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Laser Beam - Water Phantom Interaction 
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National Institute for Laser, Plasma and Radiation Physics, Bucharest 

 Romania 

1. Introduction 

Many practical applications require the detailed study of the thermal behavior of different 

systems. The difficulties arise when these systems are inhomogeneous with respect to the 

parameters involved in the heat diffusion process. Currently, the heat diffusion equation 

has no analytical solution in this case. There exists however  a wide range of methods  

to approximate the solution of the heat diffusion equation in inhomogeneous systems, 

starting from the numerical methods and ending with the exact analytical solution for  

a few particular cases, each of them presenting specific  advantages and disadvantages 

[1-6].  

We assume that the source term in the heat equation has the form: 

0( , , , ) ( , , ) [ ( ) ( )]f x y z t f x y z h t h t t    (where h is the step function) and the thermal 

conductivity can be expressed as: ( , , ) ( )k x y z k x . We developed under these assumptions a 

computing method for solving the diffusion equation describing the heat propagation in 

inhomogeneous materials. 
The procedure for solving the heat diffusion equation in inhomogeneous systems, with a 

prescribed accuracy in respect to the thermal conductivity, is outlined. To this aim, the 

thermal conductivity was considered a discontinuous function having a linear value in each 

layer. This approach is nonetheless valid in many cases like thin films or welding 

technologies. In these cases there exists nevertheless an interface that ensures the continuity 

of the thermal conductivity function.  

We believe that the programs of simulation which are used in the present paper can be help 
- full for medical staff. 

2. One-dimensional mathematical model 

In this section we introduce the procedure for approximating the exact solution of the heat 
diffusion equation (1) with respect to the thermal conductivity in inhomogeneous media. 
Our approach is one dimensional, but it can be rather easily extended to multi-dimensional 
equations.  
We consider a parallelepiped volume of dimensions a, b and c. The equation describing the 
heat diffusion is :                          
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        , ,
, ,

T x t T x t
k x c f x t a x b

x x t

   
      

   
   (1) 

Here:  is the mass density; c is the heat capacity; k is the thermal conductivity; T is the local 

temperature and t is current time. In each sub-domain [xi,xi+1], the thermal conductivity is 
considered to be a linear function of the coordinate x, ki(x)=k(xi)+mi(x-xi), where mi is a real 
constant number. 

When:  1,i ix x x  , we have: 

    , ,i i
i i i i

T T
k x c f x t

x x t

           
      (2) 

with the boundary conditions : 

 1, , , , , ,( , , , ) ( , , , )
i ii j k l x x i j k l x xT x y z t T x y z t   ,          (3)     

1 11, , , , , ,( , , , ) ( , , , )
i ii j k l x x i j k l x xT x y z t T x y z t
    ,        

1 1, , , , , ,'( , , , ) '( , , , )
i ii i j k l x x i i j k l x xk T x y z t k T x y z t       ,                                                     

1 11 1, , , , , ,'( , , , ) '( , , , )
i ii i j k l x x i i j k l x xk T x y z t k T x y z t
       . 

At the margins of the sample, we assume:  

0 00 0, , , 0 0, , ,'( , , , ) ( , , , )j k l x x j k l x xk T x y z t h T x y z t    ,                                      

2 2, , , /2 , , , /2'( , , , ) ( , , , )i i j k l y y i i j k l y yk T x y z t h T x y z t     ,  

2 2, , , /2 , , , /2'( , , , ) ( , , , )i i j k l y y i i j k l y yk T x y z t h T x y z t     , 

3 3, , , /2 , , , /2'( , , , ) ( , , , )i i j k l z z i i j k l z zk T x y z t h T x y z t     , 

3 3, , , /2 , , , /2'( , , , ) ( , , , )i i j k l z z i i j k l z zk T x y z t h T x y z t    , 

, , , , , ,'( , , , ) ( , , , )
n nn n j k l x x n n j k l x xk T x y z t h T x y z t     , 

and we have: 0 n 2 30,  x ,  y ,  zx a b c    . 

We next applied the integral operator 
   

11
( , ) ,

i

i

x

ijij j i

j x

K x K x dx
C



  
  to equation (2) with 

the kernel  ,ij iK x  .The kernel of this operator was derived by solving the partial 

differential equation : 
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       2 0
ij

iji j

K x
k x K x

x x

 
      

   (4) 

Equation (4) provides a series of positive eigenvalues ,j j N   and  eigenfunctions 

 ,ij iK x   of the differential operator:  k x
x x

  
   

, [7]. The eigenfunctions  were necessary 

for solving  equation (2). 
The solution of equation (4) has the form: 

  
     

0 0

2 2
, ,

j i i i j i i i
ij i i i

i i

k x m x k x m x
K x A J B Y j N

m m

              
   
   

  (5) 

Where: i i ic   and J0 and Y0 are the Bessel and Weber functions respectively.  
After the application of the integral operator Ki(x) equation (4) becomes: 

      2
,

, ,
i j

ij j i i ji

T t
u t c f t

t

 
      


  (6) 

where:  

     
11

, ( , ) ,
i

i

x

ii j j

j x

u t T x t K x dx
C



  
     

        
11

, , ,
i

i

x

jj j

j x

f t f x t K x dx
C



  
   

and  jC   is a normalization factor. 

Here we have [7]: 

 
11

2

0

( ) ( , )
i

i

xn

j ij i j
i x

C K x dx




    .       (7) 

In the same manner, one can apply the functions: ( , )k kK y and ( , )l lK z , which satisfy the 

equations:        

 

   

   

2
2

2

2
2

2

,
, 0

,
, 0

k k
k k k

l l
l l l

K y
K y

y

K z
K z

z

 
   



 
   



       (8) 

This next gives: ( , ) cos( ) ( / ) sin( )l l l l lK z z h k z        , with, k being the thermal 

conductivity and h the heat transfer coefficient .  
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Then, the following equation is inferred:  

 

2 2 2ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , )

ˆ ˆ( , , , ) ( , , , )

j i j k l k i j k l l i j k l

i j k l i

i i

T t T t T t

T t f x y z t
ct

              

   
 

    (9) 

Where from it follows:  

 21 3

2 3

1
( ) ( ) ( )

/2 /2

/2 /2

ˆ ( , , , )

( , , , ) ( , ) ( , ) ( , )

j k l

i

i

i j k l C C C

yx z

ij j k k l l

x y z

T t

T x y z t K x K y K z dxdydz


  

 

    

        
    (10) 

In order to eliminate the time parameter t, we apply the direct and inverse Laplace 
transform to equation (9).  

If we have, like in most cases: 0( , , , ) ( , , ) [ ( ) ( )]f x y z t f x y z h t h t t    , one can get the solution: 

 

2 2 2 2 2 2
0

2 2 2

( ) ( )( )1
0( )

1 1 1

( , , , ) [1 (1 ) ( )]

 ( , , ) ( , ) ( , ) ( , )

j l k j l k

j l k

t t t
i

j k l

j k l ij j k k l l

T x y z t e e h t t

g K x K y K z

  
        

  
  

     

        


     (11) 

where: 

 21 3

2 3

1
( ) ( ) ( )

/2 /21

0 /2 /2

( , , )

( , , , ) ( , ) ( , ) ( , )

j k l

i

i

j k l C C C

yx zn

i ij j k k l l
i x y z

g

f x y z t K x K y K z dxdydz


  



  

    

        
           (12) 

 stands here for the  thermal diffusivity. We point out that our semi-analytical solution 

becomes analytical, if we observe the, after 10 iterations, the solution becomes convergent 
(we have values of temperature less than 10-2K for: i>10;j>10 and k>10). Under these 
conditions equation (10) becomes: 

 

2 2 2 2 2 2
0

2 2 2

10 10 10
( ) ( )( )1

0( )
1 1 1

( , , , ) [1 (1 ) ( )]

 ( , , ) ( , ) ( , ) ( , )

j l k j l k

j l k

t t t
i

j k l

j k l ij j k k l l

T x y z t e e h t t

g K x K y K z

        

  
  

     

        


   (13) 

3. Application of the theory: Laser-assisted hadron and electron beams 
therapy 

It is well known [8] that the hadrons therapy (e.g. with protons) is much more suitable and 
efficient compared to electrons therapy, because the absorption curve is (in this case) a Dirac 
function. We can solve easily the heat equation for this case, and we obtain the temperature 
field in Fig.1. - (The Dirac absorption function is at 4 cm from the surface). Here dT is the 
temperature variation (dT=Tf -Ti), rather than the absolute temperature.  
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Tf   and Ti are the final and initial temperatures respectively. 
 

 

Fig. 1. Thermal field distribution in case of 1 MeV proton beam irradiation of a water 
phantom, for 120 sec. 

 
 

 

Fig. 2. Thermal field in water submitted to cw CO2 laser irradiation for 50 sec.   
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The power of the cw CO2 laser beam was P= 1W.    
It is known from experience [8] that proton therapy is more efficient in the “presence” of a 
laser beam.  We plotted in figure 2 the thermal gradient in water produced by cw CO2 laser 
irradiation for 50 sec. (P = 1W). In Fig. 3 we presented the temperature field in water 
produced by an electron beam, when the “steady - state” is achieved. The white color 
corresponds to an increase of temperature, and the black color represents a decrease of 
temperature. We have use sub-domains of 0.25 cm. The thickness of the water phantom was 
0.25 cm, and was contained in a   plastic cube with a mass density close to 1 g/cm3 . Figure 3 
was obtained using eq. (13). 
 

 

Fig. 3. Temperature field in water produce by an electron beam, when the “steady- state” is 
achieved. 

The white color corresponds to the temperature increase while, the black color represents 
the temperature decrease. We have used sub-domains of 0.25 cm length. 

4. The green function method 

We start from the heat equation: 

  [ ( ) ] [ ( ) ] [ ( ) ] ( , , )T T T
x y zx X y y z z

K T K T K T S x y z     
           (14) 

where S(x, y, z) is proportional with the absorbed dose. We consider [9], the case of a 10 
MeV electron beam interactions with water. We have:  

 10( , , ) ( , ). ( )S x y z K y z D x                (15) 

where according to experimental data from our laboratory: 

 2 3 4 5
10( ) 83.2337 18.6522 15.1080 4.1417 0.3506D x x x x x          (16) 
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Here x stands for the  direction of electron propagation. We will consider the radiation 
(electron beam) normal to water surface.            
From the standard theory of Green function applied to multi-layer structures, we have:  

 1 2

1 2 1 2
1 2 1 2

n

l ll l l ln n
k k k k k kn n

l l l lK
 

    
              (17) 

where li is the length and ki  is the thermal conductivity of the i-th layer. 
We introduce the area of the layer Ai:  

 
1 1 2 2 1 1 2 2

1 2

n n n n

n

K A K A K A K A K A K A

A A A A
K

   
    (18) 

We define the “linear” temperature 

 
0

0 0( ) ( ) (1 / ( )) ( ') '
T

T

T T K T K T dT        (19) 

and we can write:  

 31
2 2

0

[1 ( )]

( ) ( ) ( )
0

( )
P R T

K T
f d




 
 

      (20) 

where:  

K

K
    

and: 

 ( )K K T  (21) 

The function f is given by:                             

  
2 2 2 2 2 2

2

exp [[ ( 1)] [ /( 1)] ( / )]

 ( 1)
( )

X Y Z
f

       
  
    (22) 

We plotted in Fig.4 the analytical results obtained with the Green function method. 
The white color corresponds to temperature increase, and the black color represents a 
decrease of temperature. We have used sub-domains of 0.25 cm length.  Figs. 3 and 4 allow 

for a direct comparison between the temperature fields in water computed with the integral 
transform technique and Green function method under identical conditions. 

5. The thermal fields when we have multiple sources irradiations 

We consider a parallelepiped sample with dimensions a, b, and c. The sample is irradiated 
by three laser beams which propagate along the Cartesian coordinate axes.  The model is 
also valid for electron or hadrons beam irradiations.  
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Let us considering the following relations:       

 1 2 3( , , , ) ( , , , ) ( , , , ) ( , , , )A x y z t A x y z t A x y z t A x y z t    (23) 

Therefore: 

 1 2 3( , , , ) ( , , , ) ( , , , ) ( , , , )T x y z t T x y z t T x y z t T x y z t      (24) 

 
 

 
 

Fig. 4. The temperature field in water produced by a 10 MeV electron beam, when the 
“steady- state” is achieved.  

We suppose that for the heat transfer coefficients: 1 2 3 4 5 6h h h h h h h      . If we 

consider a linear heat transfer at the sample surface (the “radiation” boundary condition 
[11]), we have: 
for the first laser beam , direction of propagation along x axis: 

 

  
2 2 2

    
2 22

0 ; 0 ; 0 ;

0 ; 0 ; 0

yx x

x x y
a a b

x x y

y z z

y z z
c cb

z zy

KK Kh h h
K K K

x K x K y K

K K Kh h h
K K K

y K z K z K

   

   

 
     

  

  
     

  

    
         

     
         

   (25) 

for the second laser beam, direction of propagation along y axis: 
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2 2 2

    
2 22

0 ; 0 ; 0 ;

0 ; 0 ; 0

yx x
x x y

a a bx x y

y z z
y z z

c cb z zy

LL Lh h h
L L L

x K x K y K

L L Lh h h
L L L

y K z K z K

   

   

                     

                      

    (26) 

for the third laser beam,  direction of propagation along z axis: 

 

  
2 2 2

    
2 22

0 ; 0 ; 0 ;

0 ; 0 ; 0

yx x
x x y

a a bx x y

y z z
y z z

c cb z zy

MM Mh h h
M M M

x K x K y K

M M Mh h h
M M M

y K z K z K

   

   

                     

                      

   (27) 

The solution of the heat equation subjected to boundary conditions (25), (26) and (27) is: 

 

, 1 1 1

, 1 1 1

( , , , ) ( , , ) ( , , , ) ( , ) ( , ) ( , )

( , , ) ( , , , ) ( , ) ( , ) ( , )

( , , ) ( , , , ) ( , )

i j o i j o x i y j z o
m n i j o

p r s v r s x v y r z s
v p r s

t v w t v w x t

T x y z t a b t K x K y K z

c d t L x L y L z

e f t M x

  

  

  

   

             
  
            
  

       

 

 

, 1 1 1

( , ) ( , )y v z w
r t v w

M y M z
  

   

    
  

 

 (28)                

We have:  

  2 2

2

2
22

0( , ) ( ) ( ) exp
y x yx

mn mn m nw w w
I x y I H H

        
     (29) 

Here w is the width of the laser beam.   

 

0 , ,
, 2

2

2 2
,

2 2

( , , ) ( (1 ) ( , )

( )) ( , ) ( , )

i

x m n a
m n x

i j o i S x ia
i j o

b c

S S m n y j z ob c

I

a e r K x
KC C C

r x dx I K y K z dydz

 



 

 
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where: 

 
2 2 ( )

2 2 2

1
( , , , ) [1 (1 ) ( )]ijo ijo ot t t
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   
  (31) 

and    
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2 2 2 2( )ijo i j o       . 

We have:  

 ( , ) cos( ) ( / ) sin( )x i i i iK x x h k x           (32) 

The other formulas can be easily obtains by “rotations” of the indices. t -is the time and ot

the exposure time. 

We have: Sr is the parameter which take care of the surface absorption and which make 

sense only for one photon absorption. 

Here: 2 2 2, , , , ,i i p p t t      are the eigenvalues corresponding to the eigenfunctions:

, ,, , , , , , , , , , , , , , , ,x y z x y z x y z x y z x y z x y zK K K P P P L L L T T T M M M N N N [7]. 

, , , , , ,i j o p r s t vCC C C C C C C and wC  as well similarly formulas for two photon absorption.  

0( )h t t is the step function [7]. 

We can generalize formula (28) taking into account the one and two absorption coefficient. 
In this case we have the following solution: 
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(33) 

In formula (33) the upper index 2 means that the corresponding values are  connected with 
two photon absorption. The eigenfunctions and the eigenvalues for two absorption 
phenomena can be calculated in the same way like in the case of one photon absorption with 
the only change that we have another absorption formula.  It make no sense to take into 
account three or more photons absorption phenomena because in this situations the cross 
sections are very small.  
In the next pages we will present three simulations, using the developed “multiple beam 
irradiation”. 
The different characteristics of dielectrics under one laser beam irradiation have been very 
well studied in literature. We will take the case of a ZnSe sample (all characteristics of the 
material can be found in reference [11]). 
The sample is a cube with the dimension about 2 cm. 
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Fig. 5. Temperature field in the plane x=0, during a 100s irradiation with a 10 W CO2 laser 
beam. 

 

 

Fig. 6. Temperature field plotted during 100s irradiation with a 50 W CO2 laser beam, 
operating in the TEM03. 
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Our study indicates that for a sample under one, two or three laser irradiation, the heat 

equation has an exact semi-analytical solution. In fact it can be considered an analytical 

solution because the eigenvalues with index higher than 10 does not contribute to the 

solution of heat equation.  This solution it is not simply the sum of solutions from three one-

dimensional heat equations, because 1 2( , , , ), ( , , , ) T x y z t T x y z t and   3 ( , , , )T x y z t  are 

coupled via boundary conditions. Our model can be easily generalized for the cases when: 

1 2 3 4 5 6    h h h h h h or  x y z   .The model could be applied to any laser-solid 

system whose interaction can be described by Beer law. 
The integral transform technique has proved once again it’s “power” in resolving heat 
equation problems [14-17]. 
 

 

Fig. 7. Temperature field when the sample is irradiated simultaneously with the two laser 
beams, mentioned above (Fig.5 and Fig.6) 

6. Discussions and conclusions 

We developed a method for solving the heat diffusion equation- based on dividing the 
whole domain into small intervals, the length of each depending on the required accuracy of 
the final solution.  The theory is applicable to laser, electrons and hadrons beams interaction 
with human tissues (which are simulated by a water phantom). In each of the obtained 
intervals the thermal conductivity function is approximated by a linear function. This 
function is introduced in the heat equation associated to each interval. At the interface 
between  intervals, the continuity of temperature function and its first derivative are 
ensured, these conditions providing the values for the coefficients obtained  in the final 
solution. 
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In order to solve such a system, the formalism of the integral operators with respect to the 
space and temporal dimensions was applied and the initial system becomes an algebraic one 
[7]. After solving the system, inverse transformations were applied and the final solution for 
each interval was obtained as a series of Bessel and Weber functions depending on the space 
coordinate. 
We had thus developed a semi-analytical model for describing the beam – inhomogeneous 
medium interaction. It can be applied to beam-target interaction where the temperature 
variation is not very large. This experimental restraint is required because the model does 
not take into consideration the variation of the thermal parameters with the temperature. 
From a practical point of view, the eigenvalues can be obtained from the boundary 

conditions.  Also the constants ,i iA B can be obtained easily from the same boundary 

conditions. 
Here follows a few examples of the model applications: electron beam-water phantom 
interaction, proton-water phantom interaction, laser-optical components interaction and, in 
general, laser-solid media interaction (with the condition that the absorption coefficient 
keeps small).  
We also made simulations using the Green function method. The results represented in 
Figures 3 and 4 are similar, with the exception of the edges temperature, where we believe 
that the Green function method is more close to the reality. In fact, the Green function 
method takes more into account that at the edges of the sample the heat transfer coefficients 
are higher and in consequence the temperatures get lower. 
In previous papers different models (which were in fact particular cases of the present 
model) were applied to describe the interaction between a multi-mode cw CO2 laser beam 
with multi-layered structures (of the type thin films substrate) [10] or with optical 
components [11]. 
The actual strength of the model is that it can take into account any form of the beam spatial 
distribution and any stationary type of interaction. That was the starting point for 
developing the semi-classical heat equation solution, which included the multi-photons 

laser-sample interaction [12]. The particular case 0im     (i.e. when ki (x)=k (xi ) ) was 

analyzed in Ref. - [13].  
The “power” of integral transform technique was emphasized in references [14-17]; both in 
classic and quantum physics.  
Finally: a remark about figures 1-4. We mention that: dT (x, y, z, t) is in general proportional 
with S (x, y, z, t). This is not always true, but in our case is valid because the small values of 
the heat transfer coefficient. For a comprehensive discussion of the importance of heat 
transfer coefficient, see Appendix B in reference [11]. 
Our model offers a first simple approximation of the temperature field in (electron, proton, 
laser) beam (liquid, solid) target interaction.   
The model can also describe the thermal fields for three different beams (electron, proton and 
laser), which act simultaneously onto a sample along the three Cartesian coordinates axes. 
Figure 3 is illustrative for the strength of our model. The simulations performed using sub-
domains of 0.25 cm were indeed in good agreement with the solutions given by the Green 
function method. 
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