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1. Introduction 

Glioblastoma multiforme (GBM) is the most common primitive malignant brain tumor. The 
GBM rapidly proliferates, invades and destroys surrounding brain tissues being nearly 
universally fatal in few months. Actual treatment options include surgery, radiotherapy, 
and chemotherapy using temozolomide (Stupp et al., 2005). As soon as the disease recurs, 
repeated surgery or administration of modified chemotherapy schemes give small chances 
of tumor growth control. Even with the most sophisticated treatments, the median overall 
survival for patients with GBM is actually estimated in approximately 15 months from 
diagnosis (Stupp et al., 2005). 
Within the last few years, a more detailed knowledge of the genetic and molecular patterns 
of this cancer has led to laboratory’s attempts in developing more targeted and effective 
therapies aiming to positively reverse its high mortality. While many important genetic 
features of GBM have been known for years or even decades through traditional methods, 
incremental technologies have allowed dramatic advances. New frontiers have been 
explored: the relatively recent discovery of microRNAs (miRNAs) has opened up a major 
new front in the war against GBM and other human tumors. A growing body of work is 
demonstrating key roles for them in GBM (Chan et al., 2005; Ciafre et al., 2005; Gillies & 
Lorimer, 2007;  Godlewski et al., 2008; Kefas et al., 2008; Kefas et al., 2009; Li et al., 2009; 
Silber et al., 2008; Würdinger et al., 2008). 
Noteworthy is the cancer genome atlas (TCGA), a joint comprehensive and coordinated 
effort of the National Cancer Institute (NCI) and the National Human Genome Research 
Institute (NHGRI), funded by the National Institutes of Health (NIH) in 2006 to thoroughly 
initially profile three cancer types systematically assessing the molecular basis and the entire 
spectrum of genomic changes involved in human tumors through the application of 
innovative genome analysis technologies, including large-scale genome sequencing 
(http://cancergenome.nih.gov). After the success of the pilot project, TCGA is now 
expanding its efforts to more than 20 different human tumors in order to yield accessible 
data set that will improve diagnosis, treatment, prognosis, and even prevention. TCGA has 
also included studies on miRNA expression with microarrays, copy number analysis with 
array comparative genomic hybridization (CGH), and sequencing of over 600 genes of 
banked high-quality tumor specimens.  
We here reviewed current literature on the role of miRNAs in GBM emphasizing the 
potential implications of these molecules as biomarkers and targets for therapy. 
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2. Biogenesis and functions of microRNAs 

The discovery of miRNAs dates back to 1993 when Lee et al. described a small RNA, 
lineage-deficient-4 (lin-4), with antisense complementarity to lin-14 involved in the 
regulation of developmental timing in Caenorhabditis elegans  (Lee et al., 1993). At that time 
most investigators considered this small RNA as an oddity in worm genetics, but hundreds 
of these miRNAs were soon discovered in C. elegans and other animals by different 
laboratories (Lee & Ambros, 2001; Pasquinelli et al., 2000). 
miRNAs consist of 18 to 25 nucleotides and represent a class of endogenous ribo-regulators 
that modulate gene expression via the RNA interference (RNAi) pathway. RNAi is a post-
transcriptional silencing mechanism, present in most eukaryotic organisms, in which 
exposure to double-stranded RNA induces the sequence specific degradation of 
homologous messenger RNAs (mRNA). miRNAs act by base-pairing with their target 
mRNAs through perfect or nearly perfect complementarity particularly at the 3′ 
untranslated regions (UTRs) of the target mRNAs (Lai, 2002; Robins & Press, 2005) leading 
to their translational repression and/or direct cleavage (Meltzer, 2005).  
To understand the mechanism of miRNA-mediated silencing, the basic steps of their 
biogenesis have to be summarized (Fig. 1). miRNAs originate from long primary miRNAs 
(pri-miRNAs) that are transcribed in the nucleus by the RNA polymerase II complex. 
miRNAs are then processed by a complex of the RNase III enzyme DROSHA and a double-
stranded RNA binding domain possessing the protein DGCR8 (DiGeorge syndrome critical 
region gene 8), to 60-70 nucleotides precursor miRNA (pre-miRNA) intermediates. These 
hairpin-shaped pre-miRNAs are transported to the cytoplasm by Exportin-5 (Exp5) (a 
member of the Ran transport receptor family).  Once in the cytoplasm, they are cleaved by 
DICER to generate 20 to 22 nucleotide duplexes bearing two nucleotide single-stranded 3’ 
extensions. Finally, the miRNA: miRNA* duplex is unwound into a mature miRNA and 
miRNA* by a helicase. Single strand miRNA is incorporated into a ribonucleoprotein 
effector complex, known as the RNA-induced silencing complex (RISC), whereas miRNA* is 
degraded. RISC identifies target messages based on complementarities between the “guide” 
miRNA and the mRNA and results in either endonucleolytic cleavage of targeted mRNA or 
translational repression. 
There are estimates, in part based on computational methods, that mammalian genomes 
encode up to 1,000 unique miRNAs (http://www.microrna.org/microrna/home.do), which 
are predicted to regulate the expression of as much as 60% of gene (Friedmann et al., 2009). 
Though more than 600 miRNAs have been identified in humans, much remains to be 
understood about their precise cellular function and role in the development of diseases. 
miRNAs are implicated in the control of many fundamental cellular and biological 
processes such as the developmental timing, stem cell division, and apoptosis (Brennecke et 
al., 2003; Chen et al., 2004; Cuellar & McManus 2005; Harfe et al., 2005; Lim et al., 2005; Poy 
et al., 2004; Wilfred et al., 2007). Therefore changes in their expression may play a role in the 
development of diseases and cancer. 
Calin and Croce first established a connection between microRNAs and cancer by showing 
that miR-15 and miR-16 are located on chromosome 13q14, a region deleted in more than 
half of B-cell chronic lymphocytic leukemia (CLL) (Calin & Croce, 2006). Cimmino et al. then 
demonstrated that expression of miR-15a and miR-16-1was inversely correlated with Bcl-2 
expression in CLL and that both miRNAs negatively regulated Bcl-2 at a posttranscriptional 
level, so explaining the exact role of those miRNAs in CLL. Furthermore, Bcl-2 repression by 
these miRNAs induced apoptosis in a leukemic cell line model (Cimmino et al., 2005).  
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Fig. 1. Schematic representation of biogenesis of microRNA 

3. MicroRNAs in brain cancer 

Molecular-genetic, array-based gene profiling analysis of GBM, and gain- or loss-of-function 

study showed that specific deregulations in both mRNA and miRNAs are strongly 

associated with glioma development and progression (Juric et al., 2007; Kumar et al., 2007; 

Louis, 2006; Lukiw et al., 2009; Novakova et al., 2009; Pang et al., 2009; Tso et al., 2006; Zeng, 

2009). It’s possible to identify different subsets of miRNAs according to their main function 

into the development of GBM. 

3.1 Oncogenes 

The first oncomiR demonstrated as strongly overexpressed in GBM was miR-21 (Chan et al., 

2005; Krichevsky et al., 2003) and it still remains the best characterized. miR-21 acts as 

oncogene in cultured GBM cells; moreover, it was found to be up-regulated yet in low-grade 

tumors (Conti et al., 2009). Its relevant targets appear to include tumor-suppressive genes 

(Frankel et al., 2008; Gabriely et al., 2008; Meng et al., 2007; Zhu et al., 2008). In fact, it has 

been demonstrated that inhibiting miR-21 by complementary antisense oligonucleotides in 

glioma cell lines decreases tumor cell viability inducing apoptosis both in vitro and in vivo 

settings (Chan et al., 2005, Corsten et al., 2007, Zhou et al., 2010). Recent researches showed 
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how an overexpression of mir-21 could protect cultured human cells of GBM from 

temozolomide and taxol-induced apoptosis, suggesting a role in resistance to 

chemotherapeutic treatments (Ren et al., 2010; Shi et al., 2010). Even though an antiapoptotic 

role is likely for miR-21 in gliomas, other mechanisms are possible, because in Hela cells its 

down-regulation determines, instead, an increase in cell proliferation without affecting 

apoptosis. Meng et al. demonstrated that knock-down of miR-21 may render 

cholangiocarcinoma cells sensitive to gemcitabine whereas transfection of non-malignant 

cholangiocytes with the precursor of miR-21 renders them more resistant to this drug (Meng 

et al., 2007). This may be the result of downregulation of PTEN, the phosphatase that 

antagonizes the growth-promoting activity of the PI-3 kinase-Akt signaling pathway. It is 

noteworthy that PTEN was originally cloned as a oncosuppressor for brain tumors with 

point mutations occurring in 25% of cases. Further work by Frankel et al. on breast cancer 

cells (Frankel et al., 2008) and by Asangani et al. (Asangani et al., 2008) on colon cancer cells 

found that miR-21 overexpression leads to PDCD4 (programmed cell death 4) reduction, by 

direct interaction with its 3’ UTR, and that anti-miR-21 treatment is followed by an increase 

in endogenous PDCD4 protein levels. PDCD4 is a tumor suppressor known to be up-

regulated during apoptosis and reduced in different tumors, and evidence demonstrates 

that miR-21 overexpression effects are at least in part due to PDCD4 down-regulation. 

Although this target has not been proven in brain tumors, it is possible that it may be 

relevant also in these tumor types, as a recent study demonstrated that most of the glioma 

samples analyzed lacked PDCD4 protein expression whereas adjacent normal glial tissues 

expressed high levels of it. An additional molecular mechanism, proving the oncogenic 

properties of miR-21 in an in-vivo xenograft breast cancer model, consists in targeting of the 

tumor suppressor protein tropomyosin 1 (TPM1) at the translational level. Tropomyosin is 

able per se to reduce tumor cell proliferation and anchorage independence, therefore 

explaining the effects on tumor growth exerted by miR-21 (Zhu et al., 2007). 

miR-221 and miR-222 are two oncogenic miRNA overexpressed in GBM which enhance cell 
proliferation and survival (Ciafre et al., 2005; Felicetti et al., 2008; Galardi et al., 2007; Lee et 
al., 2007) targeting cell cycle inhibitors.  
Gillies and Lorimer defined a specific function of miRNA 221 and 222 in GBM, showing that 

they repress expression of the cell cycle regulatory protein p27Kip1  (Gillies & Lorimer, 

2007). The p27Kip1  gene is a member of the Cip/Kip family of cyclin-dependent kinase 

(CDK) inhibitors whose function is to negatively control cell cycle progression. The protein 

binds to CDK2 and cyclin E complexes to prevent cell cycle progression from G1 to S phase. 

p27Kip1  also acts as a tumor suppressor and its expression is often disrupted in human 

cancers. Analysis of the 3’ UTR of p27Kip1 suggests that repression of this protein is a 

consequence of direct binding of miRNA 221 and 222 to sites in the 3’ UTR. This mechanism 

was suggested contemporaneously and independently by le Sage et al. who demonstrated, 

using miRNA inhibitors, that some GBM cell lines require high activity of miR-221 and 222 

to maintain low p27Kip1 levels and continuous proliferation, and that high levels of miR-

221 and 222 seem to correlate with low levels of p27Kip1 protein in GBM (le Sage et al., 

2007). Gonzalez et al. have previously shown that inhibition of cdk4 activity enhances 

translation of p27Kip1, providing a link between these two cell-cycle regulators (Gonzalez et 

al., 2003). This effect was shown to be mediated by the 3’ UTR of p27Kip1. The GBM cells 

used in that study were mutated at the INK4A/ARF locus and did not express the cdk4 
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inhibitor p16Ink4a (Ishii et al., 1999). This suggested the possibility that loss of cdk4 

inhibition through INK4a/ARF mutations causes an increase in miR-221 levels, and a 

consequent decrease in p27Kip1. p27Kip1 is a well-known tumor suppressor down-

regulated in many human tumors, and its expression in primary cancers is highly correlated 

with reduced patient survival.  

Other oncomiR clusters affecting different targets that have been shown to be up-regulated 

in both GBM and other tumors are miR-10b (Ciafre et al., 2005; Ma et al., 2007; Silber et al., 

2008) and the recently discovered miR-26a (Kim et al., 2010). miR-10b might play some role 

in the invasion of glioma cells by a positive regulation of RhoC (Sasayama et al., 2009) and 

urokinase-type plasminogen activator receptor (uPAR) and MMP-14 (Sun et al., 2011). miR-

26a is a direct regulator of PTEN expression and is frequently amplified at the DNA level in 

human glioma, most often in association with monoallelic loss of PTEN (Huse et al., 2009). 

3.2 Oncosuppressors 

miR-34a is a well-characterized molecule playing a role as tumor suppressor. It has been 

found to be an important downstream mediator of p53 (He et al., 2007; Luan et al., 2010; Sun 

et al., 2008). Recent reports suggested a role for miR-34a in GBM (Li et al., 2009) and in vitro 

studies described that its overexpression results in inhibition of neoplastic cell growth and 

apoptosis (Luan et al., 2010). 

Other studies identified miR-124 and miR-137 as potential oncosuppressors (Silber et al., 

2008). miR-124 seems to be the most down-regulated miRNA in GBM as compared with 

low-grade gliomas and healthy brain tissue. Down-regulation of miR-124 allows cell cycle 

progression and increases tumorigenic power by preventing neuronal differentiation 

(Godlewski et al., 2008; Silber et al., 2008). In vitro, the expression of miR-137 was found to 

be increased up to 12-fold (Silber et al., 2008). Moreover, transfection of miRNA-124 or 

miRNA-137 induced morphological changes and enhanced marker expression consistent 

with neuronal differentiation in mouse and human GBM-derived neural stem cells, also 

inducing G1 cell cycle arrest in GBM cells (Silber et al., 2008). These results led to 

hypothesize that targeted delivery of miRNA-124 and/or miRNA-137 to GBM tumor cells 

may be therapeutically employed. 

Also miRNA-128 is significantly down-regulated in vivo and in GBM cell lines resulting in 

proliferation of undifferentiated cells. Moreover, in human glioma cell cultures the 

overexpression of miR-128 specifically blocks glioma self-renewal factors. This implicates 

that miR-128 may be used against the ‘‘stem cell-like’’ characteristics of glioma cells 

(Godlewski et al., 2008). In addition, the down-regulation of miRNA-128 was found to 

inversely correlate with tumor grade (Cui et al., 2010). 

miRNA-181 may also play a role in glioma development. Shi et al. reported the 
downregulation of miR-181 and 181b in both human gliomas and glioma cell lines (Shi et al., 
2008), confirming the data of Ciafre et al. (Ciafre et al., 2005). Those authors showed that 
transfection of those miRNAs triggered growth inhibition and apoptosis, and inhibited 
invasion. Furthermore, miR-181a expression turned out to be inversely correlated with 
tumor grading whereas miR-181b was uniformly downregulated in gliomas with different 
grades of malignancy. 
miR-184 is another putative suppressor of glioma progression. The expression of miR-184 is 
down-regulated during progression from low-grade to GBM. Furthermore, its over-
expression significantly decreases cell viability and proliferation of neoplastic cells, 
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suggesting an anti-proliferative tumor-suppressive role of this miRNA, through a possible 
regulation of c-Myc (Würdinger et al., 2008). Interestingly, miR-184 is able to increase and 
reduce apoptotic activity and invasive growth in different subset of cultured cells (Malzkorn 
et al., 2010). 

3.3 Metabolism, angiogenesis, immunosuppression, treatment resistance 

MicroRNAs have been linked specifically with a number of key features affecting the 

viability of GBM cells including metabolism, angiogenesis, immunosuppression, radio- and 

chemoresistance. 

Aberrant metabolism is increasingly recognized as critical issue in GBM biology. A report 

recently showed how miRNAs are involved in its regulation. miR-451, a miRNA with a role 

in cell proliferation and migration, is influenced by glucose levels and metabolic stress 

typically presented in GBM (Godlewski et al., 2010). It has been demonstrated that an 

increased expression of mirR-451 inhibits cell growth, inducing G0/G1 phase transition 

arrest, and predisposes to apoptosis. Furthermore, it diminishes the invasive capacity of 

GBM cells (Nan et al., 2010). 
Angiogenesis plays a pivotal role in the progression of most solid tumors, and miR-296 is 
up-regulated in GBM-associated endothelial cells promoting tumor angiogenesis 
(Würdinger et al., 2008). 
Immunosuppression is another trait allowing tumors to grow, and miRNAs have been 
shown to play a role here as well: miR-222 and miR-339 were found to promote GBM 
immune evasion by down-regulating the immunologic molecule ICAM-1 (Ueda et al., 2009). 
Treatment resistance is one of the principal challenges in GBM therapy, and early results of 

modern laboratory researches hint at a possible miRNAs involvement. In recent studies, a 

temozolomide-resistant GBM cell line was found to have several up-regulated miRNAs 

versus the parental line, including miR-21, miR-195, miR-455-3p, and miR-10a* (Shi et al., 

2010; Ujifuku et al., 2010). Also during radiotherapy, miR-181a and miR-181b, usually 

down-regulated in GBM (Conti et al., 2009), may influence the sensitivity of this tumor to 

radiation (Slaby et al., 2010).  

3.4 Prognosis and grading 

A role for miRNAs as prognostic biomarkers as been suggested as well. Real-time PCR 
quantitative analysis revealed increased expression levels of miR-196 in GBM cells in 
comparison with both anaplastic astrocytomas and normal brain. Furthermore, this subset 
of neoplastic patients showed significantly poorer survival. The expression level of miR-196 
was an independent predictor of overall survival (Guan et al., 2010). 
miR-182 was markedly up-regulated both in glioma cell lines and in human tumor 
specimens. Quantitative PCR analysis showed that its expression was significantly 
upregulated in GBM compared with the adjacent healthy brain tissue. Furthermore, 
statistical analysis revealed a significant correlation between miR-182 expression and tumor 
grading placing miR-182 as independent prognostic indicator for disease progression and 
survival (Jiang et al., 2010). 
Promising reliable biomarkers of GBM thoroughly studied so far are miR-21, miR-124 and 
miR-128. 
As abovementioned, miR-21 acts as an oncogene whose inhibition in GBM cells induce 
apoptosis (Chan et al., 2005) and reduce tumor cells invasiveness (Gabriely et al., 2008). 
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Recent studies also identified as miR-21 targets some tumor suppressors 
(Papagiannakopoulos & Kosik, 2008) and inhibitors of matrix metalloproteinase (Gabriely et 
al., 2008). Moreover, its expression increases 5- to 100-fold during human glioma 
progression from lower grades to GBM (Chan et al., 2005), making miR-21 a consistent both 
diagnostic and prognostic marker. 
miR-124 is downregulated in GBM. miR-124 has been identified as a suppressor of proteins 
that drive neural precursors toward non-neuronal fat (Makeyev et al., 2007). These data, 
together with the finding that one of the miR-124 targets is the oncogenic cyclin dependent 
kinase 6 (Pierson et al., 2008), support the role for miR-124 as a tumor suppressor and a 
potentially relevant biomarker in early diagnosis. 
miR-128 is another neuron-specific miRNA involved in neural tissue differentiation. It acts 
as a tumor-suppressor gene and is downregulated in GBM (Ciafre et al., 2005; Godlewski et 
al., 2008). Recent studies have shown that it inhibits the cell cycle progression and GBM 
proliferation targeting a transcription factor (Zhang et al., 2009). 
The study of epigenetics in GBM is another important frontier at a relatively early stage, and 
there are major discoveries yet to be made. Powerful input from this field has come during 
the last several years with the discovery of frequent methylation in GBM of the promoter of 
the MGMT gene (Gonzalez-Gomez et al., 2003). Found in about 30% of GBMs, MGMT 
promoter methylation appears to sensitize this subset to the effects of temozolomide and 
confers improved prognosis (Hegi et al., 2005). A recent survey addresses miR-181 as a 
predictive marker for the responsiveness to the combination of radiotherapy and 
temozolomide, founding it downregulated in this cohort of patients (Slaby et al., 2010).  
Despite the abovementioned evidence, it is quite clear that the use of a single miRNA as 
biomarker presently lacks of sufficient sensitivity and specificity, whereas the study of 
multiple miRNAs expression will possibly be used as a cluster to increase accuracy (Kong, 
et al., 2009). 

4. miRNAs: a future scenario 

There is a desperate need for developing innovative therapies for GBM. The clinical 
potential of delivering tumor-suppressive miRNAs or inhibitors of oncogenic miRNAs has 
been recently advocated (Brown et al., 2007; Edge et al., 2008; Gomez-Manzano & Fueyo, 
2010; Wu et al., 2009). The ability of individual miRNAs to target multiple genes/pathways 
and, at the same time, the capacity of multiple miRNAs in addressing the same 3’ UTR of a 
single gene, could be a major advantage, especially given the therapeutic necessity of 
simultaneously targeting multiple pathways in a multifaceted disease such as GBM. 
Furthermore, small-molecule drugs can have advantages like oral bioavailability and ability 
to penetrate the blood-brain barrier. 
miRNAs are all expressed endogenously and are supposed to be safe for normal cells; 
nonetheless, their off-target effects would likely be much higher than other gene therapies 
targeted on a single gene/protein. Despite promising in vitro results, the use of miRNAs for 
the treatment of brain tumors poses great difficulties.  A lot of interrogatives still remain 
under debate, but the main question rounds on how many molecules can be delivered and 
what kind of vehicle should be used to achieve therapeutic effects. So far, there are no 
studies to answer those questions. 
More interestingly, with recent advances in detecting and quantifying miRNAs in tissue, 
serum, and cerebrospinal fluid it appears increasingly likely that they would be clinically 
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useful as specific and reliable biomarkers patterns for brain tumors and other cancer 
diseases (De Smaele et al., 2010). Actually, miRNAs possess tissue specific expression in 
different regions of CNS (Bak et al., 2008; Cao et al., 2006; Trivedi & Ramakrishna, 2009) and 
some of them have been found typically expressed in the human brain with low variability 
(Smirnova et al., 2005); moreover, they have also been demonstrated to be relevant for 
neural differentiation of embryonic stem cells (Smirnova et al., 2005) and in tumorigenesis. 
The feature conferring them this putative role in early diagnosis of malignant brain tumors 
is their scarce susceptibility to protease degradation. This aspect allows their detection not 
only from fresh specimens, but also from plasma and serum (Cortez & Calin, 2009) and even 
after formalin fixation (Hasemeier et al., 2008). As for blood samples, miRNAs have been 
found in a more stable form, compared to mRNA, that is protected from endogenous RNase 
denaturation, either free (Mitchell et al., 2008) or enveloped in exosomes (Simpson et al., 
2009). Glioblastoma derived exosomes founded in blood samples contain specific miRNAs 
(Skog et al., 2008). Hence the possibility to detect non-invasively miRNA in patients affected 
by GBM by the use of real time PCR has made them ideal candidates as biomarkers. 
Therefore, there is a possibility that they may be used as early diagnostic tools or markers of 
treatment response. 
In conclusion, the uncovering of miRNAs has added a new level of complexity to our 
understanding in genetics of tumors. At the same time, it revealed a new category of 
therapeutic targets. There are huge amounts of data from researches that are still to be 
systematized, and new findings on miRNAs involved in GBM are expected from further 
analysis.  
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