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1. Introduction 

It has been estimated that, of all the worldwide energy utilization, more than 80% involves 
the heat transfer process, and the thermal engineering has for a long time recognized the 
huge potential for conserving energy and decreasing CO2 release so as to reduce the global 
warming effect through heat transfer efficiency techniques (Bergles, 1988, 1997; Webb, 1994; 
Zimparov, 2002). In addition, since the birth of electronic technology, electricity-generated 
heat in electronic devices has frequently posed as a serious problem (Arden, 2002; Chein & 
Huang, 2004), and effective cooling techniques are hence needed for reliable electronic 
device operation and an increased device lifespan. In general, approaches for heat transfer 
enhancement have been explored and employed over the full scope of energy generation, 
conversion, consumption and conservation. Design considerations to optimize heat transfer 
have often been taken as the key for better energy utilization and have been evolving into a 
well-developed knowledge branch in both physics and engineering. 
During the last several decades and promoted by the worldwide energy shortage, a large 
number of heat transfer enhancement technologies have been developed, and they have 
successfully cut down not only the energy consumption, but also the cost of equipment 
itself. However, comparing with other scientific issues, engineering heat transfer is still 
considered to be an experimental problem and most approaches developed are empirical or 
semi-empirical with no adequate theoretical base (Gu et al., 1990). For instance, for a given 
set of constraints, it is nearly impossible to design a heat-exchanger rig with the optimal heat 
transfer performance so as to minimize the energy consumption.  
Therefore, scientists developed several different theories and methods to optimize heat 
transfer, such as the constructal theory (Bejan, 1997) and the minimum entropy generation 
(Bejan, 1982). Then heat transfer processes were optimized with the objective of minimum 
entropy generation. Based on this method, several researchers (Nag & Mukherjee, 1987; 
Sahin, 1996; Sekulic et al., 1997; Demirel, 2000; Sara et al., 2001; Ko, 2006) analyzed the 
influences of geometrical, thermal and flow boundary conditions on the entropy generation 
in various convective heat transfer processes, and then optimized them based on the 
premise that the minimum entropy generation will lead to the most efficient heat transfer 
performance. However, there are some scholars (Hesselgreaves, 2000; Shah & Skiepko, 2004; 
Bertola & Cafaro, 2008) who questioned whether the entropy generation is the universal 
irreversibility measurement for heat transfer, or the minimum entropy generation is the 
general optimization criterion for all heat transfer processes, regardless of the nature of the 
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applications. For instance, by analyzing the relationship between the efficiency and the 
entropy generation in 18 heat exchangers with different structures, Shah & Skiepko (2004) 
demonstrated that even when the system entropy generation reaches the extremum, the 
efficiency of the heat exchangers can be at either the maximum or the minimum, or anything 
in between. In addition, the so-called “entropy generation paradox” (Bejan, 1996; 
Hesselgreaves, 2000) exists when the entropy generation minimization is used as the 
optimization criterion for counter-flow heat exchanger. That is, enlarging the heat exchange 
area from zero simultaneously increases the heat transfer rate and improves heat exchanger 
efficiency, but does not reduce the entropy generation rate monotonously - the entropy 
generation rate increases at first then decreases. Therefore, it was speculated that the 
optimization criterion of minimum entropy generation is not always consistent with the 
heat transfer improvement. 
Recently, Guo et al. (2007) introduced the concepts of entransy and entransy dissipation to 
measure, respectively, the heat transfer capacity of an object or a system, and the loss of 
such capacity during a heat transfer process. Moreover, Guo et al. (2007) proposed the 
entransy dissipation extremum and the corresponding minimum entransy dissipation-based 
thermal resistance as alternative optimization criterions for heat transfer processes not 
involved in thermodynamic cycles, and consequently, developed the minimum entransy 
dissipation-based thermal resistance principle to optimize the processes of heat conduction 
(Guo et al., 2007; Chen et al., 2009a, 2011), convective heat transfer (Meng et al., 2005; Chen 
et al., 2007, 2008, 2009b), thermal radiation (Cheng & Liang, 2011), and in heat exchangers 
(Liu et al., 2009; Guo et al., 2010). 
This chapter summarizes the entransy theory in heat transfer, such as the definitions of 
entransy, entransy dissipation and its corresponding thermal resistance with multi-
temperatures, the minimum entransy dissipation-based thermal resistance principle for heat 
transfer, etc., and introduces its applications in heat transfer optimization. Finally, we will 
make comparisons between entransy optimization and entropy optimization to further 
examine their applicability to heat transfer optimization in applications of different natures. 

2. The origin of entransy 

After an intensive study, we found that all transport processes contain two different types of 
physical quantities due to the existing irreversibility, i.e., the conserved ones and the non-
conserved ones, and the loss or dissipation in the non-conserved quantities can then be used 
as the measurements of the irreversibility in the transport process. Taking an electric system 
as an example, although both the electric charge and the total energy are conserved during 
an electric conduction, the electric energy however is not conserved and it is partly 
dissipated into the thermal energy due to the existence of the electrical resistance. 
Consequently, the electrical energy dissipation rate is often regarded as the irreversibility 
measurement in the electric conduction process. Similarly, for a viscous fluid flow, both the 
mass and the momentum of the fluid, transported during the fluid flow, are conserved, 
whereas the mechanical energy, including both the potential and kinetic energies, of the 
fluid is turned into the thermal energy due to the viscous dissipation. As a result, the 
mechanical energy dissipation is a common measure of irreversibility in a fluid flow 
process. The above two examples show that the mass, or the electric quantity, is conserved 
during the transport processes, while some form of the energy associated with them is not. 
This loss or dissipation of the energy can be used as the measurement of irreversibility in 
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these transport processes. However, an irreversible heat transfer process seems to have its 
own particularity, for the heat energy always remains constant during transfer and it 
doesn’t appear to be readily clear what the non-conserved quantity is in a heat transfer 
process (Chen et al., 2011). Based on the analogy between electrical and heat conductions, 
Guo et al. (2007) made a comparison between electrical conduction and heat conduction as 
shown in table 1. It could be found in the table that there is no corresponding parameter in 
heat conduction for the electrical potential energy in a capacitor, and hence they defined an 
equivalent quantity, G, that corresponding to the electrical potential energy in a capacitor  

 
1

2
vhG Q T= , (1) 

which is called entransy. They further derived Eq. (1) according to the similar procedure of 
the derivation of the electrical potential energy in a capacitor. Entransy was originally 
referred to as the heat transport potential capacity in an earlier paper by the authors (Guo et 
al., 2003). 
 

Electrical charge 
stored in a capacitor 
Qve                  [C] 

Electrical current 
 
I            [C/s]=[A] 

Electrical resistance 
 

Re             [Ω] 

Capacitance 
 
Ce = Qve/Ue       [F] 

Thermal energy stored 
in a body 
Qvh = McvT    [J] 

Heat flow rate 
 

hQ$        [W] 

Thermal resistance 
 
Rh            [K/W] 

Heat capacity 
 
Ch = Qvh/T        [J/K] 

Electrical potential 
  
Ue                   [V] 

Electrical current 
density 

eq$         [A/m2] 

Ohm’s  law 
 

eq$  = -Ke∇Ue 

Electrical potential 
energy in a capacitor 
Ee= QveUe/2 

Thermal potential 
(temperature) 
Uh = T           [K] 

Heat flux density 
 

hq$        [W/m2] 

Fourier’s  law 
 

hq$  = -Kh∇T 

Thermal potential in 
a body 
? 

Table 1. Analogy between electrical and thermal conductions (Guo et al., 2007) 

Entransy represents the heat transfer ability of an object (Guo et al., 2007). It possesses both 
the nature of “energy” and the transfer ability. If an object is put in contact with an infinite 
number of heat sinks that have infinitesimally lower temperatures, the total quantity of 
“potential energy” of heat which can be output is ½QvhT. Biot (1955) suggested a similar 
concept in the derivation of the differential conduction equation using the variation method. 
Eckert & Drake (1972) pointed out that “Biot in a series of papers beginning in 1955 
formulated from the ideas of irreversible thermal dynamics a variational equivalent of the 
heat-conduction equation that constituted a thermodynamical analogy to Hamilton’s 
principle in mechanics and led to a Lagrangian formulation of the heat conduction problem 

in terms of generalized coordinates…, Biot defines a thermal potential 21

2
E cT dVρ

Ω
= ∫∫∫  …. 

The thermal potential E plays a role analogous to a potential energy…”. However, Biot did 
not further explain the physical meaning of thermal potential and its application was not 
found later except in the approximate solutions of anisotropic conduction problems.  
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Accompanying the electric charge, the electric energy is transported during electric 
conduction. Similarly, along with the heat, the entransy is transported during heat transfer 
too. Furthermore, when a quantity of heat is transferred from a high temperature to a low 
temperature, the entransy is reduced and some of entransy is dissipated during the heat 
transport. The lost entransy is called entransy dissipation. Entransy dissipation is an 
evaluation of the irreversibility of heat transport ability. For instance, let’s consider two 
bodies A and B with the initial temperatures TA and TB, respectively. Their initial entransy is 
 

 ( )2 2
1

1

2
A vA A B vB BG M c T M c T= + , (2) 

 

where M is the body mass, cv the specific heat at constant volume, and the subscripts A and 
B represent the bodies A and B, respectively. When these two bodies contact each other, 
thermal energy will flow from the higher temperature body to the lower temperature one. 
After infinite long time, their temperature will be the same and the entransy becomes 
 

 ( ) 2
2 2

1

2
A vA B vBG M c M c T= + , (3) 

 

where T2 is the equilibrium temperature 

 2
A vA A B vB B

A vA B vB

M c T M c T
T

M c M c

+
=

+
. (4) 

The entransy difference before and after equilibrium is 

 
( )2

1 2

1
0

2
A B vA vB A B

A vA B vB

M M c c T T
G G

M c M c

−
− = >

+
. (5) 

Equation (5) proves that the total entransy is reduced after the two bodies getting 
equilibrium, i.e. there is an entransy dissipation associating with the heat transport. 

3. Entransy balance equation and optimization for heat conduction (Guo et 
al., 2007; Chen et al., 2011) 

3.1 Entransy balance equation for heat conduction 

In a heat conduction process, the thermal energy conservation equation is expressed as  

 v

T
c q Q

t
ρ ∂

= −∇ ⋅ +
∂

$$ , (6) 

where ρ is the density, t the time, q$  the heat flow density, and Q$  the internal heat source.  
Multiplying both sides of Eq. (6) by temperature T gives an equation which can be viewed 
as the balance equation of the entransy in the heat conduction: 

 ( )v

T
c T qT q T QT

t
ρ ∂

= −∇ ⋅ + ⋅∇ +
∂

$$ $ , (7) 

that is, 
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 ( ) h

g
qT g

t
φ

∂
= −∇ ⋅ − +

∂
$ $ , (8) 

where g=G/V=uT/2 is the specific entransy, V the volume, u the specific internal energy, 

qT$ the entransy flow density, g$ the entransy change due to heat source, and hφ  can be taken 

as the entransy dissipation rate per unit volume, expressed as 

 h q Tφ = − ⋅∇$  (9) 

The left term in either Eq. (7) or (8) is the time variation of the entransy stored per unit 

volume, consisting of three items shown on the right: the first represents the entransy 

transferred from one (or part of the) system to another (part), the second term can be 

considered as the local entransy dissipation during the heat conduction, and the third is the 

entransy input from the internal heat source. It is clear from Eq. (9) that the entransy is 

dissipated when heat is transferred from high temperature to low temperature. Thus, heat 

transfer is irreversible from the viewpoint of entransy, and the dissipation of entransy can 

hence be used as a measurement of the irreversibility in heat transfer. 

3.2 The entransy dissipation extremum principle for heat conduction 

Heat transfer optimization aims for minimizing the temperature difference at a given heat 

transfer rate, 

 ( ) ( ),, , , , , , , , 0vT f x y z T k q cδ δ τ ρΔ = =A , (10) 

Or maximizing the heat transfer rate at a given temperature difference, 

 ( ) ( ),, , , , , , , , 0vQ g x y z T k q cδ δ τ ρ= =$ A . (11) 

In conventional heat transfer analysis, it is difficult to establish the relationship between the 

local temperature difference, or local heat transfer rate, and the other related physical 

variables over the entire heat transfer area, so the variational methods in Eqs. (10) and (11) 

are not practically useable. However, the entransy dissipation in Eq. (9) is a function of the 

local heat flux and local temperature gradient in the heat transfer area, and thus the 

variational method will become utilizable if written in terms of the entransy dissipation 

(Cheng, 2004).  

Integrating the balance equation of the entransy Eq. (7) over the entire heat transfer area 

gives:  

 ( )v

T
c T dV qT dV q TdV QTdV

t
ρ

Ω Ω Ω Ω

∂
= −∇ ⋅ + ⋅∇ +

∂∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ $$ $ . (12) 

For a steady state heat conduction problem, the left term in Eq. (12) vanishes, i.e. 

 ( )0 qT dV q TdV QTdV
Ω Ω Ω

= −∇ ⋅ + ⋅∇ +∫∫∫ ∫∫∫ ∫∫∫ $$ $ . (13) 

If there is no internal heat source in the heat conduction domain, Eq. (13) is further reduced 

into: 
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 ( )qT dV q TdV
Ω Ω

−∇ ⋅ = − ⋅∇∫∫∫ ∫∫∫$ $ . (14) 

By transforming the volume integral to the surface integral on the domain boundary 
according to the Gauss’s Law, the total entransy dissipation rate in the entire heat 
conduction domain is deduced as  

 
h in in out outq TdV qTdS q T dS q T dS

+ −Ω Γ Γ Γ

Φ = − ⋅∇ = − = −∫∫∫ ∫∫ ∫∫ ∫∫$ $ $ $ . (15) 

where Γ+ and Γ- represent the boundaries of the heat flow input and output, respectively.  

The continuity of the total heat flowing requires a constant total heat flow tQ$ , 

 t in outQ q dS q dS
+ −Γ Γ

= =∫∫ ∫∫$ $ $ . (16) 

We further define the ratio of the total entransy dissipation and total heat flow as the heat 
flux-weighted average temperature difference ΔT 

 in outh
in out

t t t

q q
T T dS T dS

Q Q Q+ −Γ Γ

Φ
Δ = = −∫∫ ∫∫

$ $
$ $ $ . (17) 

For one-dimensional heat conduction, Eq. (17) is reduced into ΔT = (Tin – Tout), exactly the 
conventional temperature difference between the hot and cold ends. Using the heat flux-
weighted average temperature difference defined in Eq. (17) and applying the divergence 
theorem, a new expression for optimization of a steady-state heat conduction at a given heat 
flow rate can be constructed as: 

 ( ) 2
0tQ T q TdV k T dVδ δ δ

Ω Ω
Δ = − ⋅∇ = ∇ =∫∫∫ ∫∫∫$ $ . (18) 

It shows that when the boundary heat flow rate is given, minimizing the entransy 
dissipation leads to the minimum in temperature difference, that is, the optimized heat 
transfer. Conversely, to maximize the heat flow at a given temperature difference, Eq. (18) 
can be rewritten as:  

 
21

0tT Q q TdV q dV
k

δ δ δ
Ω Ω

Δ = − ⋅∇ = =∫∫∫ ∫∫∫$ $ $ , (19) 

showing that maximizing the entransy dissipation leads to the maximum in boundary heat 
flow rate.  
Likewise, for a steady state heat dissipating process with internal heat source in Eq. (13), the 
total entransy dissipation rate in the entire heat conduction domain is derived as  

 
h out outq TdV QTdV q T dS

−Ω Ω Γ

Φ = − ⋅∇ = −∫∫∫ ∫∫∫ ∫∫$$ $ . (20) 

Since the heat generated in the entire domain will be dissipated through the boundaries, i.e.,  

 
t outQ QdV q dS

−Ω Γ

= =∫∫∫ ∫∫$ $ $ . (21) 
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Again the heat flux-weighted average temperature is defined as the entransy dissipation 
over the heat flow rate  

 outh
out

t t t

qQ
T TdV T dS

Q Q Q−Ω Γ

Φ
Δ = = −∫∫∫ ∫∫

$ $
$ $ $ , (22) 

and thus the optimization of the process is achieved when 

 ( ) 2
0tQ T q TdV k T dVδ δ δ

Ω Ω

Δ = − ⋅∇ = ∇ =∫∫∫ ∫∫∫$ $ , (23) 

which means that in a heat dissipating process, minimizing the entransy dissipation leads to 
the minimum averaged temperature over the entire domain. 
Based on the results from Eqs. (18), (19) and (23), it can be concluded that the entransy 
dissipation extremum (EDE) lead to the optimal heat transfer performance at different 
boundary conditions. This extreme principle can be concluded into the minimum thermal 
resistance principle defined by entransy dissipation. (Guo et al., 2007) 

3.3 Application to a two-dimensional volume-point heat conduction 

We will apply our proposed approach to practical cases where heat transfer is used for 
heating or cooling such as in the so-called volume-point problems (Bejan, 1997) of heat 
dissipating for electronic devices as shown in Fig. 1. A uniform internal heat source   
distributes in a two-dimensional device with length and width of L and H, respectively. Due 
to the tiny scale of the electronic device, the joule heat can only be dissipated through the 
surroundings from the “point” boundary area such as the cooling surface in Fig. 1, with the 
opening W and the temperature T0 on one boundary. In order to lower the unit temperature, 
a certain amount of new material with high thermal conductivity is introduced inside the 
device. As the amount of the high thermal conductivity material (HTCM) is given, we need 
to find an optimal arrangement so as to minimize the average temperature in the device.  
 

 

Fig. 1. Two-dimensional heat conduction with a uniformly distributed internal heat source 
(Chen et al., 2011) 
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According to the new extremum principle based on entransy dissipation, for this volume-
point heat conduction problem, the optimization objective is to minimize the volume-
average temperature, the optimization criterion is the minimum entransy dissipation, the 
optimization variable is the distribution of the HTCM, and the constraints is the fixed 
amount of the HTCM, i.e., 

 ( ),k x y dV const
Ω

=∫∫∫ . (24) 

By variational method, a Lagrange function, Π, is constructed 

 ( )2
k T Bk dV

Ω

Π = ∇ +∫∫∫ . (25) 

where the Lagrange multiplier B remains constant due to a given amount of thermal 
conductivity. 
The variation of Π with respect to temperature T gives  

 ( ) 0k T T ndS k T TdVδ δ
Γ Ω

∇ ⋅ − ∇ ⋅ ∇ =∫∫ ∫∫∫
f . (26) 

Because the boundaries are either adiabatic or isothermal, the surface integral on the left 
side of Eq. (26) vanishes, that is, 

 0k T T ndSδ
Γ

∇ ⋅ =∫∫
f . (27) 

Moreover, due to a constant entransy output and a minimum entransy dissipation rate, the 
entransy input reaches the minimum when  

 0QTdV Q TdVδ δ
Ω Ω

= =∫∫∫ ∫∫∫$ $ . (28) 

Substituting Eqs. (27) and (28) into Eq. (26) in fact gives the thermal energy conservation 
equation based on Fourier's Law: 

 ( ) 0k T Q∇ ⋅ ∇ + =$ . (29) 

This result validates that the irreversibility of heat transfer can be measured by the entransy 
dissipation rate. The variation of Π with respect to thermal conductivity k gives 

 
2

T B const∇ = − = . (30) 

This means that in order to optimize the heat dissipating process, i.e. to minimize the 
volume-average temperature, the temperature gradient should be uniform. This in turn 
requires that the thermal conductivity be proportional to the heat flow in the entire heat 
conduction domain, i.e. the HTCM be placed at the area with the largest heat flux. 
As an example, the cooling process in low-temperature environment is analyzed here. For 
the unit shown in Fig. 1, L = H = 5 cm, Q = 100 W/cm2, W = 0.5 cm and T0 = 10 K. The 
thermal conductivity of the unit is 3 W/(m·K), and that for the HTCM is 300 W/(m·K) 
occupying 10% of the whole heat transfer area.  
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Fig. 2(b) shows the distribution of the HTCM according to the extremum principle of 
entransy dissipation, where the black area represents the HTCM - the same hereinafter. (The 
implementary steps are as shown in the reference of Chen et al., 2011.) The HTCM with a 
tree structure absorbs the heat generated by the internal source and transports it to the 
isothermal outlet boundary - similar in both the shape and function of actual tree roots.  
 

  

(a) Simple uniform HTCM arrangement (b) HTCM arrangement using the extremum 
principle of entransy dissipation 

Fig. 2. Different arrangements of HTCM (Chen et al., 2011) 

 

  

(a) From the uniform HTCM arrangement 
in Fig. 2(a) 

(b) From the optimized arrangement of 
HTCM in Fig. 2(b) 

Fig. 3. The temperature fields obtained from different arrangements of HTCM (Chen et al., 
2011) 

For a fixed amount of HTCM, Figs. 3(a) and 3(b) compare the temperature distributions 
between a uniform distribution of HTCM shown in Fig. 2(a), and the optimized distribution 
in Fig. 2(b) based on the extremum principle of entransy dissipation. The average temperature 
in the first case is 544.7 K while the temperature in the second optimized case is 51.6 K, a 
90.5 % reduction! It clearly demonstrates that the optimization criterion of entransy 

www.intechopen.com



 
Developments in Heat Transfer 

 

358 

dissipation extremum is highly effective for such applications. Furthermore, as shown in 
Fig. 3(b), the temperature gradient field is also less fluctuating in the optimized case. 
In addition, based on the concept of the entransy dissipation rate, we (Chen et al. 2009a) 
introduced the non-dimensional entransy dissipation rate and employed it as an objective 
function to analyze the thermal transfer process in a porous material. 

4. Entransy balance equation and dissipation for convective heat transfer  

4.1 Entransy balance equation for convective heat transfer (Cheng, 2004) 

For a convection problem, the energy equation is  

 
1

p

DT D
c P q Q

Dt Dt
μρ φ

ρ
⎡ ⎤⎛ ⎞

+ = −∇ ⋅ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

$$ , (31) 

where P, t and μφ  are the pressure, time, and viscous dissipation, respectively. Multiply Eq. 
(31) by T and by some subsequent derivation (Cheng, 2004), there is  

 ( )g
U g qT QT T q T

t
μρ φ

∂⎛ ⎞+ ⋅∇ = −∇ ⋅ + + + ⋅∇⎜ ⎟∂⎝ ⎠
$$ $ , (32) 

where g=cpT2/2, is the entransy per unit volume of the fluid. On the left, the 1st term is time 
variation of entransy, and the 2nd term is entransy variation accompanying fluid flow; on the 
right, the 1st term is entransy variation due to boundary heat exchange, the 2nd term is the 
entransy change due to heat source, the 3rd term is the entransy variation due to dissipation 
and the 4th term is the entransy dissipation. It is clear from Eq. (32) that the heat transport 
ability is reduced when heat is transferred from high temperature to low temperature. 

4.2 The entransy dissipation extremum principle for convective heat transfer 

Similar to the derivation of EDE principle in heat conduction, for a steady-state convective 
heat transfer process of a fluid with constant boundary heat flux and ignoring the heat 
generated by viscous dissipation, integrating Eq. (32), and transforming the volume integral 
to the surface integral on the domain boundary yields: 

 
2

0
2

in out
w

T T
Q T k T dVδ δ

Ω

+⎛ ⎞− = ∇⎜ ⎟
⎝ ⎠ ∫∫∫ . (33) 

 

Since the inlet and outlet temperatures, Tin and Tout, of the fluid are fixed for a given 

boundary heat flux, Equation (33) means that, the minimum entransy dissipation in the 
domain is corresponding to the minimum boundary temperature, i.e. the minimum 
boundary temperature difference. 
Similarly, from (32) the maximum entransy dissipation is obtain, 
 

 ( ) 20
0 0w in

p

Q
T T Q Q k T dV

c
δ δ δ

ρ Ω

− − = ∇∫∫∫ . (34) 

 

Because Eq. (33) illustrates that for the range of the boundary heat flux from 0 to its 
maximum value,  ρVcp(Tw - Tin), the entransy dissipation increases monotonically with the 

www.intechopen.com



 
Entransy - a Novel Theory in Heat Transfer Analysis and Optimization   

 

359 

increasing boundary heat flux, that means maximum entransy dissipation results in the 
maximum boundary heat flux. Equation (33) together with Eq. (34) is called entransy 
dissipation extreme (EDE) principle in convective heat transfer. Thus, the entransy 
dissipation can be used to optimize the flow field with given viscosity dissipation so that the 
heat transfer rate can be increased most with given cost of pressure lose (Guo et al., 2007; 
Meng et al. 2005, Chen et al. 2007). 

4.3 Application to laminar heat transfer (Meng et al., 2005) 

For a steady laminar flow, the viscosity dissipation is 

 

22 2

2 22

2 2 2

m

u v w

x y z

u v u w v w

y x z x z y

φ μ

⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠= ⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (35) 

where u, v and w are the velocity components along x, y and z directions, respectively. The 
mechanical work maintaining the fluid flow equals to the integral of the viscous dissipation 
function over the whole domain, 

 m mdVφ φ
Ω

Π = ∫∫∫ . (36) 

The optimal flow field was established by configuring a Lagrange functional that includes 
the objective and constraint functions. The established Lagrange function is, 

 ( )0 m pk T T C A k T c U T B U dVφ ρ ρ
Ω

⎡ ⎤∏ = ∇ ⋅∇ + + ∇ ⋅ ∇ − ⋅∇ + ∇ ⋅⎣ ⎦∫∫∫ , (37) 

where A, B and C0 are the Lagrange multipliers. Because of the different types of the 
constraints, A and B vary with position, while C0 remains constant for a given viscous 
dissipation. The first term on the right is the entransy dissipation, the second is the 
constraint on prescribed viscous dissipation, the third and forth terms are the constraints on 
energy equation and continuum equation. The variational of Eq. (37) with respect to velocity 
U offers 

 2

0 0

1
0

2 2

pc
U A T B

C C

ρ
μ∇ + ∇ + ∇ = . (38) 

The variational of Eq. (37) with respect to temperature T is  

 2pc U A k A k Tρ− ⋅∇ = ∇ ⋅ ∇ − ∇ ⋅ ∇ , (39) 

and the boundary conditions of the variable A are Ab = 0 for given boundary temperatures, 
and ( ) ( )2

b b
A n T n∂ ∂ = ∂ ∂  for given boundary heat flow rates.  

Comparing the momentum equations and Eq. (38), gives the following relations  

 02B C P= − , (40) 
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 F C A T U UρΦ= ∇ + ⋅∇ , (41) 

where CΦ is related to the viscous dissipation as 

 
02

pc
C

C

ρ
Φ = . (42) 

Substituting Eqs. (41) and (42) into the momentum equation gives 

 ( )2U U P U C A T U Uρ μ ρΦ⋅∇ = −∇ + ∇ + ∇ + ⋅∇ . (43) 

This is the Euler’s equation, i.e. field synergy equation, governing the fluid velocity and 
temperature fields with the EDE principle during a convective heat transfer process. 
Equation (43) essentially the momentum equation with a special additional volume force 
defined in Eq. (41), by which the fluid velocity pattern is adjusted to lead to an optimal 
temperature field with the extremum of entransy dissipation during a convective heat 
transfer process.  
For a given CΦ, solving Eqs. (39) and (43), the continuity equation and the energy equation 
in combination result in the optimal flow field with the extremum of entransy dissipation 
with a specific viscous dissipation and fixed boundary conditions. Fig. 4 shows a typical 
numerical result of the cross-sectional flow field (Re=400, CΦ=-0.01). Compared with the 
fully-developed laminar convection heat transfer in a circular tube ((fRe)s=64, Nus=3.66), the 
flow viscous dissipation is increased by 17%, the Nusselt number is increased by 313% in the 
case of Fig. 4. Meanwhile, the numerical analysis shows that multiple longitudinal vortex 
flow is the optimal flow pattern for laminar flow in tube. With the guide of this optimal flow 
field, the discrete double-inclined ribs tube (DDIR-tube) is designed to improve heat transfer 
in laminar flow. Fig. 5 is a typical cross-sectional vortex flow of a DDIR-tube and experiments 
have demonstrated the DDIR-tube have better heat transfer performance but lower 
resistance increase (Meng et al., 2005). 
 

 

Fig. 4. Optimum flow field of laminar heat transfer in circular tube (Re=400) (Meng et al., 
2005) 

www.intechopen.com



 
Entransy - a Novel Theory in Heat Transfer Analysis and Optimization   

 

361 

0

o

5%Um

 

 

Fig. 5. Numerical solution of cross-sectional flow fields in the DDIR-tube (Meng et al., 2005) 

4.4 Application to turbulent heat transfer (Chen et al., 2007) 

For turbulent heat transfer, the entransy dissipation function is modified as: 

 
2

ht effk Tφ = ∇ , (44) 

where keff  is the effective thermal conductivity during turbulent heat transfer.  
The optimization objective of turbulent heat transfer is to find an optimal velocity field, 
which has the extremum of entransy dissipation for a given decrement of the time-averaged 
kinetic energy, i.e. a fixed consumption of pumping power. Meanwhile, the flow is also 
constrained by the continuity equation and the energy equation. All these constraints can 
also be removed by using the Lagrange multipliers method to construct a function 

 ( )0t eff mt eff pk T T C A k T c U T B U dVφ ρ ρ
Ω

⎡ ⎤∏ = ∇ ⋅∇ + + ∇ ⋅ ∇ − ⋅∇ + ∇ ⋅⎣ ⎦∫∫∫ . (45) 

where mtφ  is the decrement function of the mean kinetic energy 

 ( )

22 2

2 22

2 2 2

mt t

u v w

x y z

u v u w v w

y x z x z y

φ μ μ

⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠= + ⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (46) 

The decrement of the mean kinetic energy equals to the viscous dissipation by the viscous 
forces, plus the work of deformation of the mean motion by the turbulence stresses, which 
transform the mean kinetic energy to the turbulence-energy. The turbulent viscosity, μt, 
which is a function of the velocity, can be calculated using the Prandtl’s mixing-length 
model, the Prandtl-Kolmogorov assumption or the k-ε model. However, the Prandtl-
Kolmogorov assumption and the k-ε model require additional differential equations for the 
turbulent kinetic energy (k) and the turbulent dissipation rate (ε) to calculate the turbulent 
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viscosity, which severely complicate obtaining the variation of Eq. (45). Thus, a single 
algebraic function, which has been validated and used for indoor air flow simulation (Chen 
& Xu, 1998), is used to calculate the turbulent viscosity: 

 0.03874t U lμ ρ= , (47) 

where, l is the distance to the nearest wall. As with other zero-equation turbulent models, 
Eq. (47) is not very theoretically sound, but yields some reasonable results for turbulent 
flows. 
The variational of Eq. (45) with respect to temperature T is: 

 2p eff effc U A k A k Tρ− ⋅∇ = ∇ ⋅ ∇ − ∇ ⋅ ∇ . (48) 

The variational of Eq. (45) with respect to velocity component u is: 

 

( ) ( )2

0 0 0

2

0

2

0

0

1

2 2 2 Pr 2

2 Pr

2 Pr

2 Pr

p mt
eff

t eff

t

t

t

c A uB T u
u T A T

C x C x C

A T u l u v w u
u v w U u

C x l x x x x x

A T u l u v w u
u v w U u

C y l y y y y y

A T u l

C z l z

ρ φ
μ

μ

−

−

Γ∂ ∂ Γ ⎡ ⎤+ ∇ ⋅ ∇ + − ∇ + ∇ ⋅ ∇ −⎣ ⎦∂ ∂

⎡ ⎤Γ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− − + + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞Γ ∂ ∂ ∂ ∂ ∂ ∂

− − + + +⎢ ⎥⎜ ⎟
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

Γ ∂ ∂
− −

∂ ∂
2

0

1
      0

2 Pr

eff eff eff

t

u v w u
u v w U u

z z z z

u v w A u
T

x x y x z x C

μ μ μ

−⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ Γ

+ + + + ∇ ⋅ ∇ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠

. (49) 

where 
1

0.03874 l Uρ −Γ = , Prt is the turbulent Prantdl number with the value of 0.9. The 

variationals of Eq. (45) with respect to the velocity components v and w are similar to Eq. 

(49). There are four unknown variables and four governing equations including Eqs. (48), 

(49), the continuity equation and the energy equation, so the unknown variables can be 

solved for a given set of boundary conditions. Meanwhile, the flow must also satisfy the 

momentum equation, 

 2
effU U P U Fρ μ⋅∇ = −∇ + ∇ + . (50) 

Comparison with Eq. (50), Eq. (49) is actually a momentum equation with a special 
additional volume force, which is referred to as the field synergy equation for turbulent heat 
transfer. For a given set of boundary conditions, the optimal velocity field, which has a 
larger heat transfer rate than any other field flow, can be obtained by solving this field 
synergy equation. 
As an example, flow in a parallel plate channel is studied to illustrate the applicability of the 
field synergy equation. For simplicity, a repeated segment with the height of 20 mm and the 
length of 2.5 mm was chosen. Water flowing between the parallel plates is assumed 
periodically fully developed with a Reynolds number of 20,000. The inlet water temperature 
is 300 K and the wall temperature is 350 K. 
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It is well known that for original results before optimization, the velocity vectors and the 
temperature gradients are nearly perpendicular to each other, leading to a small scalar 
product between the velocity vector and the temperature gradient, i.e. the field synergy 
degree (Meng et al. 2003) is relatively poor. In the computational domain, the heat transfer 
rate is 1782 W and the decrement of the mean kinetic energy is 4.61×10-3 W. The thicknesses 
of the laminar sublayer and the transition sublayer are 0.116 mm and 0.928 mm, respectively. 
The optimized velocity and temperature fields near the upper wall for C0 = -1.5×107 are 
shown in Figs. 6 (a) and (b). There are several small counter-clockwise eddies near the upper 
wall. The distances between eddies centres is about 0.4 mm and the eddy heights 
perpendicular to the primary flow direction are about 0.2 mm. There are also several small 
clockwise eddies near the lower wall for symmetry. For this case, the heat transfer rate is 
1887 W and the decrement of the mean kinetic energy is 5.65×10-3 W. Compared with the 
original results before optimization, the heat transfer rate is increased by 6 %, while the 
decrement of the mean kinetic energy is increased by 23 %.  
For heat transfer in turbulent flow between parallel plates, the temperature gradients in the 
laminar sublayer are two to three orders of magnitude larger than the gradients far from the 
wall, which means that the thermal resistance in the laminar sublayer is the dominate 
resistance in turbulent flow. The conventional heat transfer enhancement viewpoint is to 
first reduce the dominate resistance to most effectively increase the heat transfer rate. Eddies 
and disturbances near the wall will increase the velocities, reduce the thermal resistances, 
and enhance the heat transfer. The results support that the tubes with micro fins effectively 
enhance turbulent heat transfer, which is different from multiple longitudinal vertex 
generation in laminar heat transfer, and further point out the optimal heights of the fins for 
different Reynolds numbers should be half of the transition sublayer of turbulent flow, 
which is also validated experimentally (Li et al., 2009). 
 

 

(a) velocity vectors 

 

(b) temperature contours 

Fig. 6. Optimized results near the wall for turbulent heat transfer (Chen et al., 2007) 
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5. Entransy dissipation-based thermal resistance for heat exchanger design 

In engineering, both designing and checking heat exchanger performance are generally used 
such four approaches as the logarithmic mean temperature difference method (LMTD), the 
heat exchanger effectiveness – number of transfer units method (ε-NTU), the P-NTU method, 
and the ψ-P method. However, these methods are not very convenient when used in some 
particular situations. For example, in the LMTD method, it is inevitable to introduce a 
correction factor to adjust the effective temperature difference for cross-flow and multi-pass 
exchangers. Meanwhile, the use of LMTD method for checking heat exchanger performance 
has to involve tedious iterations to determine the proper outlet fluid temperatures and 
thereafter the value of LMTD which satisfy the requirement that heat transferred in the heat 
exchanger be equal to the heat carried out by the fluid. On the other hand, in the ε-NTU 
method, the fluid with the minimum heat capacity rate has to be first taken as the 
benchmark to calculate both heat exchanger effectiveness ε and NTU, so iterations are also 
unavoidable for the design of fluid flow rates. Besides, different types, e.g. parallel, counter-
flow, cross-flow and shell-and-tube, of heat exchangers have their individual diverse and 
complex relations between heat exchanger effectiveness ε and NTU, which are more or less 
inconvenient for engineering applications. Therefore, it is necessary to develop a general 
criterion for the evaluation of heat exchanger performance and, more importantly, develop a 
common method for heat exchanger performance design and optimization.  
For a heat transfer process in a parallel heat exchanger, the heat lost by the hot fluid over a 
differential element should be the same as that gained by the cold fluid, which both equal to 
the heat transferred through the elements, that is 

 h h c cdq m dh m dh= − = . (51) 

where, m is the mass flow rate, h is the specific enthalpy, and the subscripts h and c 
represent the hot and cold fluids, respectively.  
Integrating Eq. (51), we will obtain the total heat transfer rate in the heat exchange from the 
viewpoint of energy conservation 

 ( ) ( ), , , ,h h a h b c c d c cQ m h h m h h= − = − , (52) 

For a heat exchanger without any phase-change fluid, if the fluid specific heats are constant, 
Eq. (51) will be rewritten as 

 
,

1
h

h p h

dT dq
m c

= − , (53) 

 
,

1
c

c p c

dT dq
m c

= , (54) 

and Eq. (52) is rewritten as 

 ( ) ( ), , , , , ,h p h h a h b c p c c d c cQ m c T T m c T T= − = − . (55) 

Based on Eqs. (53) and (54), Fig. 7 gives the fluid temperature variations versus the heat 
transfer rate q. As shown, the shaded area is: 
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 h cdS T dq T dq= − . (56) 

where, the first term on the right-hand side represents the entransy output accompanying 
the thermal energy dq flowing out of the hot fluid, while the second term represents the 
entransy input accompanying the thermal energy dq flowing into the cold fluid. Therefore, 
the shaded area exactly indicates the entransy dissipation rate during the heat transferred 
from the hot fluid to the cold one: 

 ( )h h cd T T dqφ = − . (57) 

The total entransy dissipation in the heat exchanger is deduced by integrating Eq. (57), 

 ( ) ( ) ( ), , , ,

0 0 2

h Q h a c c h b c d
h h h c AM

T T T T
d T T dq Q T Qφ

Φ − + −
Φ = = − = = Δ∫ ∫ . (58) 

where, ΔTAM is the arithmetical temperature difference between the hot and cold fluids in 
the heat exchanger. 
 

 

Fig. 7. Sketch of the fluid temperature variations versus the heat transfer rate in a parallel 
heat exchanger 

Substituting Eqs. (55), (58) and the heat transfer equation 

 
( ) ( )
( ) ( )

, , , ,

, , , ,ln ln

h a c c h b c d

h a c c h b c d

T T T T
Q KA

T T T T

− − −
=

− − −
 (59) 

into the definition of entransy dissipation-based thermal resistance, EDTR, for heat 
exchangers (Liu et al., 2009), Rh = Фh/Q2 = ΔTAM/Q, we get the formula of such thermal 
resistance for parallel heat exchangers: 

 
( )
( ),

exp 1

2 exp 1

pp
h p

p

KA
R

KA

ξξ

ξ

+
=

−
, (60) 

www.intechopen.com



 
Developments in Heat Transfer 

 

366 

where, 
, ,

1 1
p

h p h c p cm c m c
ξ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

, termed the arrangement factor for parallel heat exchangers. 

Similarly, for counter-flow or TEMA E-type heat exchangers, we can also deduce the  
same formula of EDTR as shown in Eq. (60), except that the expression of the arrangement 

factor ξ is diverse, i.e. 
, ,

1 1
c

h p h c p cm c m c
ξ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 for counter-flow heat exchangers and 

( ) ( )2 2

, ,

1 1
s

c p c h p hm c m c
ξ = +  for TEMA E-type heat exchangers. 

This general expression is convenient for us to design the heat transfer performance of heat 
exchangers. For example, a one shell and two tube passes TEMA E-type shell-and-tube 
exchanger with the heat transfer coefficient K and area A of 300 W/(m2·K) and 50 m2, 
respectively, is used to cool the lubricating oil from the initial temperature Th,in = 57 °C to the 
desired temperature Th,out = 45 °C. The mass flow rate and specific heat of the oil are  
mh = 10 kg/s and cp,h = 1.95 kJ/(kg·K), respectively. If the cooling water enters the heat 
exchanger at the temperature of 33 °C, what are its heat capacity rate and outlet 
temperature, and what is the rate of heat transfer by the exchanger. 
According to the relation between EDTR and arithmetical mean temperature difference, the 
total heat transfer rate in the exchanger is 

 
( ) ( )( )

( )( )
, , , ,

,

exp 1

exp 1

h in h out c in c out sAM

h s s s

T T T T KAT
Q

R KA

ξ
ξ ξ

+ − − −Δ
= =

+
. (61) 

Numerically solving Eq. (61) and the energy conservation equation (55) simultaneously, we 
can easily obtain the heat capacity rate and the outlet temperature of the cooling water are 
73.8 kJ/(s·K) and 36.17 °C, respectively, and the total heat transfer rate is 234 kJ. 
In this problem, neither the heat capacity rate nor the exit temperature of the cooling water 
are known, therefore an iterative solution is required if either the LMTD or the ε-NTU 
method is to be used. For instance, when using the LMTD method, the detail steps are: (1) 
obtain the required heat transfer rate of the exchanger Q1 from the energy conservation 
equation of the oil; (2) assume a heat capacity rate of the cooling water, and then calculate its 
exit temperature; (3) according to the inlet and outlet temperatures of both the oil and the 
cooling water, obtain the logarithm mean temperature difference and the correction factor of 
the shell-and-tube exchanger; (4) based on the heat transfer equation, derive another heat 
transfer rate of the exchanger Q2. Because the heat capacity rate of the cooling water is 
assumed, iteration is unavoidable to make the derived heat transfer rate Q2 in step 4 close to 
the required one Q1. Thus, it is clear that the entransy dissipation-based thermal resistance 
method can design heat exchanger performance conveniently. 

6. Differences between entransy and entropy 

Besides entransy, the concepts of entropy and entropy generation are considered to be two 

important functions in thermodynamic and used for estimating the irreversibility of and 

optimizing heat transfer based on the premise that the minimum entropy generation (MEG) 

will lead to the most efficient heat transfer performance. Thus, there exist two optimization 
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principles, and it is highly desired to investigate the physical essentials and the applicability 

of, as well as the differences between, them in heat transfer optimization. 

The local entropy generation function induced by the heat transfer over finite temperature 

difference is  

 

2

2g

k T
s

T

∇
= . (62) 

 

Let’s reconsider the same volume-point problems as shown in Fig. 1. What we seek is also 

the optimal HTCM arrangement, except in this case that: 1. the optimization criterion is the 

minimum entropy generation; 2. the corresponding energy conservation equation should be 

added as a constraint, because it is not implied in the principle of minimum entropy 

generation when the thermal conductivity is constant (Bertola & Cafaro, 2008). 

Introducing the corresponding Lagrange function 
 

 ( )
2

2
' ' '

T
k B k C k T Q dV

TΩ

⎡ ⎤∇
⎢ ⎥Π = + + ∇ ⋅ ∇ +
⎢ ⎥⎣ ⎦

∫∫∫ $ . (63) 

 

where B’ and C’ are also the Lagrange multipliers. The constraint of thermal conductivity is 

the isoperimetric condition, and consequently B’ is a constant. C’ is a variable related to 

space coordinates. The variation of Π’ with respect to temperature T gives 
 

 ( )
2

3 2

2 2
'

k T Q
k C

T T

∇
−∇ ⋅ ∇ = +

$
. (64) 

 

while the variation of Π’ with respect to thermal conductivity k yields 

 
2

2
' '

T
C T B const

T

∇
∇ ⋅∇ − = = . (65) 

Likewise, Eq. (65) gives the guideline for optimization based on the criterion of minimum 

entropy generation. That is, the HTCM be placed at the area with the extreme in absolute 

value of 2 2'C T T T∇ ⋅∇ −∇ . 
Fig. 8(a) shows the distribution of HTCM based on the principle of minimum entropy 

generation. Comparison of Figs. 2(b) and 8(a) shows that although the distributions of 

HTCM are similar between the two results in most areas, the root-shape structure from the 

minimum entropy generation principle is not directly connected to the heat flow outlet, 

leaving some parts with the original material in between them so that the heat cannot be 

transported smoothly to the isothermal outlet boundary. Fig. 8(b) gives the optimized 

temperature distribution obtained by the minimum entropy generation. Because the low 

thermal conductivity material is adjacent to the heat outlet, the temperature gradient grows 

larger and thus lowers the entire heat transfer performance. The averaged temperature of 

the entire area is 150.8 K - 99.2 K higher than that obtained by the extremum principle of 

entransy dissipation. From the definition, it is easy to find that in order to decrease the 

entropy generation, we have to both reduce the temperature gradient, and raise the 

temperature, thus leading to the arrangement of HTCM showed in Fig. 8(a). 
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In addition, according to the principle of minimum entropy generation, the optimization 
objective of a steady-state heat dissipating process can be expressed as: 
 

 

2

2

1
0

m

k T
Q dV

T T
δ δ

Ω

∇⎛ ⎞Δ = =⎜ ⎟
⎝ ⎠ ∫∫∫$ . (66) 

 

where  
0

1 1 1

m m
T T T

⎛ ⎞⎛ ⎞Δ = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, is the equivalent thermodynamics potential difference which 

represents the “generalized force” in the entropy picture for heat transfer. Thus, minimizing 
the entropy generation equals to minimizing the equivalent thermodynamics potential 

difference 
1

mT

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

, leading to the highest exergy transfer efficiency. That is, the minimum 

entropy generation principle is equivalent to the minimum exergy dissipation during a heat 
transfer process. 
 

  

(a) HTCM arrangement (b) Temperature field 

Fig. 8. Optimized results using the minimum entropy generation principle (Chen et al., 2011) 

To facilitate the comparison between the two results from Figs. 3(b) and 8(b), Table 2 lists 

the key findings side by side, obtained respectively by the optimization criteria of the 

minimum entropy generation and the entransy dissipation extremum. It indubitably shows 

in the table that the proposed entransy based approach is more effective than the entropy 

based one in heat transfer optimization, for the former leads to a result with significantly 

reduced mean temperature than that by the latter (51.6 K vs. 150.8 K), and much lower 

maximum temperature (83.0 K vs. 194.9 K). Whereas the entropy based approach is 

preferred in exergy transfer optimization, as it results in a significantly lower equivalent 

thermodynamic potential (7.1×10-3 /K vs. 2.2×10-2 /K). 

Besides heat conduction, we (Chen et al. 2009b) also compared the two criteria in convective 

heat transfer optimization. Our results indicate that both principles are applicable to 

convective heat transfer optimization, subject however to different objectives. The minimum 

entropy generation principle works better in searching for the minimum exergy dissipation 

during a heat-work conversion, whereas the entransy dissipation extremum principle is 
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more effective for processes not involving heat-work conversion, in minimizing the heat-

transfer ability dissipation. 

 

Optimization
results

Optimization 
Criterions 

Φh /(W�K) Sgen/(W/K) Tm/K Tmax/K 
1

mT

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

/(1/K) 

Extremum Entransy 
Dissipation 

5.5×104 100.7 51.6 83.0 2.2×10-2 

Minimum Entropy 
Generation 

1.58×105 81.7 150.8 194.9 7.1×10-3 

Table 2. Optimized results obtained by the optimization criterions of minimum entropy 
generation and entransy dissipation extremum (Chen et al., 2011) 

7. Conclusion 

The entransy is a parameter that is developed in recent year. It is effective in optimization of 

heat transfer. Entransy is an evaluation of the transport ability of heat. Both the amount of 

heat and the potential contribute to the entransy. Entransy will be lost during the heat 

transportation from a high temperature to lower one and entransy dissipation will be 

produces. Based on the energy conservation equation, the entransy balance equations for 

heat conduction and convective heat transfer are developed. The entransy dissipation 

extreme principles are developed, that is, the maximum entransy dissipation corresponds to 

the maximum heat flux for prescribed temperature difference and the minimum entransy 

dissipation corresponds to minimum temperature difference for prescribed heat flux. This 

extreme principle can be concluded into the minimum thermal resistance principle defined 

by entransy dissipation. 

The entransy dissipation-based thermal resistance of heat exchangers is introduced as an 

irreversibility measurement, for parallel, counter-flow, and shell-and-tube exchangers, 

which has a general expression, is the function of heat capacity rates and thermal 

conductance, and may analyze, compare and optimize heat exchanger performance from the 

physical nature of heat transfer. Besides, from the relation among heat transfer rate, 

arithmetical mean temperature difference and EDTR, the total heat transfer rate may easily 

be calculated through the thermal conductance of heat exchangers and the heat capacity 

rates of fluids, which is convenient for heat exchanger design. 

Finally, we compared the criteria of entransy dissipation extremum to that of entropy 

generation minimization in heat transfer optimization, the results indicates that the 

minimum entransy dissipation-based thermal resistance yields the maximum heat transfer 

efficiency when the heat transfer process is unrelated with heat-work conversion, while the 

minimum entropy generation leads to the highest heat-work conversion when such is 

involved in a thermodynamic cycle. 
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