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Stress of Vertical Cylindrical Vessel  
for Thermal Stratification of Contained Fluid 
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Mito Science Analysis Intelligence Corp. Mito Ibaraki  

Japan 

1. Introduction  

Various thermal loads are induced in elevated temperature systems, such as nuclear power 
plants. The load caused by the thermal stratification of contained fluid is one of those loads 
(Moriya et al., 1987; Bieniussa & Reck, 1996; Kimura et al., 2010). The thermal stratification is 
phenomenon under the condition of insufficient forced-convection mixture, where a denser 
fluid layer of lower temperature locates beneath a lighter fluid layer of higher temperature 
(Haifeng et al., 2009). 
A conventional design evaluation method of vessel stress assumes an axial vessel 
temperature profile consisting of a straight line with the maximum fluid temperature 
gradient as shown in the top of Fig.1, and applies cylindrical shell theory for stress solution 
(Timoshenko & Woinowsky, 1959). The conventional method gives conservative solutions of 
thermal stresses that are proportional to the temperature gradient, and hence leads to 
narrower design windows. 
In actual conditions, thermal stress is smaller than that from the conventional method, 
because of relatively moderated temperature profile due to attenuation by heat transfer on 
the inner surfaces and by heat conduction in vessel walls as shown in the bottom of Fig.1, as 
well as the cancellation of stresses at both ends of the thermal stratification section that have 
opposite signs generated by the reverse temperature changes. The consideration of such 
effects conventionally requires FEM heat conduction analyses taking the heat transfer with 
fluid into account and the subsequent FEM thermal stress analyses based on the above 
results. However, the FEM analyses are not suitable for a design work which places a high 
priority to get design perspective with rapid estimation. 
In order to propose an accurate design method, this paper studies the steady-state vessel 
temperature solutions based on a model shown in Fig.2 taking the heat transfer with fluid 
and heat conduction into account, as well as the subsequent cylindrical shell stress ones 
based on the above temperature results. The obtained results are compiled into easy-to-use 
charts for design. 

2. Theoretical analysis 

The analysis model is shown in Fig.2. It is assumed that the radius of a cylindrical vessel, R, 
is enough larger than the vessel thickness, t (R>>t), so that the vessel wall can be considered 
as a flat plate. Here, λ is the thermal conductivity of the vessel. The positions in the plate 
thickness direction and the axial direction are represented by x and z, respectively.  
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Fig. 1. Comparison of conventional and proposed methods 
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Fig. 2. Analysis model 

It is assumed that the external surface of the vessel (x=0) is thermally-insulated and heat 
transfer occurs between the inner surface (x=t) and fluid with the heat transfer coefficient, h. 
The thermal stratification layer is represented by the range of z=0~L. 

2.1 Step-shaped fluid temperature profile 
We discuss the case in which the fluid temperature profile is given by the following step 
function (in the case of L=0 in Fig.2). 

 0( ) ( )fT z T H z T    (1) 
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Here, H(z) is a step function; H(z)=0 for z< 0, and H(z)=1 for z>0. Using the eigen-function 
expansion method (Carslaw & Jeager, 1959), the steady-state vessel wall temperature, T(x,z), 
was obtained as the following equation (Furuhashi et al., 2007, 2008).  

 0
1

( , ) ( ) sgn( ) cos( )exp( | |)n n n
n

T x z T H z T z c p x p z




      (2)

 
Here, sgn(z) is a sign function; sgn(z)=-1 for z<0, and sgn(z)=1 for z>0. Each term of the 

series is an eigen-function that satisfies the steady-state condition,      2 2 2 2 0T x T z , 

and the adiabatic condition at x=0 plane,    0T x . The eigen-values, pn (n=1,2,...), consist 

of positive roots in ascending order of eigen-value equation, Eq.(3), that is derived from the 

heat transfer condition at x=t plane,     ( )fT x h T T . 

 ( )tan( )n n

ht
p t p t Bi


   (3)

 
Here, Bi is the non-dimensional heat transfer coefficient (Biot number). The coefficients, cn 

(n=1,2,...), are obtained from the symmetry condition,      0( , 0) ( , 0) 2T x T x T T . 

 
sin( )

sin( )cos( )
n

n

n n n

T p t
c

p t p t p t





 (4)

 
The wall-averaged temperature is represented by the following equation. 

 0
10

1
( ) ( , ) ( ) sgn( ) sin( )exp( | |)

t

n
m n n

n n

c
T z T x z dx T H z T z p t p z

t p t





       (5)

 
The values calculated by the theoretical solution of wall-averaged temperature, Eq. (5), for 
Bi=0.1, 1, 10, 100 are plotted in Fig.3 with the note, (exact), in the legend. 
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Fig. 3. Comparisons of vessel temperatures by exact solution with those by the temperature 
profile method 
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2.2 Simplified solution based on the temperature profile method 
The theoretical solution, Eq.(5), is convenient for the calculation on a PC and quite useful. 

However, it is not a simplified equation suitable for the design evaluation because it needs a 

series calculation and an eigen-value calculation. Then, we tried to obtain an approximate 

simple solution that allows easy calculation based on the temperature profile method (Katto, 

1964). The axial profile of wall-averaged temperature is approximated by the following 

equation (Furuhashi et al., 2007, 2008). 

 0( ) ( ) sgn( )
2

b z

m

T
T z T H z T z e


     (6)

 
Here, the constant b is termed as temperature attenuation coefficient. When assuming that 
the temperature profile in the plate thickness direction is parabolic; T=a0(z)+a1(z)x2, then 
next equations holds. 

 
2

0 1( ) ( )inT a z a z t   (7)
 

 
2

10
0

( )
( ) 3

t

m

Tdx a z t
T a zt  

 (8) 

Here, Tin represents the inner surface temperature. Temperature gradient at the inner 
surface in the thickness direction is given by the following equation. 

 1

3
| 2 ( ) ( )x t in m

T
a z t T T

x t



  


 (9) 

Using this equation, heat flux at the vessel inner surface, q, is given approximately by the 
following equation.  

 
3

( ) | ( )
3

f in x t f m

T h
q h T T T T

x Bi
 


    
 

 (10)

 
Then the total heat flow from fluid to the vessel in the hot side (z>0), Q, is given 
approximately by the following equation. 

 
0 0

6 3
2 ( ) ( )

(3 ) (3 )
f in f m

Rh Rh T
Q Rh T T dz T T dz

Bi Bi b

 
  

    
    (11)

 
The heat flow from the hot side to the cold side across the z=0 plane, Q, is given by the 
following equation. 

 02 |m
z

dT
Q Rt Rt Tb

dz
       (12)

 
Since Eqs.(11) and (12) are equivalent in the steady-state, then the coefficient b can be 
obtained by the following equation (Furuhashi et al., 2007, 2008).  

 1 3

3

Bi
b

t Bi



 (13)
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The values calculated by the approximate solution of wall-averaged temperature, Eq.(6), for 
Bi=0.1, 1, 10, 100 are plotted in Fig.3 with the note, (simple), in the legend. The maximum 
relative error to the theoretical solution, Eq.(5), is 0.01% for Bi=0.1, 0.3% for Bi=1, 2.0% for 
Bi=10 and 3.3% for Bi=100. Consequently, a high-precision easy-to-use approximate solution 
is obtained.  

2.3 Cylindrical shell solution of steady-state thermal stress 
Young's modulus, thermal expansion coefficient, and Poisson's ratio of the vessel is 
represented by E, ǂ, and ν, respectively. When the vessel wall is in the context of mechanical 
free boundary conditions, the radial outward displacement, u(z), can be obtained as the 
solution of the following differential equation (Timoshenko & Woinowsky, 1959; Furuhashi 
& Watashi, 1991).  

 
24

4

4 2

( ) (1 ) ( )
4 ( ) b

m

p z d T zd u Et
u T z

dz D DR t dz

 


     (14)

 
Here, p(z) is the inner pressure, and p(z)=0 is assumed. Tb(z) is the equivalent linear 
temperature difference, representing the "inner surface temperature minus outer surface 
temperature" in the case that the temperature profile in the wall thickness direction is 
linearly approximated. Here, Tb(z)=0 is assumed. The acceptability of this assumption will 
be checked in the comparisons made after. D is the flexural rigidity of the wall, and ǃ is the 
stress decay coefficient.  

 
3

212(1 )

Et
D





 (15)

 

 
24

4
2

3(1 )

4

Et

DR Rt





   (16)

 
The axial bending stress σzb, circumferential membrane stress σhm and circumferential 
bending stress σhb is given by the following equations, respectively (Timoshenko & 
Woinowsky, 1959; Furuhashi & Watashi, 1991). 

 
2

2 2

(1 )6
( ) b

zb

TD d u
z

t dz t

 


 
  

 
 (17)

 

 ( )hm m

u
z E T

R
    

 
 (18)

 

 
2

2 2

(1 )6
( ) b

hb

TD d u
z

t dz t

 
 

 
  

 
 (19)

 
The radial displacement was solved as the following equation by substituting the approximate 
solution of Tm(z), Eq.(6), into the right side of Eq.(14) (Furuhashi et al., 2007, 2008). 

 ( ) ( ) sgn( ) sgn( ) cos( ) sin( )
2 2

b z z z

m

mR T mR T
u z R T z z e z e z nR Te z        

      (20)
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Here, parameters, m and n, is given by the following equations, respectively. 

 
44

4 4 4

( )

4 4 ( )

bb
m

b b


 

 
 

／

／
 (21)

 

 
22 2

4 4 4

( )

4 4 ( )

bb
n

b b


 

 
 

／

／
 (22) 

The thermal stresses were solved as the following equations by substituting Eq.(20) into 
Eqs.(17), (18) and (19) (Furuhashi et al., 2007, 2008). 

 
2

( ) 3
( ) sgn( ) sin( ) sgn( ) cos( )

21

b z z zzb
zb

z m
S z z n e e z z n e z

E T

 
 

 
            

 (23)

 

 
( )

( ) sgn( ) sgn( ) cos( ) sin( )
2 2

b z z zhm
hm

z m m
S z z e z e z n e z

E T

 
 


      


 (24) 

 
( )

( ) ( )hb
hb zb

z
S z S z

E T





 


 (25) 

Here, S represents the non-dimensional stress normalized by EǂΔT. These equations suggest 

that the non-dimensional stress profiles, the plots of S with regard to ǃz, exclusively depend 

on the ratio of coefficients, b/ǃ, because both m and n are functions of b/ǃ only.  

When t approaches 0 (t=>0), b/=>∞, m=>1, n=>0 and Tm(z)=>Tf(z), and consequently, 

thermal stresses approach the following equations. 

 
2

3
( ) sin( )

2 1

z

zbS z e z 


 


 (26) 

 
sgn( )

( ) cos( )
2

z

hm

z
S z e z    (27) 

Those limit solutions for b/ǃ=>∞ yield the maximum at the z values shown in the following 

equations, lead to the upper limit of thermal stresses for free boundary conditions.  

 , ( ) 0.293( 0.3)
4

zb LimS z
 


     (28)

 

 , ( 0) 0.5hm LimS z      (29)
 

2.4 Ramp-shaped fluid temperature profile 
The Green functions (indicial response functions) are obtained from the temperature, 

displacement and stress of the vessel based on the step-shaped fluid temperature profile 

(Carslaw & Jeager, 1959; Morse & Feshbach, 1953). When any-shaped fluid temperature 

profile in z-axis direction is given, the temperature, displacement and stress of the vessel in 

steady-state can be obtained by convolution integral. We discuss the case in which a ramp-
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shaped fluid temperature profile is given as shown in Fig.2. This profile is expressed by the 

following equations. 

 

0

0

0

( ) ( 0)

( ) (0 )

( ) ( )

f

f

f

T z T z

z
T z T T z L

L
T z T T z L

 

    

   

 (30)

 
The GT(z) that are obtained from Eq.(6) with T0=0 and ΔT=1 express the approximate Green 
function of wall-averaged temperature of the vessel when the fluid temperature profile is 
given by a unit step function.  

 

1
( ) ( 0)

2
1

( ) 1 (0 )
2

bz
T

bz
T

G z e z

G z e z

 

  
 (31)

 
When the fluid temperature profile is given by a ramp-shaped function expressed by 
Eq.(30), the wall-averaged temperature of the vessel was obtained by convolution integral as 
the following equation (Furuhashi et al., 2007, 2008). 

 
0

0

( )
( ) ( ) ( ) ( )

( ) ( )
2

Lf

m f T T

b z b z L

f

dT T
T z T G z d T G z d

d L

T
T z e e

bL


   






  


      


  

 
 (32)

 
Similarly, the Gu(z) that are obtained from Eq.(20) with T0=0 and ΔT=1 express the 
approximate Green function of radial displacement of the vessel when the fluid temperature 
profile is given by a unit step function.  

 

||1
( ) ( ) sgn( ) sgn( )

2 2

sgn( ) cos( ) sin( )
2

b zb z
u

z z

mR
G z R H z z e z e

mR
z e z nR e z 



   



 

    
 

 
 (33)

 

The radial displacement for the ramp-shaped fluid temperature profile was obtained by 
convolution integral as the following equation (Furuhashi et al., 2007, 2008). 

  
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 
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 (34)
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The thermal stresses were obtained as the following equations by substituting Eq.(34) into 
Eqs.(17),(18) and (19). 

 

 
2 2

2

sin( ) cos( )
( ) 3 3

( ) sin( )
1 4 1
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sin( ) cos( )3
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 
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( )

( ) ( )hb
hb zb

z
S z S z

E T





 


 (37)

 
These solutions for the ramp-shaped fluid temperature profile, that are expressed by 

Eqs.(32) and (34) to (37), are symmetric with respect to the middle position, z=L/2, and the 

middle temperature, T0+ΔT/2. The z terms in the right side express the effect of the lower 

end (z=0) of stratified layer, and the (z-L) terms express the effect of the upper end (z=L) as 

well. The effects at both ends having opposite signs are paired and superposed, and 

decrease the stresses.  

Since both m and n are functions of b/ǃ only, the non-dimensional stress S exclusively 

depend on the ratio of coefficients, b/ǃ, and the non-dimensional width of stratified layer, ǃL. 

When L approaches 0, the stresses approach the solutions for a step-shaped fluid 

temperature profile. Since one of the pair terms in the right side (either the z term or the (z-

L) term) becomes negligibly small when L approaches ∞, the stresses become inversely 

proportional to L. Practically you may consider S∝1/L, when bL>π and ǃL>π( 2.5L Rt ).  

When t approaches 0 (t=>0), b/=>∞, m=>1, n=>0 and Tm(z)=>Tf(z). In addition, when 

βL>π( 2.5L Rt ), thermal stresses become the maximum values at both ends of the 

stratified layer as expressed by the following equations. 
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           

 (39)

 
Eqs.(38) and (39) are well-known solutions (Timoshenko & Woinowsky, 1959).  They are 

often used as simple evaluation formulas in conventional structural design, because of the 

simplicity that the stress is proportional to the geometry parameter ( Rt ) and the 
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temperature gradient (ΔT/L). However, it should be noted that these equations are 

applicable in the case where the vessel temperature corresponds to fluid temperature when 

b/β=>∞, and βL>π. 

3. Verification by comparisons with FEM analysis 

3.1 Step-shaped fluid temperature profile 
FEM analyses were performed for the case where the thermal stratification of the fluid 

(liquid sodium) contained in a reactor vessel of a large fast reactor occurs. The analysis 

conditions are as follows.  

1. Applied FEM code: FINAS (CRC & JAEA, 2006) 

2. Reactor vessel: SUS316FR, R=5350mm, t=50mm  

3. T0=350Ԩ,	ΔT=200Ԩ  

4. Three cases for L=0, 4t and 8t  

5. Material characteristics are the values at the middle temperature of 450 Ԩ.  

λ=21.512W/mK, E=164000MPa, ν=0.301 and ǂ=1.993×10-5/Ԩ  

6. Four cases for h=3000, 930, 310 and 100 W/m2K (Bi=6.97, 2.16, 0.72, 0.23)  
FEM results of the wall-averaged temperature for L=0 are shown in Fig.4 with the note, 

(FEM), in the legend. The results calculated by the approximate solution based on the 

temperature profile method, Eq.(6), are also shown in Fig.4 with the note, (simple), in the 

legend. Both results agree well. FEM results of the thermal stress for Bi=2.16 are shown in 

Fig.5 with the note, (FEM), in the legend. The results calculated by the shell solutions, 

Eqs.(23) to (25), are shown in Fig.5 with the note, (simple), in the legend. Both results agree 

well except the discrepancy of Shb for z<3t. The discrepancy of Shb results from the 

assumption (Tb=0) applied to the shell solution. Since FEM analysis is based on 

axisymmetric solid element, Tb is naturally taken into account. It was confirmed that the 

shell solution obtained once again by substituting the binomial approximation of Tb into 

Eqs.(14), (17) to (19) leads to good agreement with FEM analyses. 
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Fig. 4. Vessel temperatures for step-shaped fluid temperature 
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Fig. 5. Thermal stresses for step-shaped fluid temperature 

However, it was decided that the shell solution with Tb is not included in this paper, because 
(i) it doubles the number of terms in the stress solution, requiring too much space; and (ii) 
the discrepancy in Shb has minimal effect on the maximum stress evaluation. So we accepted 
the assumption (Tb= 0) in this paper. 
The temperature and stress profiles are symmetric with respect to the middle position, z=0, 

and the middle temperature. Since this figure plots only the results in the hot section (z>0), 

Szb and Shm shows the maximum negative (compressive) stress on the inner surface, 

respectively. In the cold section (z<0), the maximum positive (tensile) stress occurs on the 

inner surface. 

3.2 Ramp-shaped fluid temperature profile 
Analyses were performed for the width L=4t and 8t, with Bi=6.97, 2.16, 0.72 and 0.23. Here, 

FEM results of the wall-averaged temperature for L=8t are shown in Fig.6 with the note, 

(FEM), in the legend. The results calculated by the approximate solution, Eq.(32) are 

additionally shown with the note, (simple), in the legend. Both results agree well. FEM 

results of the thermal stress for Bi=2.16 are shown in Fig.7 with the note, (FEM), in the 

legend. The results calculated by the shell solutions, Eqs.(35) to (37), are additionally shown 

with the note, (simple), in the legend. Both results agree well. 

The temperature and stress profiles are symmetric with respect to the middle position, 

z=L/2, and the middle temperature. Since this figure plots only the results in the hot section 

(z>L/2), Szb and Shm shows the maximum negative (compressive) stress on the inner surface, 

respectively. In the cold section (z<L/2), the maximum positive (tensile) stress occurs on the 

inner surface. 

4. Simplified thermal stress evaluation chart 

The non-dimensional stress, S, exclusively depends on b/ǃ and ǃL. Using this characteristic, 
we developed simple charts to estimate maximum stress, S, and its generating location, Δz. 
And we proposed a simplified thermal stress evaluation method using these charts. The S  
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Fig. 6. Vessel temperatures for ramp-shaped fluid temperature 
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Fig. 7. Thermal stresses for ramp-shaped fluid temperature 

charts were developed for b/ǃ>0.5 and ǃL<5. When b/ǃ approaches 0, S approaches 0. S is 
approximately inversely proportional to L for ǃL>5. The maximum stress location, Δz, 
represents the outward distance from either end of the stratified layer. In the cold section, 
the maximum tensile (positive) stress occurs on the inner surface at z=-Δz, while in the hot 
section, the maximum compressive (negative) stress occurs on the inner surface at 
z=L+Δz. In addition, by substituting z into Eq. (32), we can calculate the wall-averaged 
temperature, which is applicable to the reference temperature for material properties in 
structural design.  
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Fig. 8. The maximum bending stress 
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Fig. 9. Location of the maximum bending stress 
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Fig. 10. The maximum membrane stress 
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Fig. 11. Location of the maximum membrane stress 
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The maximum bending stress, Szb,max and its generating location, ǃΔz, is shown in Fig.8 and 

Fig.9, respectively. The maximum membrane stress, Shm,max and its generating location, ǃΔz, 

is shown in Fig.10 and Fig.11, respectively. The maximum stress intensity, Sn,max 

(=σSI,max／EǂΔT) and its generating location, ǃΔz, is shown in Fig.12 and Fig.13, respectively. 

The stress intensity (Tresca's stress σSI) becomes the maximum value at the outer surface, 

where σz and σh have opposite signs. 

  , ,SI z h z hM ax       (40)
 

A small prominence observed in Fig.13 suggests the transition from the case that Sn,max 

occurs near the location of Shm,max to the case that Sn,max occurs near the location of Szb,max.  

The comparisons of FEM analyses, the proposed charts and the conventional method, 

Eq.(38) and (39), for 2 cases, (L=8t, Bi=6.97) and (L=4t, Bi=2.16), are shown in Table 1. The 

parameters and S values read out from the charts for the two cases are listed below.  

L ,   Bi ,    b  ,   β  ,  b/β  ,  βL  ,  Szb ,  Shm ,   Sn 

8t,  6.97,  28.96,  2.48 ,  11.7 ,  0.99 ,  0.27 ,  0.24 ,  0.39  

4t,  2.16,  22.41,  2.48 ,  9.03 ,  0.50 ,  0.28 ,  0.30 ,  0.43 
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Fig. 12. The maximum stress intensity 

It has been demonstrated that the proposed charts are sufficiently accurate. On the other 

hand, the conventional method leads to an overestimation. The main error is caused by the 

use of the formulas beyond the applicable range, ǃL>π( 2.5L Rt ). The comparison of the 

proposed method and the conventional method is shown in Sn-chart, Fig.14, and the above 2 

cases results are plotted on the charts. 
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Fig. 13. Location of the maximum stress intensity 

We often need to evaluate thermal stresses for observed thermal stratification phenomena in 

an engineering field. In most cases, axial temperature profile of interface between stratified 

fluid layers can be approximated by exponential curve or parabolic curve as shown in Fig.15 

(Moriya et al., 1987; Haifeng et al., 2009; Kimura et al., 2010). We propose the effective width 

for such cases as following equation. 
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Fig. 14. Comparison of the proposed method and the conventional method 
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Method 
Proposed 
method 

FEM analyses 
Conventional 

method (38)(39) 

Case 
Comp
onent 

σmax 
(MPa) 

Δz 
(mm) 

σmax 
(MPa) 

Δz 
(mm) 

σmax 
(MPa) 

Δz 
(mm) 

L=8t 
Bi=6.97 

Szb 177 149 175 150 300 0 

Shm 157 8 157 10 165 0 

Sn 255 28 256 30 375 0 

L=4t 
Bi=2.16 

Szb 184 234 183 225 600 0 

Shm 196 36 193 35 330 0 

Sn 282 73 282 75 750 0 

Table 1. Comparison of stress evaluation results 

  2

12 h

c

T

eff f med f
T

L T T z dT
T

 
   (41)

 

Leff is nearly equal to the axial width corresponding to 90% of ΔT as shown in Fig.15. It is 
found that the thermal stress evaluations using the proposed charts and Leff are rather 
conservative and good evaluation, through comparisons with the FEM analyses. 
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Fig. 15. Effective width of interface between stratified layers  

5. Conclusion 

To improve the accuracy of design evaluation methods of thermal stress induced by thermal 

stratification, this study have performed the theoretical analyses and FEM ones on steady-state 

temperature and thermal stress of cylindrical vessels, and obtained the following results.  

1. The theoretical solution of steady-state temperature profiles of vessels and the 
approximate solution of the wall-averaged temperature based on the temperature 
profile method have been obtained. The wall-averaged temperature can be estimated 
with a high precision using the temperature attenuation coefficient, b.  
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2. The shell theory solution for thermal stress based on the approximate solution of the 
wall-averaged temperature has been obtained. It has been demonstrated that the non-
dimensional thermal stress, S=σ/EǂΔT exclusively depends on the ratio of coefficients, 
b/ǃ, and the non-dimensional interface width between stratified layers, ǃL.  

3. Easy-to-use charts has been developed to estimate the maximum thermal stress and its 
generating location using the characteristic described in (2) above. In addition, a 
simplified thermal stress evaluation method has been proposed. 

4. Through comparison with the FEM analysis results, it has been confirmed that the 
proposed method is sufficiently accurate to estimate the steady-state temperature and 
thermal stress. 

5. It has been demonstrated that the conventional simple evaluation method using the 
shell stress solution, which assumes axial temperature profile consisting of a straight 
line with the maximum fluid temperature gradient, often leads to an overestimation. 

6. For the convenient application of the proposed method to engineering problems, we 
proposed the effective width of interface between stratified layers. The thermal stress 
evaluation using the proposed charts with the effective width gives slightly 
conservative estimations. 

The proposed method enables simple evaluations of steady-state thermal stress induced by 
thermal stratification taking the relaxation mechanism of thermal stress into account. This 
method would contribute to the reduction of design cost and to the rationalization of design.  
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