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Variable Property Effects in  
Momentum and Heat Transfer 

Yan Jin and Heinz Herwig 
Institute for Thermo-Fluid Dynamics, Hamburg University of Technology (TUHH) 

Germany 

1. Introduction 

“Variable property effects”  is a theoretical construct since a real fluid always is subject to 

variable properties when changes in temperature or pressure occur. Their influence 

compared to a corresponding situation but with artificially constant properties may be small 

and thus neglected in a first approximation. Those artificial “constant property results”  may 

then be corrected with respect to the initially neglected effects due to the variability of the 

fluid properties. This concept assumes small variable property effects and therefore is not 

applicable when the flow itself is basically generated by a variable property (like natural 

convection, generated by density variations) or strongly affected by it (like strongly 

compressible flow, determined by density variations). 

Therefore we define “variable property effects”  as those (small) artificial effects that would 

be present if fluid properties could change from constant to variable. They have to be added 

to a solution which is gained under the assumption of constant properties in order to 

account for the fact that real fluids always have properties which are temperature and 

pressure dependent. The variable property correction of a constant property solution can be 

accomplished in different ways. Basically there are three methods which are widely used in 

this context. They are 

(1) Property ratio method 

Results in terms of the nondimensional friction factor f  and Nusselt number Nu  are 

gained by multiplying the constant property results cpf  and Nucp  with a property ratio 

correction factor, i.e. 

 1 1

2 2

, Nu Nu
a am n

cp cp

a a
f f

a a

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1) 

Here 1a , 2a  are properties ( ρ , μ , k , pc ) at two different temperatures and am , an  are 

empirical exponents. There may be more than one factor, depending on which properties 

are assumed to contribute to the variable property effects. Studies with this approach are Li 

et al. (2007) and Mahmood et al. (2003), for example.  

(2) Reference temperature method 

The constant property results in terms of f  and Nu  are evaluated at a certain temperature 

for the properties that appear in f  and Nu . This so-called reference temperature,  
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 ( )1 2 1RT T j T T= + −  (2) 

between two characteristic temperatures 1T  and 2T  of the problem must be chosen such 

that f  and Nu  determined under the assumption of constant properties (and with 1T  or 

2T  as reference temperature) give the results for variable properties. For that purpose the 

factor j  in equ (2) must be determined properly. Basically, j  is an empirical parameter like 

the exponents in equ (1) are in the first method. Studies using this method are Jayari et al. 

(1999) and Debrestian & Anderson (1994), for example. 

(3) Asymptotic method 

Since the effects of variable properties are assumed to be small the variable property 

solution can be taken as a perturbation of the constant property solution. In a systematic 

approach the problem is treated as a regular perturbation problem with a (small) 

perturbation parameter ε  linked to the transfer rate. The constant property solution is that 

for 0ε =  and variable property effects are described as 1st, 2nd, … nth order effects of an 

asymptotic expansion with respect to the perturbation parameter ε . This approach in an 

early paper has been suggested by Carey and Mollendorf (1980) and afterwards has been 

adopted by the second author for a wide variety of problems, see for example Herwig and 

Wickern (1986), Herwig and Bauhaus (1986), Herwig et al. (1989) and Herwig and Schäfer 

(1992).  

The advantage of this method over the first two methods to account for variable properties 

is its systematic generalization of the correction terms that appear within this approach. 

These terms hold for all Newtonian fluids and all (small) transfer rates that are the reason 

for variable property effects. Furthermore, with this approach the empirical parameters in 

the first two method ( mα , nα  and j ) can be embedded in the expansion approach and thus 

be interpreted on a sound physical basis, as is demonstrated in Herwig and Wickern (1986), 

for example. 

For a long time all three methods have been applied to certain standard situations like pipe, 

channel or boundary layer flows. Only recently it was shown how the asymptotic method 

can also be applied to complex problems, such as turbulent mixed convection in a room that 

is ventilated and heated by several heating elements, see Bünger and Herwig (2009), Jin and 

Herwig (2010) and Jin and Herwig (2011).  

This extension to complex convective heat transfer problems will be presented and illustrated 

by some examples in the following.  

2. The asymptotic approach: State of the art  

Variable properties means that all fluid properties involved in a problem depend on 

temperature and pressure. Whenever temperature and pressure variations occur in a problem 

these variabilities affect the solution. Assuming the effects to be small, a perturbation approach 

is straight forward. Since pressure effects almost always are negligibly small, we only account 

for the temperature impact. The starting point for the temperature dependence is the Taylor 

series expansion of all properties with *
a  representing *ρ  (density), *μ  (viscosity), *k  

(thermal conductivity), and *
pc  (specific heat capacity), which is with ( )* * *

R Ra a T=  

 ( )
*

2 2 1
1 2*

1 1
: 1

2 !

n n n
a a an

R

a
a K K K O

na
ε θ ε θ ε θ ε += = + + + + +A  (3) 
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*

*
: R

R

T

T
ε Δ

=  (4) 

 
* *

*
: R

R

T T

T
θ −

=
Δ

 (5) 

 
* *

1 * *
:a

R

a T
K

T a

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (6) 

 
2 * *2

2 *2 *
:a

R

a T
K

T a

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (7) 

 
* *

* *
:

n n

an n
R

a T
K

T a

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (8) 

Here, ε  is a small quantity which basically represents the strength of heat transfer ( 0ε = : 

isothermal situation) and formally serves as perturbation parameter. The dimensionless 

temperature is θ  which then is an ( )1O  quantity. The fluid behavior is covered by ajK  

with 1,2,j n= A , which are ( )1O  quantities, representing the partial derivatives of *a  with 

respect to temperature. 

The same expansion can be made with respect to the pressure *p . Since, however, for most 

cases the corresponding ˆ
anK  values ( ) ( )( )* * * *n n na p p a∂ ∂  and/ or pressure variations are 

very small, we restrict ourselves to the temperature effects.  

In order to get solutions in terms of expansions which correspond to the Taylor-series 

expansions of the properties, all dependent variables *V  are expanded as  

 ( )
*

2
1 1 1 1 1 1 1 1*

: 1
p pk k c c

R

V
V K V K V K V K V O

V
ρ ρ μ με ε⎡ ⎤= = + + + + +⎣ ⎦

 (9) 

Here, *V  represents the velocity components *u , *v , *w  and the temperature *T  which 

appear in the basic equations of a problem. For many problems these are the Navier-Stokes 

and the thermal energy equations, here shown for a steady flow 0t∂ ∂ = , i.e: 

 ( ) 0uρ∇ ⋅ =
f

 (10) 

 ( ) ( )1 2

Re 3

T

R

u u u u uI p gρ μ ρ⎛ ⎞⋅∇ = ∇ ⋅ ∇ +∇ ⋅ − ∇ ⋅ −∇ +⎜ ⎟
⎝ ⎠

f f f f f f
 (11) 

 ( ) ( )1

Re PrR R
p u p uc kT Tρ ⋅∇ = ∇ ⋅ ∇ + ∇ ⋅

f f
 (12) 

In the thermal energy equation (12) viscous dissipation is neglected since it contributes very 

little to the energy balance. Equs (10)-(12) are nondimensional equations in which all fluid 

properties * *
Ra a a=  are marked by a box (note that a = 1 for constant properties). 

The nondimensional groups are  
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* * *

*
Re R R

R
R

u Lρ
μ

= , 

* *

*
Pr

R pR
R

R

c

k

μ
=  (13) 

It is an important point that here they are formed with the reference fluid properties (index 

R). When turbulent flows are treated by the RANS-approach, equs (10) – (12) must be time-

averaged and subject to turbulence modeling. Then, with a k ε−  model, for example, two 

more differential equations have to be solved in which fluid properties appear as well. 

In the asymptotic method to account for variable property effects, all properties a  (i.e. ρ , 

μ , k , pc ) and all variables υ  (i.e. u
f

, T ) are replaced by their expansions (3), (9) in the set 

of equs (10) – (12). Then two different ways to proceed are possible which will be explained 

in the next two subsections.  

2.1 Higher order equations method (HOE) 

In this method the equations are subject to the expansion process, i.e. all terms of ( )1O , 

1Kρε , 1Kμε , …, 2
2Kρε , 2

1 1K Kρ ρε , … are collected separately and form the zero order, first 

order, second order, … sets of equations. In the complete approach with all four properties 

involved there is one zero order set of equations (corresponding to constant properties), four 

first order sets and fourteen sets of second order. Only the zero order set of equations is a 

nonlinear one, all subsequent equation sets have linear equations. All equations have to be 

solved sequentially starting with the zero order equations for constant properties.  

The final result in terms of the friction factor f  and the Nusselt number Nu  gains an 

asymptotic form as well. For example, the Nusselt number for the thermal boundary 

condition wT const= , reads, with Nucp  for the constant property case: 

 ( )11 1 21
1 1 1 1

0 0 0 0

Nu
1

Nu

p

p

ck
k c

cp

TT T T
K K K K O

T T T T

ρ μ
ρ με ε

⎡ ⎤′′ ′ ′⎢ ⎥= + + + + +
⎢ ⎥′ ′ ′ ′
⎣ ⎦

 (14) 

Here, 1aT′  are the temperature wall gradients since *
wq$  in the Nusselt number is 

( )* * *
w

w
q k T ′= −$ . 

In the second order 14 additional terms in equ (14) appear so that altogether 19 sets of 

equations have to be solved when second order accuracy is required. Then, however, the 

result (14) is quite general, since it holds for all Newtonian fluids (different values for 1Kρ , 

1Kμ , … in (14)) and all small heating rates (different values for ε  in equ (14)). 

This method is straight forward for all laminar flows and has been applied in Herwig and 

Wickern (1986) and Herwig and Bauhaus (1986), for example.  

When turbulent flows are considered, the higher order equation method needs higher order 

turbulence model equations. That may be a problem which does not occur in the alternative 

method described next.  

2.2 Higher order coefficients method (HOC) 
Instead of solving higher order equations from which the influence of the single properties 

can be deduced in the final results, like in equ (14) for example, the final results are taken in 

its asymptotic form as the starting point. Again, shown for the Nusselt number, it reads up 

to the second order:  
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( ) ( )
( )

2
1 1 1 1 2 2 2 2

2 2 2 2
2 2 2 2 1 1 1 1

1 1 1 1 1 1 1

3
1 1

Nu
1

Nu p p

p p p p p

p p p p

p p

k k c c
cp

k k c c k kk c c c

k k c c k k c c

k c kc

K A K A K A K A K A K A

K A K A K A K A K A K A

K K A K A K A K K A K A

K K A O

ρ ρ μ μ ρ ρ μ μ

ρ ρρ μ μμ

ρ μ ρμ ρ ρ μ μ μ

ε ε

ε

⎡ ⎤ ⎡= + + + + + +⎣⎣ ⎦

+ + + + + + +

+ + + + +

⎤+ +⎦

 (15) 

with the A-values Aρ , Aμ … as the crucial part of the result. Up to the second order there 

are 4 + 14 = 18 different A-values.  

With the nondimensional property a  according to equ (3) is rewritten as  

 ( )2 1
1 2

1 1
1

2 !

n n
a a ana h h h O

n
θ θ θ ε += + + + + +A  (16) 

introducing 

 
**

* *
: , 1,2, .

j j
j

aj aj j

R

a T
h K j n

aT
ε

⎡ ⎤∂ Δ
= = =⎢ ⎥

∂⎢ ⎥⎣ ⎦
A  (17) 

one immediately recognizes the A-values to be  

 
1 0

1 Nu
:

Nu
a

cp a h

A
h =

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

 (18) 

 
2

2
1 0

1 Nu
:

2Nu
aa

cp a h

A
h

=

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (19) 

 2

2 0

1 Nu
:

Nu
a

cp a h

A
h =

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (20) 

 
2

1 1 0

1 Nu
:

Nu
ab

cp a b h

A
h h =

⎡ ⎤∂
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (21) 

where { }, , , , pa b k cρ μ∈ , a b≠ .  

According to equs (18) – (21) the 18 A-values in (15) can be determined as first and second 

derivatives of Nu  with respect to the h-values in (16). These h-values quite generally can be 

interpreted as combinations of ε  and fluid properties ( 1,Kρ A ). Since the method holds for 

all Newtonian fluids it also holds for arbitrarily chosen fictitious fluids for which only one 

property is temperature dependent (in some arbitrary way) with all other properties being 

constant. Such fluids serve as “dummy fluids”  from which the general A-values can be 

determined.  

This is done by solving the full equations (10) – (12) or their turbulent version for these 

dummy fluids with certain values for 1ah , 1bh  and 2ah . Then the A values can be 

determined by the following numerical approximations of (18) – (21): 
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( ) ( )1 1

0
0

Nu Nu1
lim

Nu 2

a a
a

s
cp

h s h s
A

s→

⎧ ⎫= − = −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (22) 

 
( ) ( )1 1

20
0

Nu 2Nu Nu1
lim

2Nu

a cp a
aa

s
cp

h s h s
A

s→

⎧ ⎫= − + = −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (23) 

 
( ) ( )2 2

2
0

0

Nu Nu1
lim

Nu 2

a a
a

s
cp

h s h s
A

s→

⎧ ⎫= − = −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (24) 

 
( ) ( ){

( ) ( )}

1 1 1 120

1 1 1 1 0

1 1
lim Nu Nu

Nu 4

Nu Nu .

ab a b a b
s

cp

a b a b

A h h s h h s
s

h h s h h s

→
= = = + = = −

− = − = − − = =

 (25) 

Here the limiting process 
0

lim
s→

… means that s  must be small enough to avoid a higher order 

influence, but not too small since otherwise truncation errors appear. The index 0 at the 

right curly brackets indicates that all other variables 1ch , 2ch  are set to zero. Each of the 

eight terms  

• ( ) ( )1 10 0
Nu ,Nua ah s h s= = −  

• ( ) ( )2 20 0
Nu ,Nua ah s h s= = −  

• 
( ) ( )
( ) ( )

1 1 1 10 0

1 1 1 10 0

Nu ,Nu ,

Nu ,Nu

a b a b

a b a b

h h s h h s

h h s h h s

= = = = −

= − = = − = −
 

corresponds to exactly one CFD-simulation. Hence, the calculation of (22), (23), and (24) 

needs two CFD-simulations for a fixed small value of s , while the determination of abA  

according to (25) needs four CFD-simulations. With one further CFD-calculation the 

constant property solution Nucp  is determined.  

In order to determine the complete set of all 18 A-values (second order accuracy of the 

result) thus 40 variable property solutions and the one for constant properties are needed. 

Since no higher order equations are determined, all kinds of turbulence modeling can be 

incorporated.  

Details of the approach and an application of the HOC-method to a complex geometry and 

flow can be found in Bünger and Herwig (2009) and Jin and Herwig (2010), respectively. In 

Fig. 1, as an example taken from Jin and Herwig (2010), the influence of variable properties 

on the Nußelt number at two heating elements in a complex geometry is shown, determined 

with the HOC-method. 

There can be, however, a further improvement of the HOC-method which considerably 

reduces the amount of numerical solutions that are needed for the determination of all A-

values. This will be described next.  

3. A more efficient (asymptotic) approach 

For a more efficient method, we first rewrite the basic equations (10)-(12). Instead of 

referring the properties *ρ , *μ , *k  and *
pc  to their values at a reference temperature *

RT  we 

incorporate them in the nondimensional groups Re  and Pr  (which then are no longer ReR  

and PrR  since they now are local, variable quantities).  
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         (c) 
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            (d) 

Fig. 1. Complex benchmark geometry, example from (Jin & Herwig, 2010); (a) 3D room for 

experiments, (b) 2D approximation for simulations, 1 , 2 : heating elements ( * 2300W mwq =$ , 
6Re 1.64 10= × ) *s : coordinate around the heating elements and along the lower, upper, and 

side walls A, B, C, D: corners of the heating elements (c) Heating element 1  (d) Heating 

element 2  CFD: numerical solution, based on equs (10)-(12) HOC: asymptotic result, eq. (15) 

Since *ρ , *μ , and *k  appear within a spatial derivative in (10)-(12), additional terms 

appear according to the product rule of differentiation. Instead of (10)-(12) one gets: 

 ( ) 0u P T uρ∇ ⋅ + ∇ ⋅ =
f f

 (26) 

 ( ) ( ) ( )
1 2

Re 3 1 1

T p
u u P T u u uI gμ ρ

∇⎛ ⎞⎛ ⎞⋅∇ = ∇ ⋅ + ∇ ⋅ ∇ +∇ − ∇ ⋅ − +⎜ ⎟⎜ ⎟ + −⎝ ⎠⎝ ⎠

f f f f f
 (27) 

 ( )1

PrRe PrRe
kP

u T T T
⎛ ⎞− ∇ ⋅∇ = ∇ ⋅ ∇⎜ ⎟
⎝ ⎠

f
 (28) 

with the parameters Pρ , Pμ , kP  as 
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* *

* * * *

* *
; , ,a

T a
P a k

a T
ρ μΔ ∂

= =
∂

 (29) 

The only property that is left explicitly is ρ  in the term 
( )1 1

p

ρ
∇

−
+ −

 in equ (27), all other 

properties are “hidden” in Re , Pr  and aP . Asymptotically the parameters aP  are of order 

( )O ε , since 

 ( )1a aP K Oε ε= +  (30) 

accounting for the fact that *a  in 1aK  is ( )* *
Ra T  but *a  in aP  is ( )* *a T .  

Based on equs (26)-(28) there are two simplified approaches to account for variable 

properties which are motivated by the fact that the dimensionless groups account for the 

variability of the properties leaving additional effects in the asymptotically small terms with 

aP  and ( )1ρ − . 

3.1 High Reynolds number HOC-method (HR-HOC) 

For high Reynolds numbers the energy equation (28) can be approximated by setting 0kP = , 

since RePr 0kP →  for Re →∞ . This reduces the number of A-values in the final result for 

the Nusselt number. Instead of equ (15) one now has for the Nusselt number with  

 
1

2
1 1 1 2 2 2 1 1, 2 2

p p p pk c k c k c cK K K K K K K K Kσ σ= − = − − +  (31) 

 

( )

2
1 1 1 2 2 2 2 2 2

2 2 2 3

Nu
1

Nucp

K A K A K A K A K A K A

K A K A K A K A K A K A O

ρ ρ μ μ σ σ ρ ρ μ μ σ σ

ρ ρρ μ μμ σ σσ ρμ ρμ ρσ ρσ μσ μσ

ε ε

ε

⎡ ⎤ ⎡= + + + + + +⎣ ⎦ ⎣

⎤+ + + + + + +⎦

 (32) 

The new ajh -values (c.f. equ (17)) for the determination of the A-values are 

 ( )1 1 1 1pk ch K K Kσ σε ε= = −  (33) 

 ( )1

2 2 2
2 2 2 2 1 12 2

p p pk c k c ch K K K K K Kσ σε ε= = − − +  (34) 

Table 1 shows the reduction in terms and numerical solutions necessary for the determination 

of the A-values in equ (32), compared to those for equ (15).  

 

A-values Numerical solutions 
Method 

1. order 2. order 1. order 2. order 

HOC 4 14 8 32 

HR-HOC 3 9 6 18 

Table 1. Number of A-values and numerical solutions 

The complex benchmark geometry in Fig. 1 is now treated with the simplified HR-HOC 

approach. Fig. 2 shows that the quality of the results is as good as in Fig. 1 for the full HOC-

method. 
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                                           (b) 

Fig. 2. Complex benchmark geometry, s. Fig. 1, ( * 2300W mwq =$ , 6Re 1.64 10= × ) (a) heating 

element 1  (b) heating element 2  

3.2 Locally constant property HOC-method (LCP-HOC) 
Without a real asymptotic justification all variable property effects outside the nondimensional 

groups are now neglected by setting all Pa = 0 and ρ = 1. Equations (26)-(28) then are the 

equations for constant properties, but with locally variable properties in Re and Pr. 
Solutions of these equations can be used as an easy to get answer with respect to the 

question how strong the influence of variable properties is and if it makes sense to apply the 

more sophisticated methods. 

In this LCP-HOC approach Re and RePr in the reduced set of equations (26)-(28) are treated 

like variable properties, being called α and β, i.e. 

 
* * *

*
Re Ru Lρα

μ
= =  (35) 

 
* * * *

*
RePr

p Rc u L

k

ρ
β = =  (36) 

Instead of equ (15) one now has for the Nusselt number with  

 
1 1 1

2
2 2 2 1 1 12 2

K K K

K K K K K K

α ρ μ

α ρ μ ρ μ μ

= −

= − − +
 (37) 

 
1 1 1 1

2
2 2 2 2 1 1 1 1 1 1 12 2 2 2

p

p p p

c k

c k c k c k k

K K K K

K K K K K K K K K K K

β ρ

β ρ ρ ρ

= + −

= + − + − − +
 (38) 

the form: 

 

( )
1 1

2 2 2 3
2 2 2 2 1 1 1 1

Nu
1

Nucp

K A K A

K A K A K A K A K K A O

α α β β

α α β β α αα β ββ α β αβ

ε

ε ε

⎡ ⎤= + +⎣ ⎦

⎡ ⎤+ + + + + +⎣ ⎦

 (39) 
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The new ajh -values (c.f. equ (17)) for the determination of the A-values are 

 2
1 1 2 2;h K h Kα α α αε ε= =  (40)  

 2
1 1 2 2;h K h Kβ β β βε ε= =  (41) 

Table 2 shows the reduction in terms and numerical solutions necessary for the determination 

of the A-values in equ (39) compared to those for equ (15). 

 

A-values Numerical solutions 
Method 

1. order 2. order 1. order 2. order 

HOC 4 14 8 32 

LCP-HOC 2 5 4 8 

Table 2. Number of A-values and numerical solutions 
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                                           (b) 

Fig. 3. Complex benchmark geometry, s. Fig. 1, ( * 2300W mwq =$ , 6Re 1.64 10= × ) (a) heating 

element 1  (b) heating element 2  

Again, the complex benchmark geometry in Fig. 1 is chosen as a test case, now for the LCP-

HOC approach. Fig. 3 shows that the results are of the same order as with the more 

comprehensive methods and thus can serve as a simple first approximation. So far, there is 

no explanation for the obviously constant offset in the results.  

4. Alternative determination HOC-method (AD-HOC) 

So far the RANS-approach has been used to cope with turbulent flows. Computational times 

are moderate and the relatively large number of numerical solutions necessary for the 

various HOC-methods is available in acceptable time.  

This is no longer true, however, when LES or DNS solutions are aimed at. Then, finding 32 

solutions for the second order HOC method (c.f. table 1 or 2) is not a reasonable procedure. 

In table 3 CPU-times for RANS, LES and DNS solutions of a simple benchmark problem are 

compared to illustrate the discrepancy in typical CPU-times for the three methods. The 
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benchmark problem is that of a differentially heated cavity with adiabatic top and bottom 

walls shown in Fig. 4. In x1-direction there is a periodic boundary condition L1 apart 

corresponding to an overall 2D geometry. As a result for constant properties (Boussinesq-

approximation) the Nusselt number and shear stress distribution is shown for three 

different Rayleigh numbers at the hot wall in Fig. 5. Whereas DNS results from (Trias et al, 

2010a; Trias et al, 2010b; Trias et al, 2007) and our own LES results are close to each other, 

RANS results show larger deviations. Some numerical details are given in table 3. 

 

 

Fig. 4. Differentially heated cavity of aspect ratio L3/ L1 = 4, L2/L1 = 1 

 

CPU-TIME in hours NUMERICAL 

METHOD Ra = 2×109 Ra = 4×109 Ra = 1010 

NUMERICAL DETAILS 

RANS 

(own results) 

1 1   1  k - ω SST model;  

mesh resolution: 100×218; 

steady simulation. 

Computer: Linux cluster (4×2.66GHz) 

LES 

(own results) 

330 330 330 k -equation eddy-viscosity model; 

mesh resolution: 64×100×218; 

time step: 2.4×10-2 

Computer: Linux cluster (4×2.66GHz) 

DNS 

(Trias et al, 

2010a;  

Trias et al, 

2010b;  

Trias et al, 

2007) 

6200 

(estimated)

 26000 

(estimated)

Mesh resolution 

Ra = 2×109 : 64×144×318 

Ra = 1010 : 128×190×462 

time step 

Ra = 2×109 : 1.27×10-3 

Ra = 1010 : 6.25×10-4  

Computer: Nec-Sx5 vectorial parallel 

machine. 

CPU-TIME: sum of computational time of all processors in hours 

Table 3. CPU-time and numerical details for different numerical methods applied to the 

benchmark problem (heated cavity), see Fig. 4 
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Fig. 5. Constant property results of the flow and heat transfer in a differentially heated 

cavity, see Fig. 4. (a) 9Ra 2 10= × (b) 9Ra 4 10= × (c) 10Ra 1 10= ×  

If now variable property effects are of interest, the A-coefficients should be determined with 

a RANS-approach. It is assumed that the variable and the constant property RANS results 

show basically the same errors (compared to the “exact”  DNS results) and thus have 

systematic errors that cancel when the difference is taken in the procedure to determine the 

A-values.  

DNS and LES constant property results can thus be corrected with respect to variable 

property effects by “alternatively determined” (i.e. AD) A-values. This procedure is called 

AD-HOC-method, but is not really an ad-hoc-method! 

(a) 

(b) 

(c) 
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Fig. 6. Variable property results of the flow and heat transfer in a differentially heated cavity, 

see Fig. 4. (a) 9Ra 2 10= ×  (b) 9Ra 4 10= ×  (c) 10Ra 1 10= ×  Fluid: air with properties (42)-(45) 

In Fig. 6 these AD-HOC-results that account for variable properties are compared to LES 

results that account for variable properties from the beginning. They are results for air with 

variable *ρ , *μ , *k  and *
pc  asymptotically accounted for to the first order and for the LES 

calculations taken as  

 ( )( )* * * *1.188 1 RT Tρ γ= ⋅ − −  (42) 

 
2

* * * *
* 5

* *
1.18185 10 1 0.775 0.176R R

R R

T T T T

T T
μ −

⎛ ⎞⎛ ⎞− −⎜ ⎟= × ⋅ + − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (43) 

(a) 

(b) 

(c) 
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2
* * * *

*

* *
0.025721 1 0.891 0.1285R R

R R

T T T T
k

T T

⎛ ⎞⎛ ⎞− −⎜ ⎟= ⋅ + − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (44) 

 

2
* * * *

*

* *
1014 1 0.068 0.038R R

p
R R

T T T T
c

T T

⎛ ⎞⎛ ⎞− −⎜ ⎟= ⋅ + − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (45) 

where the reference temperature * 293RT K=  and the expansion coefficient * 0.003413γ = . 

The density variations are accounted for by the Boussinesq approximation like in (Trias et 

al, 2010a; Trias et al, 2010b; Trias et al, 2007). Fig. 6 shows that with the influence of variable 

properties determined by the AD-HOC-method there is a very good coincidence with LES 

results that account for variable property effects from the beginning. Thus the AD-HOC-

method is an attractive approach when LES and DNS results have to be corrected with 

respect to the influence of variable properties. 

 

 

Fig. 7. Constant property results of the temperature field in a differentially heated cavity, see 

Fig. 4, 8Ra 2 10= ×  

DNS 
RANS 
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This is also true with respect to the field variables of these cases. For example, Fig. 7 shows 

that there is an appreciable difference when the temperature field is calculated by DNS 

compared to the RANS results.  

However, as shown in Fig. 8, the iso-temperature lines for variable properties, calculated by 

DNS are well represented by iso-lines from the AD-HOC method, i.e. those lines from 

constant property DNS results corrected by A-values from RANS solutions for variable 

properties.  

 

 

 

 

Fig. 8. Variable property results of the temperature field in a differentially heated cavity, see 

Fig. 4, 8Ra 2 10= ×  

Distribution of the first order A-values Aγ , Aμ , kA  and 
pcA , computed by RANS,  are 

shown in Fig. 9. The variable properties behave differently in the core region, where a quasi-

laminar flow prevails and in the large vortex region near the bottom and top walls. Also, 

signs within one region are different. For example Aγ  and Aμ  are negative in the core 

DNS, constant properties 

DNS, variable properties 

DNS, AD-HOC method 
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region, whereas kA  and 
pcA  are positive in the same region. Altogether there is a non-

negligible effect of variable properties on the temperature distribution.  

 

  

  

Fig. 9. A-values of temperature computed by RANS in a differentially heated cavity, see  

Fig. 4, 8Ra 2 10= ×  (a) Aγ ;  (b) Aμ ;  (c) kA ;  (d) 
pcA  

(a) (b)

(c) (d)

Aγ Aμ  

kA
pcA  

www.intechopen.com



 
Variable Property Effects in Momentum and Heat Transfer   

 

151 

5. Conclusions 

Various methods to account for variable property effects in complex geometries and highly 

sophisticated numerical methods have been proposed. Due to the Taylor series expansions 

of all properties, which are the starting point for all methods, the influence of variable 

properties can be accounted for in a general manner, i.e. for all (small) heating rates and for 

all Newtonian fluids. For a special problem with A-values determined once, the effect of 

variable properties can be found in the final result by fixing ε (the heat transfer rate) and all 

K-values (from the fluid of interest). 

This way of treating variable property effects is much closer to the physics than empirical 

methods like the property ratio and the reference temperature methods are. 

6. Nomenclature 

2, , ,a aa ab aA A A A   A-values, { }, , , , , ,pa b k c a bρ γ μ∈ ≠  

pc    specific heat capacity 

f    friction factor 

g
f

   gravity vector 

ajh    h-values, j
ajKε  

j    empirical parameter 

2, ,a a anK K K   K-values, , , , , pa k cρ γ μ=  

k    heat conductivity 
*L    characteristic length 

,a am n    empirical exponents 

Nu    Nußelt number 

p    pressure 

Pr    Prandtl number 

aP    nondimensional properties about variable fluid property 

q$    heat flux 

Re    Reynolds number 

T    temperature 

u
f

   velocity vector 

V    variables 

Greek symbols 

, , ,α β σ δ   variables composed of fluid properties 

γ    expansion coefficient 
*TΔ    temperature difference 

ε    nondimensional temperature difference 

μ    dynamic viscosity 

ρ    density 

subscripts 

cp    constant properties 

R    reference state 

*       dimensional 
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