value of D is 0 for selectively neutral
mutations in a constant population infinite sites model. A negative value of D indicates
either purifying selection or population expansion (Tajima 1989).

% n is the sample size; S is the number of segregating sites
% theta_w and theta_pi have been calculated

nx=1:(n-1);
a1=sum(1./nx);
a2=sum(1./nx.^2);
b1=(n+1)/(3*(n-1));
b2=2*(n*n+n+3)/(9*n*(n-1));
c1=b1-1/a1;
c2=b2-(n+2)/(a1*n)+a2/(a1^2);
e1=c1/a1;
e2=c2/(a1^2+a2);
tajima_d=(theta_pi-theta_w)/sqrt(e1*S+e2*S*(S-1));

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

70

The other SFS-based neutrality tests, like Fu and Li’s tests (Fu and Li 1993) and Fay and
Wu’s H test (Fay and Wu 2000), share a common structure with Tajima’s D test. Many other
neutrality tests exhibit important diversity. For example, R2 tests try to capture specific tree
deformations (Ramos-Onsins and Rozas 2002), and the haplotype tests use the distribution
of haplotypes (Fu 1997; Depaulis and Veuille 1998).

4.3 Long-range haplotype tests
When a beneficial mutation arises and rapidly increases in frequency in the process leading
to fixation, chromosomes harbouring the beneficial mutation experience less recombination
events. This results in conservation of the original haplotype. Several so called long-range
haplotype (LRH) tests have been developed to detect long haplotypes at unusually high
frequencies in genomic regions, which have undergone recent positive selection.
The test based on the extended haplotype homozygosity (EHH) developed by Sabeti et al.
(2002) is one of the earliest LRH tests. EHH is defined as the probability that two randomly
chosen chromosomes carrying an allele (or a haplotype) at the core marker (or region) are
identical at all the markers in the extended region. EHH between two markers, s and t, is
defined as the probability that two randomly chosen chromosomes are homozygous at all
markers between s and t, inclusively. Explicitly, if N chromosomes in a sample form G
homozygous groups, with each group i having ni elements, EHH is defined as:

1 2

2

G
i

i

n

EHH
N



 
 
 

 
 
 


.

Equivalently, EHH can be calculated in a convenient form as the statistic haplotype
homozygosity:

2(1 /) (1 1 /)iHH p n n   ,

where pi is the frequency of haplotype i and n is the sample size. For a core marker, EHH is
calculated as HH in a stepwise manner. The EHH is computed with respect to a distinct
allele of a core maker or a distinct formation of a core region. In Fig. 6, for example, we focus
on allele A of the core maker (a diallelic SNP) at the position x. Variable hap contains A-
carrying haplotypes of size n×m.

◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌

1, 2, …… x-1, x, x+1, …… m-1, m

n

Fig. 6. Calculation of EHH for n haplotypes carrying allele A at the focal position x.

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

71

The EHH values, ehh1, around x in respect to the allele A, can be computed as follows:

ehh1=ones(1,m);
for i=1:x-1
 [n,ni]=counthaplotype(hap(:, i:x-1));
 p=ni./n;
 ehh1(i)=(sum(p.^2)-1/n)/(1-1/n);
end
for j=x+1:m
 [n,ni]=counthaplotype(hap(:, x+1:end));
 p=ni./n;
 ehh1(j)=(sum(p.^2)-1/n)/(1-1/n);
end

Similarly, the EHH around x with respect to the allele C, ehh2, can be computed using the
same machinery. Both ehh1 and ehh2 are calculated for all markers around the core maker.
Fig. 7 shows the EHH curves for two alleles C and T in the core SNP. The EHH values for
the markers decrease as the distance from the core marker increases.

Fig. 7. EHH decay as a function of the distance between a test marker and the core marker.

Vertical dash line indicates the location of the core marker. Horizontal dash line indicates
the cut-off=0.05 for computing EHH integral.

The integrated EHH (iHH) is the integral of the observed decay of EHH away from the
core marker. iHH is obtained by integrating the area under the EHH decay curve until

EHH reaches a small value (such as 0.05). Once we obtain ehh1 and ehh2 values for the
two alleles, we can integrate EHH values with respect to the genetic or physical distance
between the core marker and other markers, with the result defined as iHH1 and iHH2.
The statistic ln(iHH1/iHH2) is called the integrated haplotype score (iHS), which is a
measure of the amount of EHH at a given maker along one allele relative to the other
allele. The iHS can be standardized (mean 0, variance 1) empirically to the distribution of
the observed iHS scores over a range of SNPs with similar allele frequencies. The measure
has been used to detect partial selective sweeps in human populations (Voight,
Kudaravalli et al. 2006).

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

72

In Matlab, we invoke the function trapz(pos,ehh) to compute the integral of EHH, ehh,
with respect to markers’ position, pos, using trapezoidal integration. The position is in units
of either physical distance (Mb) or genetic distance (cM). The unstandardized integrated
haplotype score (iHS) can be computed as the log ratio between the two iHHs:

ihh1=trapz(pos,ehh1);
ihh2=trapz(pos,ehh2);
ihs=log(ihh1/ihh2);

The cross population EHH (XP-EHH) has been used to detect selected alleles that have risen
to near fixation in one but not all populations (Sabeti, Varilly et al. 2007). The statistic XP-
EHH uses the same formula as iHS, that is, ln(iHH1/iHH2). The difference is that iHH1 and
iHH2 are computed for the same allele in two different populations. An unusually positive
value suggests positive selection in population 1, while a negative value suggests the
positive selection in population 2.

4.4 Population differentiation
Genomic regions that show extraordinary levels of genetic population differentiation may
be driven by selection (Lewontin 1974). When a genomic region shows unusually high or
low levels of genetic population differentiation compared with other regions, this may then
be interpreted as evidence for positive selection (Lewontin and Krakauer 1973; Akey, Zhang
et al. 2002). The level of genetic differentiation is quantified with FST, which was introduced
by Wright (Wright 1931) measuring the effect of structure on the genetics of a population.
There are several definitions of FST in the literature; the simple concept is FST = (HT – HS)/HT,
where HT is the heterozygosity of the total population and HS is the average heterozygosity
across subpopulations.
Suppose you know the frequencies, p1 and p2, of an allele in two populations. The sample
sizes in two populations are n1 and n2. Wright’s FST can be computed as follows:

pv=[p1 p2];
nv=[n1 n2];
x=(nv.*(nv-1)/2);
Hs=sum(x.*2.*(nv./(nv-1)).*pv.*(1-pv))./sum(x);
Ht=sum(2.*(n./(n-1)).*p_hat.*(1-p_hat));
Fst=1-Hs./Ht;

Below is a function that calculates an unbiased estimator of FST, which corrects for the error
associated with incomplete sampling of a population (Weir and Cockerham 1984; Weir
1996).

function [f]=fst_weir(n1,n2,p1,p2)
n=n1+n2;
nc=(1/(s-1))*((n1+n2)-(n1.^2+n2.^2)./(n1+n2));
p_hat=(n1./n).*p1+(n2./n).*p2;
s=2; % number of subpopulations
MSP=(1/(s-1))*((n1.*(p1-p_hat).^2 + n2.*(p2-p_hat).^2));
MSG=(1./sum([n1-1, n2-1])).*(n1.*p1.*(1-p1)+n2.*p2.*(1-p2));
Fst=(MSP-MSG)./(MSP+(nc-1).*MSG);

www.intechopen.com

Evolutionary Bioinformatics with a Scientific Computing Environment

73

NC is the variance-corrected average sample size, p_hat is the weighted average allele
frequency across subpopulations, MSG is the mean square error within populations, and
MSP is the mean square error between populations.

5. Conclusion

Matlab, as a powerful scientific computing environment, should have many potential
applications in evolutionary bioinformatics. An important goal of evolutionary
bioinformatics is to understand how natural selection shapes patterns of genetic variation
within and between species. Recent technology advances have transformed molecular
evolution and population genetics into more data-driven disciplines. While the biological
data sets are becoming increasingly large and complex, we hope that the programming
undertakings that are necessary to deal with these data sets remain manageable. A high-
level programming language like Matlab guarantees that the code complexity only increases
linearly with the complexity of the problem that is being solved.
Matlab is an ideal language to develop novel software packages that are of immediate
interest to quantitative researchers in evolutionary bioinformatics. Such a software system is
needed to provide accurate and efficient statistical analyses with a higher degree of
usability, which is more difficult to achieve using traditional programming languages.
Limited functionality and inflexible architecture of existing software packages and
applications often hinder their usability and extendibility. Matlab can facilitate the design
and implementation of novel software systems, capable of conquering many limitations of
the conventional ones, supporting new data types and large volumes of data from
population-scale sequencing studies in the genomic era.

6. Acknowledgment

The work was partially supported by a grant from the Gray Lady Foundation. I thank Tomasz
Koralewski and Amanda Hulse for their help in the manuscript preparation. MBEToolbox and
PGEToolbox are available at http://www.bioinformatics.org/mbetoolbox/ and
http://www.bioinformatics.org/pgetoolbox/, respectively.

7. References

Akey, J. M., G. Zhang, et al. (2002). Interrogating a high-density SNP map for signatures of
natural selection. Genome Res 12(12): 1805-1814.

Cai, J. J. (2008). PGEToolbox: A Matlab toolbox for population genetics and evolution. J
Hered 99(4): 438-440.

Cai, J. J., D. K. Smith, et al. (2005). MBEToolbox: a MATLAB toolbox for sequence data
analysis in molecular biology and evolution. BMC Bioinformatics 6: 64.

Cai, J. J., D. K. Smith, et al. (2006). MBEToolbox 2.0: an enhanced version of a MATLAB
toolbox for molecular biology and evolution. Evol Bioinform Online 2: 179-182.

Depaulis, F. & M. Veuille (1998). Neutrality tests based on the distribution of haplotypes
under an infinite-site model. Mol Biol Evol 15(12): 1788-1790.

Fay, J. C. & C. I. Wu (2000). Hitchhiking under positive Darwinian selection. Genetics 155(3):
1405-1413.

Felsenstein, J. (1984). Distance Methods for Inferring Phylogenies: A Justification. Evolution
38(1): 16-24.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

74

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth,
hitchhiking and background selection. Genetics 147(2): 915-925.

Fu, Y. X. & W. H. Li (1993). Statistical tests of neutrality of mutations. Genetics 133(3): 693-
709.

Goldman, N. & Z. Yang (1994). A codon-based model of nucleotide substitution for protein-
coding DNA sequences. Mol Biol Evol 11(5): 725-736.

Gu, X. & J. Zhang (1997). A simple method for estimating the parameter of substitution rate
variation among sites. Mol Biol Evol 14(11): 1106-1113.

Hasegawa, M., H. Kishino, et al. (1985). Dating of the human-ape splitting by a molecular
clock of mitochondrial DNA. J Mol Evol 22(2): 160-174.

Jones, D. T., W. R. Taylor, et al. (1992). The rapid generation of mutation data matrices from
protein sequences. Comput Appl Biosci 8(3): 275-282.

Jukes, T. H. & C. Cantor (1969). Evolution of protein molecules. Mammalian Protein
Metabolism. H. N. Munro. New York, Academic Press: 21-132.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. J Mol Evol 16(2): 111-120.

Lewontin, R. C. (1974). The genetic basis of evolutionary change. New York,, Columbia
University Press.

Lewontin, R. C. & J. Krakauer (1973). Distribution of gene frequency as a test of the theory of
the selective neutrality of polymorphisms. Genetics 74(1): 175-195.

Morozov, P., T. Sitnikova, et al. (2000). A new method for characterizing replacement rate
variation in molecular sequences. Application of the Fourier and wavelet models to
Drosophila and mammalian proteins. Genetics 154(1): 381-395.

Nei, M. & T. Gojobori (1986). Simple methods for estimating the numbers of synonymous
and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5): 418-426.

Nei, M. & S. Kumar (2000). Molecular evolution and phylogenetics. Oxford ; New York, Oxford
University Press.

Ramos-Onsins, S. E. & J. Rozas (2002). Statistical properties of new neutrality tests against
population growth. Mol Biol Evol 19(12): 2092-2100.

Rodriguez, F., J. L. Oliver, et al. (1990). The general stochastic model of nucleotide
substitution. J Theor Biol 142(4): 485-501.

Sabeti, P. C., D. E. Reich, et al. (2002). Detecting recent positive selection in the human
genome from haplotype structure. Nature 419(6909): 832-837.

Sabeti, P. C., P. Varilly, et al. (2007). Genome-wide detection and characterization of positive
selection in human populations. Nature 449(7164): 913-918.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics 123(3): 585-595.

Voight, B. F., S. Kudaravalli, et al. (2006). A map of recent positive selection in the human
genome. PLoS Biol 4(3): e72.

Weir, B. S. (1996). Genetic data analysis II : methods for discrete population genetic data.
Sunderland, Mass., Sinauer Associates.

Weir, B. S. & C. C. Cockerham (1984). Estimating F-statistics for the analysis of population
structure. Evolution 38: 1358-1370.

Whelan, S. (2008). Spatial and temporal heterogeneity in nucleotide sequence evolution. Mol
Biol Evol 25(8): 1683-1694.

Wright, S. (1931). The genetical structure of populations. ann Eugenics 15: 323-354.
Yang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with

variable rates over sites: approximate methods. J Mol Evol 39(3): 306-314.

www.intechopen.com

Systems and Computational Biology - Bioinformatics and

Computational Modeling

Edited by Prof. Ning-Sun Yang

ISBN 978-953-307-875-5

Hard cover, 334 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Whereas some â€œmicroarrayâ€ ​ or â€œbioinformaticsâ€ ​ scientists among us may have been criticized as

doing â€œcataloging researchâ€ ​, the majority of us believe that we are sincerely exploring new scientific and

technological systems to benefit human health, human food and animal feed production, and environmental

protections. Indeed, we are humbled by the complexity, extent and beauty of cross-talks in various biological

systems; on the other hand, we are becoming more educated and are able to start addressing honestly and

skillfully the various important issues concerning translational medicine, global agriculture, and the

environment. The two volumes of this book present a series of high-quality research or review articles in a

timely fashion to this emerging research field of our scientific community.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

James J. Cai (2011). Evolutionary Bioinformatics with a Scientific Computing Environment, Systems and

Computational Biology - Bioinformatics and Computational Modeling, Prof. Ning-Sun Yang (Ed.), ISBN: 978-

953-307-875-5, InTech, Available from: http://www.intechopen.com/books/systems-and-computational-biology-

bioinformatics-and-computational-modeling/evolutionary-bioinformatics-with-a-scientific-computing-

environment

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

