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1. Introduction 

Risk assessment and management have become progressively more important for 
enterprises in the last few decades. Investors diversify and find financial distress and 
bankruptcy among enterprises not welcome but expected in their portfolios. Some 
enterprises do extremely well and keep expected profits (and realised) at a satisfactory level 
above risk free rates. In contrast, corporations should be run at its shareholders best interest 
inducing project acceptance with internal rates of return greater than the risk adjusted cost 
of capital. These considerations are at the heart of modern financial theories. However, often 
not stressed enough, for the survival of a corporation financial distress and bankruptcy costs 
can be disastrous for continued operations. Every corporation has an incentive to manage 
their risks prudently so that the probability of bankruptcy is at a minimum. Risk reduction 
is costly in terms of the resources required to implement an effective risk-management 
program. Direct cost are transactions costs buying and selling forwards, futures, options and 
swaps – and indirect costs in the form of managers’ time and expertise. In contrast, reducing 
the likelihood of financial distress benefits the firm by also reducing the likelihood it will 
experience the costs associated with this distress. Direct costs of distress include out-of-
pocket cash expenses that must be paid to third parties. Indirect costs are contracting costs 
involving relationship with creditors, suppliers, and employees. For all enterprises, the 
benefits of hedging must outweigh the cost. Moreover, due to a substantial fixed cost 
element associated with these risk-management programs, small firms seem less likely to 
assess risk than large firms1. In addition, closely held firms are more likely to assess risk 
because owners have a greater proportion of their wealth invested in the firm and are less 
diversified. Similarly, if managers are risk averse or share ownership increases2, the 
enterprises are more likely to pursue risk management activities. Stringent actions from 
regulators, municipal and state ownership and scale ownership (> 10-15%), may therefore 
force corporations to work even harder to avoid large losses from litigations, business 
disruptions, employee frauds, losses of main financial institutions, etc. leading to increased 
probability for financial distress and bankruptcy costs.  

                                                                 
1 See Booth, Smith, and Stolz (1984), DeMarzo and Duffie (1995), and Nance, Smith and Smithson (1993). 
The improvements in use of information technology have made it more likely that smaller companies 
use sophisticated risk-management techniques Moore et al. (2000). 
2 Tufano (1996) finds that risk management activities increase as share ownership by managers 
increases and activities decreases as option holdings increases (managerial incentives hypotheses). 
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Energy as all other enterprises must take on risk if they are to survive and prosper. This 
chapter describes parts of the portfolio of risks a European energy enterprise is currently 
taking and describes risks it may plan to take in the future. The three main energy market 
risks to be managed are financial, basis and operational risk. The financial risks are market, 
credit and liquidity risks. For an energy company selling its production in the European 
energy market, the most important risk factor is market risk, which is mainly price 
movement risks in Euro (€). The credit risk is the risk of financial losses due to counterparty 
defaults. The Enron scandal made companies to review credit policies.  Finally, the liquidity 
risk is market illiquidity which normally is measured by the bid-ask spread in the market. In 
stressed market conditions the bid –ask spread can become large within a certain time 
period. The next main risk category for energy companies is basis risk3 which is risk of 
losses due to an adverse move or breakdown of expected price differentials. Price 
differentials may arise due to factors as weather conditions, political developments, physical 
events or changes in regulations. Some markets operate with area prices that differ from the 
reference prices and contract for differences (CfD) are established to allow for basis risk 
management. The last main risk category is operational risk which is divided into legal, 
operational and tax risks. Legal risks are related to non-enforceable contracts. Operational 
risk is the risk of loss resulting from inadequate or failed internal processes, people, and 
systems or from external events. Tax risk can occur when there are changes to taxation 
regulations. Importantly, all these risks interrelate and affect one another making the use of 
portfolio risk assessment and management relevant. Basis and operational risk measures 
contribute to total relevant risk and some of the basis risk is related to market risk (CfDs). In 
many ways, the key benefit of a risk management program is not the numbers that are 
produced, but the process that energy companies go through producing the risk related 
numbers.  
Economic capital is defined as the amount of capital an energy corporation needs to absorb 
losses over a certain time horizon (usually one year) with a certain confidence level. The 
confidence level depends on the corporation’s objectives. Maintaining an AA credit rating 
implies a one-year probability of default of about 0.03%. The confidence level should 
therefore be 99.97%. For the measurement of economic capital the bottom up approach is 
often used. In this method the loss distributions are estimated for different types of risks 
(market and operational) over different business units and then aggregated. For an energy 
corporation the loss distributions for market risks can be divided into for example price and 
volume risk, basis risk into location and time risks and operational risks into business and 
strategic risks (related to an energy company’s decision to enter new markets and develop 
new products/line of business). A final risk aggregation procedure should produce a 
probability distribution of total losses for the whole corporation. Using for example copulas, 
each loss distribution is mapped on a percentile-to-percentile basis to a standard well-
behaved distribution. Correlation structures between the standard distributions are defined 
and this indirectly defines correlation structures between the original distributions. In a 
Gaussian copula the standard distributions are multivariate normal. An alternative is a 
multivariate t distribution. The use of the t distribution leads to the joint probability of 
extreme values of two or more variables being higher than in the Gaussian copula. When 

many variables are involved, analysts often use a factor model:  21i i i iU a F a Z     , 

where F  and Z have standard normal distributions and Zi are uncorrelated with each other 
                                                                 
3 Three components of basis risk: location basis (area supply/demand factors), time basis (grid 
problems) and some mixed basis issues. 
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and uncorrelated with F. Energy corporations use both risk decomposition and risk 
aggregation for management purposes. The first approach handles each risk separately 
using appropriate instruments. The second approach relies on the power of diversification 
of reducing risks. 
The chapter is concerned with the ways market risk can be managed by European 

enterprises. Several disastrous losses4 would have been avoided if good risk management 

practices had been enforced. The current financial crises may have been avoided if risk 

management had reached a higher understanding at the level of the CEO and board of 

directors. Normally, corporations should never undertake a trade strategy that they do not 

understand. If a senior manager in a corporation does not understand a trading strategy 

proposed by a subordinate, the trade should not be approved. Understanding means 

instrument valuations. If a corporation does not have the in-house capability to value an 

instrument, it should not trade it. The risks taken by traders, the models used, and the 

amount of different types of business done should all be controlled, applying appropriate 

internal controls. If well handled, the process can sensitize the board of directors, CEOs and 

others to the importance of market, basis and operational risks and perhaps lead to them 

thinking about them differently and aggregately.  

2. Energy markets, financial market instruments and relevant hedging 

The main participants in financial markets are households, enterprises and government 

agencies. Surplus units provide funds and deficit units obtain funds selling securities, which 

are certificates representing a claim on the issuer. Every financial market is established to 

satisfy particular preferences. Money markets facilitate flow of short-term funds, while 

those that facilitate flow of long-term funds are known as capital markets. Whether referring 

to money market or capital market securities, the majority of transactions are pertained to 

secondary markets (trading existing securities) and not primary markets (new issuances). 

The most important characteristic of secondary markets is liquidity (the degree a security 

can be liquidated without loss of value). If a market is illiquid, market participants may not 

be able to find a willing buyer and may have to sell the security at a large discount just to 

attract a buyer. Finally, we distinguish between organised markets (visible marketplace) and 

the over-the-counter market (OTC), which is mainly a telecommunication network. All 

market participants must decide which markets to use to achieve their goals or obtain 

financing. 

Europe’s power markets consist of more than half a dozen exchanges, most of which offer 

trading in both spot, futures and option contracts, giving a dauntingly complex picture of 

the markets. Moreover, the markets are fragmented along national lines. The commodity 

itself is impossible to store, at least not on the necessary scale, and is subject to extreme 

swings in supply and demand. And critical information about such key factors as the level 

of physical generation is incomplete or not available at all in certain markets. The Nordic 

market was one of the leaders on electricity liberalization, with Nord Pool becoming 

Europe’s first international power exchange in 1996. Liquidity and volume have grown 

significantly. Nord Pool trades and clears spot and financially settled futures in Finland, 

                                                                 
4 Recent examples are Orange County in 1994 (US), Barings Bank (UK) (Zang, 1995), Long-Term Capital 
Management (Dunbar, 2000), Enron counterparties, and several Norwegian municipals in 2007-2008. 
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Sweden, Denmark and Norway, listing day and week futures, three seasonal forwards, a 
yearly forward, contracts for difference and European-style options. Volume in its financial 
power market in 2009 totaled 2,162 terawatt hours, valued at 68.5 billion euros. Cleared OTC 
volumes in 2009 reached 942 TWh from 1,140 TWh in 2008. The European Energy Exchange 
(EEX) in Germany is Europe’s fastest growing power futures market. EEX offers trading in 
physically-settled German and French power futures as well as cash-settled futures based 
on an index of power prices. On 1st April 2009, the Powernext SA futures activity was 
entrusted to EEX Power Derivatives AG. The exchange also offers trading in German, 
Austrian, French and Swiss spot power contracts, emission allowances and coal, and 
launched trading in natural gas in 2009/2010. On 1st January 2009, Powernext  
SA transferred its electricity spot market to EPEX Spot SE and on 1st September 2009 EPEX 
Spot merged with EEX Power Spot. The exchange has more than 160 members from 19 
countries, including banks such as Barclays, Deutsche Bank, Lehman Brothers and Merrill 
Lynch. Eurex owns 23% of the exchange and supplies its trading platform. In 2009 the 
volume of futures traded on EEX was 1,025 TWh, and the value of futures trading was 61 
billion euros. The number of transdactions at the end of 2009 was approximately 114,250. 
France’s Powernext exchange was established in 2002 as a spot market for electricity. 
Futures trading were launched in 2004 and until 2009 traded physically-settled contracts 
with maturities from three months to three years. In 2009 the exchange entrusted the futures 
activity to EEX Power Derivatives AG. Moreover, 1st January 2009, Powernext SA 
transferred its electricity spot market to EPEX Spot SE and on 1st September 2009 EPEX Spot 
merged with EEX Power Spot. The transfer of activity was due to the implementation of 
France’s TRTAM “return to tariff” law, which reinstates regulated tariffs for industrial users 
from EDF, France’s main electricity supplier, which limits competition and is seen to distort 
exchange prices. Liquidity was severely dented and trading volume plunged and open 
interest sank from around 14 TWh in June 2006 to 11 TWh at the end of 2005. The European 
Energy Derivatives Exchange (Endex) is funded by financial players and Benelux energy 
market participants, including Fortis Bank, Endesa and RWE. It incorporates the Endex 
Futures Exchange, an electronic market for Dutch and Belgian power futures, and Dutch gas 
futures. Electrabel, Essent and NUON act as liquidity providers. Since the exchange 
launched in 2004 the major interest has been in Dutch power futures, though Belgian power 
markets have also grown. Combined, they rose 156% in year one and grew from 327 TWh in 
2008 to 412 TWh in 2009. Number of transactions in Dutch power for 2009 was 45,900. In 
November 2009, the Endex and Nord Pool take the first steps towards a integrated cross-
border intra-day electricity market. There are many other markets changing rapidly, or 
where futures markets may develop. The U.K., for instance, is currently building a new 
trading model to combat declining liquidity. A considerable amount of spot and forward 
trading takes place on APX Power UK, but all attempts to create a futures market for U.K. 
electricity have failed to attract significant volume. Most market participants have relied 
instead on bilateral contracts traded on the over-the-counter market. The latest initiative is 
Nord Pool and the N2EX market initiative started in 2009/2010. Volume is still an issue also 
for this initiative. European markets are moving towards greater physical integration, with 
more market coupling to increase the efficiency of cross-border interconnectors. Coupling 
between Denmark and Germany is due, with EEX and Nord Pool party to an existing 
agreement. Similarly, the 700MW NorNed interconnector links the Dutch APX market with 
Nord Pool via Norway. The future could well see consolidation among exchanges, 
particularly as cross-border integration becomes more widespread.  
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Table 1. Volume (TWh) and Number of Transactions for European Power markets 

A financial futures contract is a standardised agreement to deliver or receive a specified 
amount of a specified financial instrument at a specified price and date. The instruments are 
traded on organised exchanges, which establish and enforce rules of trading. Futures 
exchanges provide an organised market place where contracts are traded. The marketplaces 
clear, settle, and guarantee all transactions that occur on their exchange. All exchanges are 
regulated and all financial future contracts must be approved and regulations imposed 
before listing, to prevent unfair trading practices. The financial future contracts are traded 
either to speculate on prices of securities or to hedge existing exposure to security price 
movements. The obvious function of commodity future markets is to facilitate the 
reallocation of the exposure to commodity price risk among market participants. However, 
commodity future prices also play a major informational role for producers, distributors, 
and consumers of commodities who must decide how much to sell (or consume) now and 
how much to store for the future. By providing a means to hedge the price risk associated 
with the storing of a commodity, futures contracts make it possible to separate the decision 
of whether to physically store a commodity from the decision to have financial exposure to 
its price changes. For example, suppose it is Wednesday week 9 and a hydro electricity 
producer has to decide whether to produce his 10 MW maximum capacity of electricity from 
his water reservoir, which has a normal level for the time of year, next week at an uncertain 

spot price of S1 or selling short a future contract to day at 1
0F . By selling the future contract, 

the producer has obtained complete certainty about the price he will receive for his energy 
production. Anyone using a future contract to reduce risk is a hedger. But much of the 
trading of futures contracts are carried on by speculators, who take positions in the market 
based on their forecasts of the future spot price. Hence, speculators typically gather 
information to help them forecast prices, and then buy or sell futures contracts based on 
those forecasts. There are at least two economic purposes served by the speculator. First, 
commodity speculators who consistently succeed do so by correctly forecasting spot prices 
and consequently their activity makes future prices better predictors of the direction of 
change of spot prices. Second, speculators take then opposite site of a hedger’s trade when 
other hedgers cannot readily be found to do so. The activity makes futures markets more 
liquid than they otherwise would be. Finally, future prices can provide information about 
investor expectations of spot prices in the future. The reasoning is that the future prices 
reflects what inspectors expect the spot price to be at the contract delivery date and, 
therefore, one should be able to retrieve that expected future spot price. Options are broader 
class securities called contingent claims. A contingent claim is any security whose future 

Power Futures (TWh) Carbon Trading (tonnes) Spot Power (TWh) Cleared OTC power (TWh)

2008 2009 2008 2009 2008 2009 2008 2009

Nord Pool Volume (TWh) 1437 1220 121731 45765 298 286 1140 942

Transactions 158815 136030 6685 3792 70 % 72 % 51575 40328

EEX Volume (TWh) 1165 1025 80084 23642 154 203 n/a n/a

Transactions 128750 114250 4398 1959 54 % 56 % n/a n/a

Powernext Volume (TWh) 79 87 n/a n/a 203.7 196.3 n/a n/a

Transactions n/a n/a n/a n/a n/a n/a n/a n/a

APX/Endex Volume (TWh) 327 412 n/a n/a n/a n/a n/a n/a

Transactions 36150 45900 n/a n/a n/a n/a n/a n/a

* On 1st January 2009, Powernext SA transferred its electricity spot market to EPEX Spot SE and 

on 1st September 2009 EEX Power Spot merged with EPEX Spot. 

* On 1st April 2009, the Powernext SA futures activity was entrusted to EEX Power Derivatives AG.
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payoff is contingent on the outcome of some uncertain event. Commodity options are traded 
both on and off organised exchanges all around the world. Therefore, any contract that gives 
one if the contracting parties the right to buy or sell a commodity at a pre-specified exercise 
price is an option. European Energy Enterprises are all able to trade these securities on 
organised exchanges and OTC markets. Traders and portfolio managers use each of the 
“Greek Letters” or simply the Greeks, to measure a different aspect of the risk in a trading 
position. Greeks are recalculated daily and exceeded risk limits require immediate actions. 

Moreover, delta neutrality ( = 0) is maintained on a daily basis rebalancing portfolios5. To 
use the delta concept, obtain delta neutrality and managing risks can be shown assuming a 
electricity market portfolio for company TK AS in Table 2. One way of managing the risk is 
to revalue the portfolio assuming a small increase in the spot electricity price from €65.27 
per MW to €65.37 per MW. Let us assume that the new value of the portfolio is €65395. A 
€0.1 increase in price decreases the value of the portfolio by €1000. 
 

 

Table 2. Portfolio of Electricity Products in TK AS trading book (daily) 

The sensitivity of the portfolio to the price of electricity is the delta: 
1000

10000
0.1

 
  


. 

Hence, the portfolio loses (gains) value at a rate of €10000 per €1 increase (decrease) in the 

spot price of electricity. Elimination of the risk is to buy for example an extra one year 

(month) forward contract for 10000/8250h (10000/740h) MW. The forward contracts gains 

(loses) value of €10000 per €1 increase in the electricity price. The other “Greek letter” are 

the Gamma
2 ortfolio


 

   
2

P

S
, Vega 

ortfolio



   

P
, Theta 

2 ortfolio

T

 

   

P
, and Rho 

2 ortfolio

 

   

P

i
. Corporations in any market must distinguish between market, basis 

and operational risk. The relevant risk is the market risk and the other risks are those over  

                                                                 
5 Gamma and Vega neutrality on regular basis is in most cases not feasible. 

Portfolio of Electricity Products in Tafjord Kraft book (daily):

Number of MW (000) Spot Prices (€) Value € (000)

Spot position (long normal production): 1000 65.27 65270

Forward contracts

One Year Forward Contracts -100 52.5 -5250

One Quarter Forward Contracts 50 68.23 3411.5

Two Quarter Forward Contracts -200 52.5 -10500

Four Quarter Forward Contracts 150 75.7 11355

One Month Forward Contracts 50 64.55 3227.5

Three Month Forward Contracts -10 58.25 -582.5

Future Contracts

One Week Future Contracts 100 67.25 6725

Two Weeks Future Contracts -50 65.21 -3260.5

Options

Call One Year Forward Options -10000

Put One Year Forward Options 5000

Total value of Portfolio Electricity 65396
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which the company has control6 (internal risk). In classical corporate finance textbooks we 

find the separation theorem (the separation of ownership and management), which 

defines all relevant risk as the market (external) risk while all other risk (internal) is 

diversified away building diversified portfolios. Hence, the trade-off between return 

versus risk (higher expected returns for higher risks) for investors must be separated from 

risk and return for corporations. For an investor the relevant risk is ( , )j mR Rjσ ρ , which 

divided by m  for scaling purposes, defines the   measure (often interpreted as market 

sensitivity). Investors are therefore compensated only for market (systematic) risk. All 

other risks can be diversified away building asset portfolios7. For corporations the 

assumptions of shareholder wealth maximization are imposed. Every investment project 

with a positive net present value (NPV) discounted with the risk adjusted cost of capital 

using the Capital Asset Pricing Model (CAPM ) approach8, should be accepted. 

Operational (non-systematic) risk is irrelevant9. However, there are two important 

arguments among more (in an imperfect world) that can be extended to apply for all risks; 

that is, bankruptcy costs (product reputations, service products, accountants and lawyers) 

and managerial performance. The bankruptcy costs can be disastrous for a corporation’s 

continued operations. It makes therefore sense for a company that is operating in the best 

interest of its shareholders to limit the probability of this value destruction occurring. 

Managerial performance evaluates company performance that can be controlled by the 

executives in the organisation. Idiosyncratic risks not possible to control by company 

executives should therefore be controlled. Hence, limiting total risk may be considered a 

reasonable strategy for a corporation. Many spectacular corporate failures can be traced to 

CEOs who made large levered acquisitions that did not work out. Corporate survival is 

therefore an important and legitimate objective, where both financing and investment 

decisions should be taken so that the possibility of financial distress (bankruptcy costs) is 

as low as possible. To limit the probability of possible destructive occurrences, energy 

corporations monitor market risks (mainly the correlated price and volume risks), basis, 

and operational risk. Even though a corporation manage its Greek letters (delta, gamma, 

theta and vega) within certain limits, the corporation is not totally risk free. At any given 

time, an energy corporation will have residual risk exposure to changes in hundreds or 

even thousands of market variables such as interest rates, exchange rates, equity markets, 

and other commodity market prices as oil, gas and coal prices. The volatility of one of 

these market variables measures uncertainty about the future value of the variable. 

Monitoring volatility to assess potential losses for the corporation is therefore crucial for 

risk management. 

                                                                 
6 All internal risks are included as for example the rogue trader risk and the risk of other sorts of 
employee fraud. 
7 The Arbitrage Pricing Theory (APT) extends the one-factor model (CAPM) to dependence of several 
factors (Ross, 1976). 
8 The CAPM was simultaneously and independently discovered by Lintner(1965), Mossin (1966), and 
Sharpe(1964).  
9 Some companies in an investor’s portfolio will go bankrupt, but others will do extremely well. The 
overall result for the investor is satisfactory. 
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3. Value at risk, expected shortfall, volatility, correlations and copulas 

3.1 Value at risk and expected shortfall 
Value at Risk (VaR) is an attempt to provide a single number that summarizes the total risk 

in a portfolio. VaR is calculated from the probability distribution of gains during time T and 

is equal to minus the gain at the (100 – X)th percentile of the distribution. Hence, if the gain 

from a portfolio during six months is normally distributed with a mean of €1 million and a 

standard deviation of €2 million, the properties from a normal distribution, the one-

percentile point of the distribution is 1 – 2.33 * 2 = €3.66 million. The VaR for this portfolio 

with a time horizon of six months and confidence level of 99% is therefore €3.66 million. 

However, the VaR measure has some incentive problems for traders. A measure with better 

incentives encouraging diversification (Artzner et al., 1999) is expected shortfall also called 

conditional VaR (CVaR). As for the VaR, the CVaR is a function of two parameters: T (the 

time horizon) and X (the confidence interval). That is, the expected loss during time T, 

conditional on the loss being less than the Xth percentile of the distribution. Hence, if the X 

= 1%, T is one day, the CVaR is the average amount lost over 1 day assuming that the loss is 

greater than the 1% percentile. The CVaR measure is a coherent risk measure while the VaR 

is not coherent. 

The marginal VaR/CVaR is the sensitivity of VaR/CVaR to the size of the ith sub-portfolio 

i i

VaR CVaR
and

x x

  
 
  

 and is closely related to the capital asset pricing model’s beta (). If a 

sub-portfolio’s beta is high (low), its marginal VaR/CVaR will tend to be high (low). In fact, 
if the marginal VaR/CVaR is negative, an increase of the weight of a particular sub-
portfolio, will reduce overall portfolio risk. Moreover, incremental VaR/CVaR is the 
incremental effect on VaR/CVaR of the ith sub-portfolio. An approximate formula of the ith 

sub-portfolio is i i
i i

VaR CVaR
x and x

x x

  
 
  

. Finally, using the Euler theorem: 
1

N

i
ii

VaR
VaR x

x




  

and  
1

N

i
ii

CVaR
CVaR x

x




  where N is the number of sub-portfolios. The component 

VaR/CVaR of the ith portfolio is defined as 
i

VaR
i

i

VaR
C x

x





 and  CVaR

i i
i

CVaR
C x

x





. 

Component VaR/CVaR is often used to allocate the total VaR/CVaR to subportfolios – or 
even to individual traders.  
Back-testing is procedures to test how well the VaR and CVaR measures would have 

performed in the past and is therefore an important part of a risk management system.  

Var/ CVaR back-testing is therefore used for reality checks and is normally easier to 

perform the lower the confidence level. Test statistics for one and two-sided tests have been 

proposed (Kupiec, 1995). Bunch test statistics (not independently distributed exceptions) are 

also proposed in the literature (Christoffersen, 1998). Weaknesses in a model can be 

indicated by percentage of exceptions or to the extent to which exceptions are bunched. 

3.2 Volatility, Co-variances/correlations and copulas  
Volatility and correlation modelling of financial markets combined with appropriate 

forecasting techniques are important and wide-ranging topics. Volatility is defined as the 
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standard deviation of variable i’s return ,
,

, 1

ln 100i t
i t

i t

P
y

P 

  
       

 per unit time (t-1, t), where 

Pi,t is the price of asset i at time t. Relative to time horizons, the uncertainty measured by the 

standard deviation increases with the square root of time  t . There are approximately 

252 (trading) days (t) per year. Volatility estimates can normally be obtained from two 

alternative approaches. The first is directly from the Black & Scholes option pricing formula 

(1973, 1976) (implied volatility) and the second is to estimate volatility from historical data 

series and make conditional forecasts. Implied volatility estimates assume an actively traded 

market for the derivatives and therefore an up-to-date price.  

Observing the price in the market, the volatility can be estimated by use of a Newton-

Raphson technique. This technique’s -measure is used extensively by market traders (the 

vega-measure). However, risk management is largely based on historical volatilities. The  

si estimate of standard deviation of returns (yi) is:  2,
1

1

1

n

i i t i
t

s y y
n 

 
    

 , where iy is 

the mean for asset i of the ,i ty  and n is the number of periods. The si variable is therefore an 

estimate of i t . It follows that i itself can be estimated as ˆi , where ˆ i
i

s

t
  and the 

standard error of this estimate can be shown to be approximately 
ˆ

2
i

n


. A corporation that 

has exposure to two different market variables will have gains and losses non-linearly 

related to the correlation between the changes in the variables. The correlation coefficient () 

between two variables R1 and R2, is defined as  
     

   
1 2 1 2

1 2

E R R E R E R

SD R SD R



 , where E() 

denotes expected value and SD() denotes standard deviation. As the covariance between R1 

and R2 can be defined as  1 2E R R     1 2E R E R  the correlation between R1 and R2 can be 

written as 
 

   
1 2

1 2

cov ,R R

SD R SD R
  . Two variables are defined as statistically independent if 

knowledge about one of them does not affect the probability distribution for the other. That 

is, if    2 1 2|f R R y f R   for all y, where f() is the probability density function. However, 

a correlation coefficient of zero between two variables does not imply independence. The 

correlation coefficient measures only linear dependence. There are many other ways in 

which two variables can be related. For example, for the values of R1 normally encountered, 

there is very little relation between R1 and R2. However extreme values of R1 tend to lead to 

extreme values10 of R2. The marginal distribution of R1 (sometimes also referred to as the 

unconditional distribution) is its distribution assuming we know nothing about R2 and vice 

versa. To define the joint distribution between R1 and R2, how can we make an assumption 

about the correlation structure? If the marginal distributions are normal then the joint 

                                                                 
10 The quote is: “During a crisis the correlations seem all to go to one”! 
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distribution of the variables are bivariate normal11. In the bivariate normal case a correlation 

structure can be defined. However, often there is no natural way to define a correlation 

structure between two variables. It is here copulas come to our rescue. Regardless of 

probability distribution shapes, copulas are tools providing a way of defining default 

correlation structures between two or more variables. Copulas therefore have a number of 

applications in risk assessment and management. Formally, a Gaussian copula can be 

defined for the cumulative distributions of R1 and R2, named F1 and F2, by mapping R1 = r1 

to U1 = u1 and R2 = r2 to U2 = u2, where    1 1 1F r N u  and    2 2 2F r N u  and N is the 

cumulative normal distribution function (Cherubini et al., 2004).. This means 

   1 1
1 1 1 2 2 2,u N F r u N F r           and    1 1

1 1 1 2 2 2,r F N u r F N u          . The variables U1 

and U2 are then assumed to be bivariate normally distributed. The key property of a general 

copula is that it preserves the marginal distribution of R1 and R2 while defining a correlation 

structure between them. In addition to the Gaussian copula we also have the Student-t copula 

(the tail correlation is higher in a bivariate Student-t-distribution than that in a bivariate 

normal distribution). For more than two variables a multivariate Gaussian copula can be 

used. Alternatively, a factor model for the correlation structure between the Ui can be used: 

 21i i i iU a F a Z      where F and the Zi have standard normal distributions and the Zi 

are uncorrelated with each other and uncorrelated with F. Other distributions can be used to 

obtain for example a Student-t distribution for Ui (Demarta and McNeil, 2004). Copulas will 

is this paper be used to apply a simple model for estimating the value at risk on a portfolio 

of electricity accounts (households/firms) and to value credit derivatives and for the 

calculation of economic capital. 

To illustrate and implement these market risk management concepts for the European 

energy markets, the Nord Pool and EEX energy markets are quite evolved and liquid 

markets for energy in Scandinavia and central Europe, respectively. In both markets, prices 

for energy are established seven days a week for the spot market and from Monday to 

Friday (not holidays) for the front week/month futures/forwards contracts. Hence, to 

establish the necessary concepts and define volatilities, co-variances and copulas fir these 

markets we use the financial EEX and Nord Pool base and peak load prices from Monday to 

Friday. We use all available prices from Monday to Friday for front week and front month 

contracts in the two energy markets. The price series are shown in Figure 1 (note the change 

in currency from NOK to Euro (€) for contracts with physical delivery after December 31st 

2005). Prices seem to move randomly over time for both markets and contracts and is clearly 

non-stationary. The prices seem to show movements similar to other commodity markets 

and Solibakke (2006) have shown that energy markets seem to exhibit similar features to 

other markets. The EEX markets show a much higher frequency of price spikes and after 

adjusting for NOK and Euro differences the EEX market seem to have higher peak prices 

than the Nord Pool market. Due to the obvious non-stationary prices we calculate the 

returns in percent (logs) and these return series will be the main objects of our 

investigations.  

                                                                 
11 There are many other ways in which two normally distributed variables can be dependent on each 
other. There are similar assumptions for other marginal distributions. 
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When distributions from energy market time series are compared with the normal 

distribution, fatter tails are observed (excess kurtosis). The standardized fourth moment is 

much higher than the normal distribution postulates12. Hence, distributions with heavier 

tails, such as Paretian and Levy are proposed in the international literature for modelling 

price changes. Moreover, the time series from energy markets show sometimes too many 

observations around their mean value and the tails show different characteristics at the 

negative (left) side relative to the positive (right) side of the distribution. In particular, the 

spikes at the EEX market may give some positive skewness to the EEX markets price 

changes.  

 

 

 

Fig. 1. Price series for Nord Pool and EEX. Nord Pool Front Week and Front Month (base). 
EEX front Month (base load) and Front Month (peak load). 

Uni-variate and bi-variate return characteristics, densities (frequency distribution, normal 

distribution and the Epanechnikov kernel), volatilities and correlations for the Nord Pool 

front Week and Month contracts and the EEX Front Month base and peak load contracts are 

reported in Figure 2. For all the density plots (panel A-D) we distinguish three main 

arguments: the middle, the tails, and the intermediate parts (between the middle and the 

tails). When moving from a normal distribution to the heavy-tailed distribution, probability 

mass shifts from the intermediate parts of the distribution to the tails and the middle. As a 

consequence, small and large changes in a variable are more likely than they would be if a 

normal distribution were assumed. Intermediate changes are less likely. The QQ-plots 

confirm this non-normal story for all return distributions. The contract volatilities (panel E-F) 

show clearly different shapes between Nord Pool and EEX. However, the products within 

the same market show similar volatility patterns. The asymmetry (panel G-H) is much 

clearer at EEX than at Nord Pool. In particular, the EEX market seems to exhibit much more   

                                                                 
12 See the first studies of this feature: Mandelbrot (1963) and Fama (1963, 1965). 
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A: Nord Pool Front Week 

 
B: EEX Front Month (base load) 
 
 

    
C: Nord Pool Front Month (base load) 

 
 D: EEX Front Month Peak Load 
 
 

 
 
E: Nord Pool volatility clustering (conditional volatility)

 

 
 
 

F: EEX volatility clustering (conditional volatility) 
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G: Nord Pool Asymmetry Measures (conditional volatility) H: EEX Asymmetry Measures (conditional volatility) 

 
I: Nord Pool: Bivaraite Week-Month Density and Correlation J: EEX: Bivariate Months Density and Correlation 

Fig. 2. Characteristics of Nord Pool and EEX Front Week/Month Forward/Future Contracts 

Nord Pool (www.nordpool.no) and EEX (www.eex.de) 

positive asymmetry, that is – higher volatility from positive than negative price changes. In 

contrast, the Nord Pool week future contract report a low but significant negative 

asymmetry, in line with equity markets where the asymmetry is well known under “the 

leverage effect”. Finally, panels I-J in Figure 2 report the bi-variate relationships in the Nord 

Pool and EEX markets. The distributions for the two markets show similar densities but 
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clearly different mean and standard deviations. The correlations seem at a higher level in 

the Nord Pool bi-variate front week and month contracts relative to the EEX bi-variate front 

month base and peak load contracts. However, in some time periods the correlations are as 

low as 0.23/4 for the Nord Pool market. Generally, the correlation seems high between 

financial instruments within the two energy markets. 

The densities for the energy markets returns suggest heavy tail distributions that have 

relative to the normal distribution, more probability mass in the tails and in the middle, and 

less mass in the intermediate parts of the distribution. That is, small and large price changes 

are more likely and intermediate changes are less likely, relative to a normal distribution. 

An alternative to the normal distribution is the power law. The power law asserts that it is 

approximately true that the value  of a variable has the property that, when x is large 

( )x K x    Prob  where K and  are constants. The extreme Power Law has been found 

to be approximately true for variables at many and diverse applications. The equation is 

useful when we use extreme value theory for risk management purposes and is valuable for 

VaR and CVaR calculations. Extreme value theory can be used to improve VaR estimates 

and to deal with situations where the VaR confidence level is very high. The theory provides 

a way of smoothing and extrapolating the tails of an empirical distribution. 

Gnedenko (1943) stated that, for a wide range of cumulative distributions F(x), the 

distribution of 
( ) ( )

( )
1 ( )

u

F u y F u
F y

F u

 



converges to a generalised Pareto distribution as the 

threshold u is increased. The generalised Pareto distribution is defined with the formula
1

1

, ( ) 1 1
y

G y


  


 
 

   
 

. The distribution has two parameters that have to be estimated 

from the data set  ξ,β . The  parameter is the shape parameter and determines the 

heaviness of the tail of the distribution (a normal distribution has 0 ). The parameter  is 

the scale parameter. Estimating and    can be done with maximum likelihood methods. 

We first differentiate the cumulative distribution function with respect to y and obtain the 

probability density function 

1
1

,

1
( ) 1

y
g y


  

 

 
 

  
 

. We choose first u close to the 95% 

percentile point of the empirical distribution. The focus is for observations x > u. We now 

assume that there are nu such observations and they are (1 )ui n  i . The likelihood 

function becomes: 
 

1
1

1

1
1

un
i

t

u  
 

 



 
  

 
 . Finally maximize its logarithm: 

 
1

1

1

1
ln 1

un
i

t

u  
 

 



 
     
   

 . The probability that u y  conditional on u  is 

,1 ( )G y  . The probability that u  is 1 – F(u). The unconditional probability that 

( )x x u    is now   ,1 ( ) 1 ( )F u G x u      . If n is the total number of observations, an 
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estimate of  1 ( )F u  calculated from the empirical data is un

n
. The unconditional 

probability that >x  is therefore 
 

1

,( ) 1 ( ) 1u u x un n
ob x G x u

n n


  




  

        
 

Pr .  

For the equivalence to the power law, set 



u= and the equation reduces to 

1

( ) un x
ob x

n


 




 

   
 

Pr  so that the probability of the variable being greater than x is -Kx  

(the power law) where 

1

un
K

n





 

  
 

 and 
1


= , implying that the ( )ob x Pr is consistent 

with the power law. To calculate the VaR with a confidence level of q it is necessary to solve 

the equation: ( )F VaR q . We now use 

1

1 1un VaR u
q

n







 

   
 

 so that 

 1 1
u

n
VaR u q

n




 
     

 
. Finally, the expected shortfall13 (CVaR) becomes 

1

VaR u
CVaR

 


  
   

. 

 
 

 

 

Fig. 3. The Power Law: Log plot for Electricity price increases: x is the number of standard  

deviations;  is the electricity price increase/decrease4. Stochastic volatility and risk 
assessment/management 

                                                                 
13 The choice of u does not influence the estimate of ( )ob x Pr much. u should be approximately 

equal to the 95th percentile of the empirical distribution. 
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A test of whether the power law14 holds for the energy markets is to plot  ( )x ln Prob  

against ln x.  For the time series from the energy markets Nord Pool and EEX, define x as the 
number of standard deviations by which electricity prices decreases in one day.  Figure 3 
shows that the logarithm of the probability of the electricity price decreasing by more than x 
standard deviations is approximately linearly dependent on ln x for x > 3. The power law 
therefore seems to hold for energy market applications and we can therefore apply the 
extreme value theory for VaR and CVaR calculations. 

4. Stochastic volatility and risk assessment/management 

4.1 The stochastic volatility model 
The model building approach implies a need for a scientific model for the mean and 
volatility using the MCMC (Markov Chained Monte Carlo) methodology to generate 
distributions for y=P. A stochastic volatility (SV) model provide alternative models and 
methodologies to EWMA and (G)ARCH models. SV models specify a process for volatility 
and in the form used by Gallant et al. (1997) is formulated as: 

 
 
 

 
 
 

0 1 1 0 1 2 1

1 0 1 1, 1 0 2

2 0 1 2, 1 0 3

1 1

2
2 1 1 1 1 2

2
2 1 3 2 1 1 2

3 2 2
2 2
2 3 2 1 1 3

exp( )

1

( ( )) / 1

1 ( ( )) / 1

t t t t t

t t t

t t t

t t

t t t

t t

t

t

y a a y a v u

b b b u

c c c u

u z

u s r z r z

r z r r r r z

u s

r r r r r z



 

 







     

   

   



    

        
 
 

      
 

 

where , 1, 2 3itz i and  are standard Gaussian random variables. The parameter vector is

0 1 0 1 1 0 1 2 1 2 3( , , , , , , , , , , )a a b b s c c s r r r  . The ri’s are correlation coefficients from a Cholesky 

decomposition; enforcing an internally consistent variance/covariance matrix. Early 
references are Rosenberg (1972), Clark (1973) and Taylor (1982) and Tauchen and Pitts 
(1983). More recent references are Gallant, Hsieh, and Tauchen (1991, 1997), Andersen 
(1994), and Durham (2003), see Shephard (2004) and Taylor (2005) for more background and 
references. The model has three stochastic factor and extensions to four and more factors can 
be easily implemented through the model setup. The inclusion of a Poisson distribution to 
model jumps with the use of intensities, are applicable. Long memory can be formulated. 

The long-memory stochastic volatility model can be described as  1
d

tL z
  

1t
u  and 

1
1

L

t j t j t
j

z a z z


  


   , valid for | | 1 /2d  , as described by Sowell (1990). Other extensions 

                                                                 
14 The power law can be rewritten as:  ( ) ln lnx K x    ln Prob  very useful for regressions and 

the observing the possibility of empirically estimating  ln K and  when the measure ln [Prob( > x)] 
can be calculated. 
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of stochastic volatility models for better data fit are possible. Splines and t-errors have for 
example been applied (Gallant and Tauchen, 1997). Liquid financial market normally 
reports a much better model fit introducing three (or more) stochastic factors. The applicable 
extensions will be called upon when needed. 

Note that writing the variance rate (volatility) as:  2 2
1

1

1 m

n i
i

y
m

 


   where 2
iy  is observation i’s 

squared return, is a particularly simple model for updating volatility estimates over time. 

The Exponentially Weighted Moving Average (EWMA) model, where weights i  decrease 

exponentially as we move back through time ( 1 , 0 1i i        ) is such a simple model. 

The formula becomes15: 2 2 2
1 1(1 )i i iy          and can relatively easy be implemented 

by using for example the Excel spreadsheet and the Solver routine. Adding a constant term 

to this equation establish the (G)ARCH (generalised autoregressive conditional hetero-

scedastic) model. However, the number of EWMA/GARCH model reports/papers and the 

simple fact that both methodologies have limited theoretical justifications, the chapter will 

focus exclusively on the scientific SV model implementation for the Nord Pool and EEX 

energy markets. In fact, it is only the SV-model estimation and simulation that makes a bi-

variate Nord Pool – EEX market density estimation possible. The SV-model implementation 

use the computational methodology proposed by Gallant and McCulloch (2010) for 

statistical analysis of a stochastic volatility model derived from a scientific process. The 

scientific stochastic volatility model cannot generate likelihoods (latent variables) but it can 

be easily simulated. The VaR can now be calculated as the appropriate percentile of the 

distribution. The one-day 99.9% VaR for a 100 k simulation P series is the value for the 

100th-worst outcome. The 99.9% CVaR measure is the average of observations below the 

99.9% percentile; that is, the average of the 100 observations.  

4.2 The Nord Pool and EEX front week/month stochastic volatility models 

The ( / )i NP Front Week Month
i,t

3644
y  and the ( / )i EEX Front Month Base Peak Load

i,t

2189
y is 

the percentage change (logarithmic) over a short time interval (day) of the price of a 
financial asset traded on an active speculative market. The SV model implementation 
established a mapping between a statistical model and a scientific model and the adjustment 
for actual number of observations and number of simulation must be carefully logged for 
final model assessment. For the SV model implementation reasonable starting values are 
important. The implementation of the scientific model is a lengthy sequential process which 
is finalized with a 25 CPU parallel computing run applying the Open-message passing 
interface16 (Open-MPI).  

                                                                 
15 To understand why this equation corresponds to weights that decrease exponentially, substitute 2

1i 

with 2 2
2 2(1 )i iu       . The substitution produce:    2 1 2 2

1

1
m

j m
i i j i m

j

u    
 



      . For large 

m the last term 2m

i m    is small enough to be ignored. 

16 Open-MPI is a high-performance, freely available, open source implementation of the MPI standard 
that is researched, developed, and maintained at the Open System Lab at Indiana University 
(www.open-mpi.org). 
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SV model extensions are condition specific. The extensions are analysed from both the score 
model (fk()) and from characteristics of the EMM implementation. The fk() indicates the 
starting values and active SV model parameters for the EMM estimation. The normalised 
scores quasi t-statistics indicate score failures and need for SV model extensions. Finally, the 

Bayesian log posterior 2 test statistic and the Epanechnikov kernel density plots of 
parameters and functional statistics (stats) assesses SV model optimality or fit. These 
optimization routines together with an associated 25 iterative run for a comprehensive 
model assessments, establish the empirical foundation of the Bayesian MCMC estimation 
reports. The implementation of the 3x8-/2x12-core CPUs generates 240,000 simulated paths 

for the stochastic volatility model. The Bayesian MCMC M-H algorithm * optimal model 
from the 24-core CPU parallel run model is reported in Table 3. The mode, mean and 
standard errors are reported for the four series. For all models the optimal Bayesian log 

posterior value is reported together with the 2 test statistic. Moreover, all the score 
diagnostics (not reported) are all well below 2.0 in value17. The first important observation 

from Table 3 is the four 2(df) rejection statistics for the multifactor SV models. None of the 
SV models are rejected at the 5% significance level. Moreover, the model diagnostics do not 
identify score moments that are rejected (> 2). The SV models are therefore found accepted 
for extended commodity market analyses. Table 3 suggests some important differences 
between Nord Pool and EEX. The Nord Pool week contracts show the largest negative drift, 
inducing a positive risk premium that is traded the last week before contract maturity. The 
three other monthly forward products show all lower but negative drift. The volatility 
seems highest for the Nord Pool week contracts (which also have the shortest time to 
maturity)18. Finally, the analysis shows interesting mean – volatility correlation structures 
for the EEX market. The asymmetry is found for both volatility factors. The first factor 
report a positive asymmetry (largest) and the second volatility factor reports a negative 
factor. From the initial plots in Figure 2, the positive factor seems to dominate asymmetry 
for EEX. For the Nord Pool the correlation structure seems close to zero and insignificant. 
That is, asymmetry and non-linearity seems higher for the EEX market than for Nord Pool, 
which is close to negligible.  
The multi-equation SV model reported in Table 3 can now be easily simulated at any length. 

First, Figure 4 reports plot of standard deviation versus returns for the original series with 

3644 observations for Nord Pool (left: panel A and B) and 2189 observations for EEX (right: 

panel C and D) in the upper part of the figures and a simulated series with 100 k 

observations right below. From these plots we can find signs of positive volatility 

asymmetry for the EEX market, while Nord Pool shows little or no volatility asymmetry. 

However, the standard deviations over time (t) seem quite symmetric around negative and 

positive returns for all contracts. The asymmetry coefficients in Table 3, where we find that 

Nord Pool shows close to zero and insignificant asymmetry while the EEX market reports 

significant and positive asymmetry.  

In particular, note that relative to the negative asymmetry found for equity markets the 

asymmetry for the EEX energy market is positive. The positive asymmetry can be explained 

by production/grid capacity constraints. Figure 5 shows volatility scatter plots which are 

                                                                 
17 The standard errors are biased  upwards (Newey, 1985 and Tauchen, 1985)  so the quasi t-ratios are 
downward biased relative to 2.0. Hence, a quasi-t-statistic above 2.0 indicates failure to fit the 
corresponding score. 
18

 See Samuelson (1965) for the volatility hypothesis. 
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plots of yt – yt-1 versus yt-1. The raw data (Nord Pool: 3644 and EEX: 2189 points) are plotted 

in the upper part and a simulated data set (100 k points) is plotted in the lower part of each 

plot. Interestingly, the SV specification seems to mimic the general characteristic of the raw 

time series.  

 
 

 

 

 
 

Table 3. Scientific Stochastic Volatility Characteristics for Nord Pool/EEX: the -parameters 

Front Week Contract Scientific Model. Parallell Run

Parameter values Scientific Model. Standard

 Mode Mean error

a0 -0.3445300 -0.3453300 0.0363680

a1 0.1609800 0.1612400 0.0115440

b0 0.9583000 0.9454000 0.0465370

b1

c1 0.9672900 0.9648300 0.0052904

s1 0.3292400 0.3242200 0.0180660

s2 0.1114500 0.1140200 0.0085650

r1 0.0339180 0.0364510 0.0219700

r2

log sci_mod_prior 3.5624832 2
(6)

log stat_mod_prior 0 -3.32910

log stat_mod_likelihood -4397.58339 {0.13111}

log sci_mod_posterior -4394.02091

Front Month Contract Scientific Model. Parallell Run

Parameter values Scientific Model. Standard

 Mode Mean error

a0 -0.0988820 -0.1009600 0.0222770

a1 0.1534000 0.1518500 0.0154420

b0 0.2070900 0.2071800 0.0344310

b1 0.9567500 0.9570600 0.0061345

c1

s1 0.1167100 0.1169700 0.0084579

s2 0.1366500 0.1366500 0.0329160

r1 0.4152200 0.4163500 0.0920760

r2 -0.2458700 -0.2458700 0.0961530

log sci_mod_prior 4.5115377 
2
(7)

log stat_mod_prior 0 -10.26600

log stat_mod_likelihood -1907.22335 {0.05298}

log sci_mod_posterior -1902.71181

Front Month Contract Scientific Model. Parallell Run

Parameter values Scientific Model. Standard

 Mode Mean error

a0 -0.1179100 -0.1085800 0.0299480

a1 0.1038300 0.1127900 0.0150280

b0 0.8209700 0.8358000 0.0226330

b1 0.7949800 0.7997200 0.0068112

c1

s1 0.2316000 0.2303400 0.0024430

s2

r1

r2

log sci_mod_prior 4.7847347 2
(6)

log stat_mod_prior 0 -3.51990

log stat_mod_likelihood -4488.39850 {0.13323}

log sci_mod_posterior -4483.61377

Front Month Contract Scientific Model. Parallell Run

Parameter values Scientific Model. Standard

 Mode Mean deviation

a0 -0.1490200 -0.1461100 0.0296170

a1 0.1505900 0.1488200 0.0153380

b0 0.4335400 0.4269000 0.0310010

b1 0.9604900 0.9570500 0.0062079

c1

s1 0.1273000 0.1322500 0.0086580

s2 0.2673400 0.2560800 0.0245790

r1 0.5503200 0.5346100 0.0772270

r2 -0.2647600 -0.2786900 0.0522500

log sci_mod_prior 5.1621327 2
(7)

log stat_mod_prior 0 -5.67350

log stat_mod_likelihood -1673.34850 {0.11953}

log sci_mod_posterior -1668.18637
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The mean and variance results for the Nord Pool and EEX energy market contracts are 

summarised below. The Nord Pool week future contracts show a negative daily mean of -

0.323 inducing a yearly negative drift of -81.4% (-0.323 * 252 days). That is, a strategy of 

selling futures Friday the week before maturity and buying back/closing out the last day of 

trading/ at maturity seem to be a very profitable strategy. The high negative drift (risk 

premium) suggests a high yearly return. However, the volatility measured by the daily 

standard deviation is 3.49% indicating a yearly volatility of 55.44%. The Nord Pool one-

month forward contracts have a mean daily drift of -0.134% (-33.85% per year). The 

volatility measured by the daily standard deviation is 2.61% indicating a yearly volatility of 

41.5%. Generally, both the mean and standard deviation numbers from these Nord Pool 

contracts are high for financial markets. The drift numbers for the EEX contracts are for the 

front month base (peak) -0.089 (-0.168) inducing a yearly negative drift of -22.36% (-42.22%). 

The EEX base (peak) month volatility measured by the daily standard deviation is 1.48% 

(2.04%) indicating a yearly volatility of 23.52% (32.41%). 

 

A: Nord Pool Std Deviation vrs Returns Week 
 

C: EEX Std Deviation vrs Returns Month (base) 

B: Nord Pool Std Deviation vrs Returns Month D: EEX Std Deviation vrs Returns Month (peak) 

 

Fig. 4. Nord Pool and EEX Standard deviations versus Returns. 
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A: Nord Pool Front Week Yt-1-Yt vrs Yt-1 C: EEX Front Month (base load) Yt-1-Yt vrs Yt-1 

B: Nord Pool Front Month Yt-1-Yt vrs Yt-1 D: EEX Front Month (peak load) Yt-1-Yt vrs Yt-1 
 
 

 
 
 
 
 
 
 
 

Fig. 5. Nord Pool and EEX Return differences yt – yt-1 versus Returns yt-1. 
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A: Mean Simulations (100 k) 

 
B: Exponential Volatility Simulations (100 k) 

 
C: Volatility Factor Simulations (100 k) 

 

 

   

 
D: Subsamples Volatility Factor Simulations (100 k) 

 
E: Distributional Density Characteristics (100 k) 

 
F: QQ-plot Characteristics (100 k) 

G: 

Nord Pool Covariance Week – Month Contracts 

 
H: Nord Pool Correlation Week – Month Contracts 

Fig. 6. Nord Pool SV model Characteristics for Future Week and Forward Month Contracts 
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A: Mean Simulations (100 k)  

B: Exponential Volatility Simulations (100 k) 

 
C: Volatility Factor Simulations (100 k)  

D: Subsamples Volatility Factor Simulations (100 k) 

 
E: Distributional Density Characteristics (100 k)  

F: QQ-plot Characteristics (100 k) 

 
G: EEX Covariance Month Base-Peak Contracts 

 
H: EEX Correlation – Month Base-Peak Contracts 

Fig. 7. EEX SV model Characteristics for Future Month Contracts (base and peak load) 
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Distributional features of the mean and volatility equations from a functional simulation   
(100 k) of the Nord Pool and EEX commodity markets are reported in Figure 6 (Nord Pool) 
and Figure 7 (EEX). The top plots report a full-simulation of the mean (left) and the 
exponential volatility (right); the middle report the full-sample paths of the two volatility 
factors together with sub-samples for the two volatility factors (right). From the plots to the 
right we see that the first factor reports a quite choppy behaviour with lower persistence 
(solid-line) while the second factor is smoother with higher persistence (dotted-line). The 
result confirms the interpretation of Table 3. The two factors seem to represent quite 
different processes inducing volatility processes that originate from informational flow from 
several sources. In the middle bottom plots (panel E and F) we have reported the densities 
(left) and the QQ-plots (right) for the mean, the two volatility factors and the exponential 
volatility (standard deviation). The one/two volatility factors seem normally distributed 
while the mean have inherited the non-normal features from the original plots in Figure 2 
and the exponential volatility seem log-normal distributed as would be expected using the 
exponential functions for normally distributed variables. Finally in the bottom plots (panel 
G and H) the co-variance is reported in the left plot and the correlation to the right. For both 
markets the correlation seems high with only minor exceptions towards a correlation of 0.25 
for the Nord Pool market and toward 0.5 for the EEX market.  
Irrespective of markets and contracts, Monte Carlo Simulations should lead us to a deeper 
insight of the nature of the price processes that can be described by stochastic volatility 
models. The results are close to the moment based (non-linear optimizers) techniques 
adjusting for a more robust model specification (but at a higher dimension). The Bayesian 

M-H * technique also helps to keep the model parameters in the region where the predicted 
shares are positive. 

4.3 Market risk management measures and the conditional moments forecasts 
For the mean and volatility forecasting we can simply use the fitted SV model in each 
iteration to generate samples for the forecasting period. Point forecasts of the return (yt+1) 

and volatility  1, 1 2 , 1t tv v
e  

are simply the sample means of the two random samples. 

Similarly, the sample standard deviations can be used as the standard deviations of forecast 
errors. The MCMC method produces a predictive distribution of the mean and volatility. 
The predictive distributions are more informative than simple point forecasts. Quartiles are 
readily available for VaR and CVaR calculations for example. Figure 8 reports densities for 
the mean and the exponential volatility for a 100 k simulation of the optimally estimated SV 
models. The percentiles of the densities can be extracted and associated VaR and CVaR 
values are therefore also reported in Figure 8 using percentage notation. From Figure 8 and 

for the Nord Pool week contracts (long positions) the 99.9% VaR (CVaR) is -0,1729 (-0,2165), 
giving an average daily loss of €172,919 (€216,509) for a 1 million Euro portfolio. The 99.9% 
VaR and CVaR for an EEX peak front month contract portfolio of 1 million Euro is €103,044 
and €124,408, respectively. The SV-model results give us also immediate access to the Greek 
Letters (a contract with an exercise price must be quoted). Hence, as VaR and Greek letters 
are accessible for every stochastic run both methods will be available for reporting in 
distributional forms. The VaR and CVaR is calculated using extreme value theory (EVT19) 

                                                                 
19 For applications of the EVT, it is important to check for log-linearity of the Power Law (Prob( > x) = 

Kx-). See section 3.2 above. 
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for smoothing out the tail results. Applying the estimated SV-model for 10 k simulations and 
1 million Euro invested in the front contracts, a maximum likelihood optimization of 97.5%, 
99.0%, 99.5% and 99.9% VaR and expected shortfall (CVaR) calculations are reported in 
Figure 9. The VaR and CVaR densities using EVT are credible, are clearly related to the VaR 
and CVaR values reported using the optimal SV-model percentiles in Figure 8, and the 
density means seem higher. In fact, optimal forecast percentiles are only in the left part of 
the EVT-tails. The EVT-tails of the VaR and CVaR densities must be of considerable interest 
to risk managers engaged in commodity markets. The mean and standard deviation for the 
EVT calculated VaR (CVaR) can be extracted from the underlying distributions. For 
example, from Figure 9,  the Nord Pool week future contracts Var (CVaR) numbers with 
associated standard errors becomes 0.1809;0.0217 (0.2239;0.0332), 0.1243;0.0115 
(0.1604;0.0183), 0.1026;0.0084 (0.1363;0.0139), and 0.0763;0.0052 (0.1069;0.0093) for 99.9%, 
99.5%, 99.0% and 97.5% percentiles, respectively. SV model simulations and the EVT 
calculated VaR and CVaR numbers seem to indicate higher values for both markets and all 
contracts relative to SV optimal forecast model. High volatilities induce risky instruments 
and rather high VaR/CVaR values for the European energy market. 
 
 
 

A: Nord Pool Forecasted Mean Densities  B: EEX Forecasted Mean Densities 
 
 
 

Fig. 8. Forecasted Densities with associated VaR and CVaR values for Nord Pool and EEX 
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A: NP Front Week VaR and CVaR Densities C: EEX FM (base load) VaR and CVaR Densities 

B: NP Front Month VaR and CVaR Densities D: EEX FM (peak load) VaR and CVaR Densities 
Fig. 9. VaR and CVaR (expected shortfall) Densities Nord Pool and EEX using EVT 
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The Greek letters can be calculated for all stipulated contract prices using the Broadie and 

Glasserman formulas (1996). The Gamma () letter is not stochastic but deterministic and can 
be derived using the classical deterministic formula. Applying the estimated SV-model for 10 k 
simulations, the Greek letter densities (delta, (gamma), rho and theta) are reported in Figure 10 
for ATM call and put options (only the delta density is reported). The Nord Pool front week 
call-option delta density for example has a mean of 0.4484 (below 0.5 due to negative drift) 
with associated standard error of 0.0078. Gamma is deterministic and becomes 0.3742. The 
values for rho and theta are 6.5592 and 1.2582 with associated standard errors of 0.1110 and 
0.1653, respectively. Considering the relatively high values for VaR and CVaR in these 
commodity markets there may be some value in a procedure helping the risk management 
activities. Fortunately, a procedure for post estimation analysis and forecasting is accessible. 
The post estimation analysis we will apply is the final and third step described by Gallant and 
Tauchen (1998), the re-projection step (see appendix I). The step brings the real strengths to the 
methodology in building scientific valid models for commodity markets. 
The re-projection methodology gets a representation of the observed process in terms of 
observables that incorporate the dynamics implied by the non-linear system under 
consideration. The post estimation analysis of simulations entails prediction, filtering and 
general SV model assessment. Having the GSM estimate of system parameters for our 
models, we can simulate a long realization of the state vector. Working within this 
simulation, univariate as well as multivariate, we can calibrate the functional form of the 
conditional distributions. To approximate the SV-model result using the score generator 

 ˆ
Kf values, it is natural to reuse the values of the previous projection step. For multivariate 

applications, the optimal BIC/AIC criterion (Schwarz, 78) would be a sufficient criterion. 
The dynamics of the first two one-step-ahead conditional moments (including co-variances) 
may contain important information for all market participants. Starting with the univariate 

case, Figure 11 shows the first moment   0 1|E y x  densities to the left and the second 

moment   0 1|Var y x densities to the right. The first moment information conditional on 

all historical available data shows the one-day-ahead density. This is informative for daily 
risk assessment and management20. To calculate the one-step-ahead VaR and CVaR we 
again use the extreme value theory to smooth out the tails. VaR (CVaR) numbers for the 
contracts are reported in Table 4. For the Nord Pool front week for example the VaR (CVaR) 
for 99.9%, and 97.5% are 3.33 (4.10) and 1.55 (2.06), respectively. The one-day-ahead 
forecasts conditional on all history of price changes and volatilities reduces in this case, the  

                                                                 
20 We use a transformation for lags of xt to avoid the optimisation algorithm using an extreme value in 

xt-1 to fit an element of yt nearly exactly and thereby reducing the corresponding conditional variance 

to near zero and inflating the likelihood (endemic to all procedures adjusting variance on the basis of 

observed explanatory variables). The trigonometric spline transformation is: 

   

   

1/ 2 4 / arctan / 4

ˆ

1 / 2 4 / arctan / 4

         
   


        

    

 

    

i i tr tr i tr

i i tr i tr

i i tr tr tr i

x x x

x x x

x x x

 . The transform has negligible effect 

on values of xi between -tr and +tr but progressively compress values that exceed ±tr so they can be 

bounded by ±2tr. 
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Table 4. Univariate and Bivariate VaR and CVaR measures for Conditional First Moments21 

 
A: NP Front Week Delta Call/Put_ATM Densities

 
C: EEX FM (base) Delta Call/Put_ATM Densities 

B: NP Front Month Delta Call/Put_ATM Densities 
 

D: EEX FM (peak) Delta Call/Put_ATM Densities 

Fig. 10. Greek letter densities (delta, (gamma), rho theta) for Nord Pool and EEX 

                                                                 
21 Greek letters (delta, gamma, rho and theta) are also available from univariate and bivariate 
conditional first moments. For the front week series the delta for a call (put) ATM option contract is 
0.1999 (0.7868). 

Univariate (long positions)

Nord Pool EEX

Confidence Front Week Front Month Base Month Peak Month

levels: VaR CVaR VaR CVaR VaR CVaR VaR CVaR

99.90 % 0.0333 0.0410 0.0240 0.0287 0.0195 0.0245 0.0246 0.0302

99.50 % 0.0237 0.0298 0.0176 0.0216 0.0129 0.0171 0.0171 0.0218

99.00 % 0.0198 0.0256 0.0152 0.0189 0.0107 0.0144 0.0140 0.0186

97.50 % 0.0155 0.0206 0.0122 0.0156 0.0079 0.0111 0.0104 0.0145

95.00 % 0.0124 0.0172 0.0102 0.0134 0.0060 0.0090 0.0080 0.0118

90.00 % 0.0096 0.0140 0.0082 0.0112 0.0043 0.0070 0.0059 0.0093

Bivariate (long positions)

Nord Pool EEX Nord-Pool & EEX

Confidence Front Week Front Month Base Month Peak Month Front Month Base Month

levels: VaR CVaR VaR CVaR VaR CVaR VaR CVaR VaR CVaR VaR CVaR

99.90 % 0.0378 0.0464 0.0343 0.0416 0.0228 0.0285 0.0307 0.0379 0.0150 0.0178 0.0220 0.0275

99.50 % 0.0266 0.0338 0.0240 0.0303 0.0148 0.0197 0.0210 0.0272 0.0114 0.0138 0.0144 0.0191

99.00 % 0.0220 0.0289 0.0201 0.0261 0.0123 0.0166 0.0171 0.0230 0.0099 0.0121 0.0119 0.0160

97.50 % 0.0170 0.0230 0.0155 0.0209 0.0090 0.0128 0.0125 0.0178 0.0079 0.0101 0.0087 0.0124

95.00 % 0.0133 0.0190 0.0122 0.0173 0.0068 0.0103 0.0094 0.0143 0.0064 0.0086 0.0066 0.0099

90.00 % 0.0098 0.0152 0.0092 0.0139 0.0048 0.0080 0.0067 0.0111 0.0048 0.0070 0.0047 0.0077
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VaR and CVaR numbers to approximately 20% of the original unconditional forecasts. 

Moreover, the three bivariate return distributions may add some information to the market 

participants. The bivariate distributions for the Nord Pool and the EEX are plotted to the 

right in Figure 11 and Figure 12 reports the bivariate density for the front month (base load) 

contracts at Nord Pool and EEX. The general conclusions from the bivariate densities of the 

Nord Pool and EEX markets in Table 4 are increased VaR and CVaR numbers. The exception 

is the front month contracts (base load) between the Nord Pool  and EEX markets where we 

find that the Nord Pool market shows a relative strong decrease for the VaR and CVaR 

numbers while the EEX market show a small increase from the univariate analysis. Hence, 

comparing with classical forecasting in Figures 8 and 9, the use of the whole history of 

observed data series implies a significant reduction in the relevant risk indicating relevant 

information from the history of the time series. The use of forecasted conditional first 

moment reduces the VaR and CVaR values with a factor of 0.2. The other side of the picture 

is the daily calculations with often very computer intensive algorithms. 

 
 
 
 

 
A: Re-projected Mean and Volatility NP Week 

 

 
E: Bivariate Re-projected NP Week-Month 

B: Re-projected Mean and Volatility NP Month 
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C: Re-projected EEX Month (base load) 

F: Bivariate Re-projected EEX F-M (base and peak ld) D: Re-projected EEX Month (peak load) 

Fig. 11. Univariate and Bivariate Characteristics for Nord Pool and EEX contracts 

 

 
Fig. 12. Bivariate Characteristics between Nord Pool and EEX. Month (base load) contracts 

For the second moment we find a log-normal distribution. The explicit variance and 

standard deviation distributions are interesting for several applications with a special 

emphasis on derivative computations. However, as we could expect the volatility does not 

change much from the original simulated SV model. The volatility is assumed latent and 

stochastic. However, the filtered volatility, the one-step-ahead conditional standard 

deviation evaluated at data values (xt-1), may give us some extra information. The filtered 

volatility is a result of the score generator (fK) and therefore volatility with a purely ARCH-
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type meaning. Figure 13 shows a representation of the filtered volatility at the unconditional 

mean of the data series. The density displays the typical shape for data from a financial 

market: peaked with fatter tails than the normal with some asymmetry. Figure 13 also plots 

the distributions for several data values (xt-1) from -5%/-5% and +5%/+5%.  Interestingly, 

the largest values in absolute terms of xt-1 have the widest densities. That is, conditional 

mean densities are dependent on the xt-1 observations making one-day-ahead VaR and 

CVaR dependent on historical information. Alternatively, a Gauss-Hermite quadrature 

rule22 can be used and is also reported in Figure 13. Hence, the one-step-ahead filtered 

volatility seems therefore to contain more information than the general SV-model. Based on 

the observation day t it is therefore of interest to use the one-step-ahead standard deviation 

for several applications. The filtered volatility and the Gauss-Hermite quadrature can be 

used for one-step-ahead price of any derivative. 

Figure 13 also reports the conditional variance functions. The conditional variance functions 
are reported for both univariate and bivariate simulated data series. We can interpret the 
conditional variance graphs as representing the consequences of a shock to the system that 
comes as a surprise to the economic agents involved. From the plots we see that the EEX 

responses from positive shocks are higher than from negative shocks. The SV model positive  
signals positive mean and volatility correlation inducing positive asymmetry (higher volatility 
from positive price changes). As noted earlier in this chapter, the asymmetry seems close to 
zero for the Nord Pool market but the EEX market reports clearly positive asymmetry. 
 

 
A: Re-projected Filtered Volatility NP Week 

                                                                 

22 A Gaussian quadrature over the interval  ,  with weighting function  
2 x

W x e  (Abramowitz 

and Stegun 1972, p. 890). The abscissas for quadrature order n are given by the roots xi of the Hermite 
polynomials Hn(x), which occur symmetrically about 0. An expectation with respect to the density can be 

approximated as:    
1

( )



       
npts

j

E g y g abcissa j weight j . 
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B: Re-projected Mean and Volatility NP Month 

E:Bivar Filtered Volatility NP Week-Month 

F:Bivar Filtered Volatility EEX Month(base-peak) 

 
 

 
 

C: Re-projected EEX Month (base load) 
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D: Re-projected EEX Month (peak load) 

 

 

 
G:Bivar Filtered Volatility NP - EEX Month (base) 

Fig. 13. Bivariate Contract Characteristics between Nord Pool and EEX 

The multivariate post estimation analysis gives access to covariances/correlations for any 

simulated series combinations. The number of multivariate series is dependent on problem 

at hand. In this paper we analyse three bivariate 100 k simulated series: (1) the Nord Pool 

one-week future and one-month forward contracts; (2) the EEX base and peak one month 

future contracts, and (3) the Nord Pool and EEX front month (base load) contracts. Bivariate 

forecasts, one-step-ahead conditional mean, volatility and correlations are all interesting 

measures. Figure 13, middle part to the right (panel E, F and G), reports the bivariate 

conditional mean forecasts, dependent on changing historical information (xt-1). The Gauss-

Hermite quadrature adds to the mean density information and finally for all bivariate 

investigations, the conditional variance functions, co-variance functions and correlations are 

reported. The asymmetry story holds also for the bivariate analysis and the co-variances and 

correlations seem to decrease during high volatility periods. The correlation seems 

symmetric and is at its minimum when volatility and price changes (growth) are high either 

negative or positive. Hence, the quadrature and variance/covariance information from the 

post estimation analysis seems to add extra insight to scientifically valid models, the 

VaR/CVaR measures for risk management and Greek letters for portfolio managment. 

Implicitly, Figure 13 panel G reports diversification effects between Nord Pool and EEX. The 

bivariate Nord Pool and EEX analysis report lower VaR and CVaR measures for all 

percentiles of the bivariate distributions relative to the two Nord Pool and EEX univariate 

analyses (front month (base load)). 

Finally, for illustrative purposes and the use of EVT for conditional moments and the 

VaR, CVaR and Greek letters density measures, we perform 5 k SV-model simulations for 

the Nord Pool Front week SV model, extract the conditional density using the fk() score 

model and calculate VaR, CVaR and Greek letters density measures. It takes considerable 

time and computer resources to do this exercise. However, the VaR/CVaR measures are 

interesting. Figure 14 upper right plot shows 30 subsamples of the 5 k front week SV-

model unconditional return density simulations. In the upper right plot, the front week 

conditional density returns are plotted.  In the middle plots of Figure 14 the VaR and 

CVaR measures are reported for the conditional densities. Interestingly, the VaR/CVaR 

density measures are at a considerably lower level than the same unconditional 

VaR/CVaR measures in Figure 9 above. The lower plots in Figure 14 report the Greek 

letter delta densities for call and put ATM options for front week contracts. Interestingly, 

the Greek letter density measures have also changed from the same unconditional 

measures in Figure 10 above. There seems to be some extra information in the conditional 

densities from the SV models. 
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Panel A: Unconditional density plots (30 sub-samples) Panel B: Conditional density plots (30 sub-samples) 

Panel C: VaR from 5 k conditional expectations Panel D: CVaR from 5 k conditional expectations 

 
Panel E: ATM__Call 5 k conditional expectations 

 
Panel F: ATM__Put 5 k conditional expectations 

Fig. 14. (Un-)Conditional expectations, VaR/CVaR measures and Greek letters 

5. The credit and liquidity risks 

The chapter has focused mainly on stochastic volatility models. Other risks often found in 

energy will be briefly discussed and incorporated in the Economic Capital concept. For 

energy enterprises with a large number of customers we will use the one-factor Gaussian 

copula. A energy wholesale and retail company will have a portfolio of account payables for 

short electricity positions from households and industry. The risk for the energy company is 

default of these account payables. We define Ti as the time customer i defaults (we assume 

that all customers will default eventually, but the default time may be many years into the 

future.) We denote the cumulative probability distribution of Ti by Qi.  In order to define a 
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correlation structure between the Ti using the one-factor Gaussian copula model, we map, 

for each i, the default time Ti to a variable Ui that has a standard normal distribution on a 

percentile-to-percentile basis. For the correlation structure between the Ui, we assume the 

factor model  21i i i iU a F a Z      where F and the Zi have standard normal 

distributions and the Zi are uncorrelated with each other. The mapping between the the Ui 

and the Ti, imply that Prob (Ui < U) = Prob (Ti < T), when U = N-1[Qi(T)]. Now using the one 

factor model which we can write as 

 21

i i
i

i

U a F
Z

a

 



, the probability that   Ui < U conditional 

on the factor value F is  
 2

|
1

i i
i i

i

U a F
U U F Z

a

 
     
 

 

Prob Prob
  21

i i

i

U a F
N

a

 
    
 

 

.  

Finally,    

 
1

2
|

1

i i
i i

i

N Q T a F
T T F Z

a

 
        

 
 

Prob Prob . Assuming that the time to default 

Q, is equal for all i and equal Q and that the copula correlation between the default times of 

any two customers is the same and equal ., inducing that ia   for all i. Hence, we have 

 |iT T F Prob  
 1

iU F
N




   
  

. When the customer portfolio is larger the  

expression provides a good estimate of the percentage of customers defaulting  
by time T conditional on F. Therefore, we have defined the probability Y that the  

default rate will be greater than 
 

 

1 1( )

1

iN Q T N Y
N





       
  

 and therefore

   
 

1 1( )
, (1 )

1

iN Q T N X
VaR T X AP R N





          
  

, where X is the confidence level and 

Y=1-X, and AP is accounts payable. The probability for an energy enterprise with €250 of 
retail exposures, probability of default is 4%, the recovery rate averages 75% and the copula 

correlation parameter is  = 0.25, is 
 

 

1 10.04 (0.999)
0.40618

1

N N
N





     
  

. Losses 

with one-year time horizon and a 99.9% confidence level when the worst case loss rate 

occurs are therefore:  1,99.9% 250 (1 0.75) 0.40618 €25.387VaR      . For a confidence level 

of 97.5% the VaR will become €11.672  250 (1 0.75) 0.18675   . Several other methodologies 

for credit risk and default rates are available. For the default rate the Merton (1974) model, 
where we use equity prices and option theory to estimate default probabilities, is useful. The 
Credit Risk Plus software from Credit Suisse Financial23 Products and CreditMetrics from 
J.P. Morgan24 are commercial tools for the risk calculations.  

                                                                 
23 See www.credit-suisse.com/investment_banking/holt/ 
24 See www.jpmorgan.com/pages/jpmorgan/  
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Finally, liquidity risk is the cost of liquidation in stressed market conditions within a certain 
time period. Bid-ask spread is normally a good measure for unwinding positions. If we 
define ai and si as the mean and standard deviation of the proportional bid-ask spread, we 

can write the cost of liquidation as  
1

1

2

n

i i i
i

  


 , where i is the required confidence 

level (1% = 2.33) and i is the size of the instrument/commodity. A liquidity adjusted VaR 

can therefore be calculated as  
1

1

2

n

i i i
i

VaR   


  . 

6. Economic capital and RAROC for European energy enterprises 

Economic or Risk Capital is defined as the amount of capital an energy company needs to 

absorb over a certain time horizon (usually one year) with a certain confidence level 

(Rosenberg and Schuermann, 2004). Confidence levels should be chosen based on credit 

ratings. An energy corporation usually wants to establish and maintain an AA-rating., 

which normally have a one-year probability of default of 0.03%. That is, a confidence level of 

99.7%. Note that when we calculate the risk capital, this means that we want to have enough 

economic resources inside and outside the company to cover unexpected losses. Unexpected 

loss is the difference between expected and actual loss, so that expected losses are already 

priced in the corporation’s capital structure. Hence, the risk capital for a corporation that 

want to maintain an AA rating is the difference between expected loss and the 99.7% point 

on the probability distribution of losses. 

Due to the fact that energy companies are not publicly traded companies and equity prices 

therefore is rarely available for estimation of default probabilities, the approach most often 

used estimates different types of risk in different business units and then aggregates to 

measure total or overall risk. This mainly means that we calculate probability distributions 

for total losses per type or total losses per business unit. At the end a final aggregation gives 

a probability distribution of total losses for the whole corporation. For an energy 

corporation market risk (price and volume), basis risk (locational/time risk), and 

operational risk (operational and legal) is the three main risk classes. 

We use two approaches. The first is the simple Hybrid approach the second is the use of 
copulas to facilitate correlation structure between market variables (the copula approach). 
For the remaining example we apply fictive capital estimates for the different risks/business 
units. We assume three business areas for example hydro-power productions with market 
(price and volume) and operational risk, a network division and telecommunication 
division with market and operational risk. Typical shapes of loss distributions for market 
risk is close to the normal distribution while the operational risk may have quite extreme 
shape. Most of the time losses are modest, but occasionally they are large. A distribution can 
be characterized by the second, third and fourth moments. The following table summarizes 
the properties of typical loss distributions: 
The business mix is clearly the most important factor for the relative importance. For an 

energy company also trading derivatives market risk, basis risk and operational risk are all 

important. Moreover, we find interactions between market, basis and operational risk. 

When a derivative is traded for example, and the counterparty defaults, operational risk 

exists only if market variables have moved so that the value of the derivative to the financial 
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institution is positive. A corporation in the energy sector has the following economic capital 

(E) estimates (Panel A) and correlation (Panel B) between market, basis and operational risk 

for three business units in Table 5: 

 

 Second Third  Fourth 

 Moment Moment Moment 

Market risk High Zero Low 

Basis risk Low High Zero 

Operational risk Low High High 

 

 

 

Table 5. Economic Capital and Relevant Risk for a European Energy Enterprise 

The correlation is checked for consistency using Cholesky decomposition. The hybrid 
approach involves calculating the economic capital for the individual risks using 

1 1

n n

total i j ij
i j

E E E 
 

    which is exactly correct if the distributions are normal. When they 

are non-normal, the hybrid approach gives an approximate answer – but one that reflects 
any heaviness in the tails of the individual loss distributions. Economic capital can be 
calculated in several ways. The market risk economic capital for the hydropower, network 

and telecommunication units:  2 2 2150 45 82 2 150 45 0.4 150 82 0.3 45 82 0             

and equals 233.41. The basis risk economic capital for the three business units becomes 
159.37 and the operational risk becomes 98.32. The risk capital for the hydropower 

Panel A Business Units (billion €)

Hydro power Network Telephone

Economic Capital generation (B1) operation (B2) communication (B3)

Market risk (M) 150 45 82

Basis Risk (B) 95 38 50

Operational Risk (O) 55 25 34

Panel B  Correlation

Structure MB1 BB1 OB1 MB2 BB2 OB2 MB3 BB3 OB3

MB1 1 0.35 0.2 0.4 0 0.1 0.3 0 0.05

BB1 0.35 1 0.15 0.15 0.25 0.25 0.05 0.1 0

OB1 0.2 0.15 1 0.15 0 0.2 0.1 0.1 0

MB2 0.4 0.15 0.15 1 0.2 0.1 0 0 0.1

BB2 0 0.25 0 0.2 1 -0.1 0.1 0.2 0.05

OB2 0.1 0 0.2 0.1 -0.1 1 0 0.1 0

MB3 0.3 0.05 0.1 0 0.1 0 1 0.1 0

BB3 0 0.1 0.1 0 0.2 0.1 0.1 1 0.05

OB3 0.05 0 0 0.1 0.05 0 0 0.05 1
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generation unit is 245.34. The total risk capital for the network unit is 108.19, the 
telecommunication unit is 133.94, and the total enterprise wide risk capital becomes: 299.73. 
We find significant diversification benefits. The sum of the economic capital estimates for 
market, network and telecommunication risk is 233.41+159.37+98.38 = 491.09 and the sum of 
the economic capital estimates for three business units are 245.34+108.19+133.94 = 487.48. 
Both of these are greater than the total economic capital estimate of 299.73. These economic 
capital estimates are exactly correct.  
The second approach is the use of copulas for the different risk measures. We will apply 

both normal copulas and Student-t copulas for the calculation of Economic capital. In this 

example we assume the same correlation structures as for the hybrid approach and we 

consider nine factors (market, basis and operational risk for 3 business unit) represented 

with a mean and standard deviation. We perform Monte Carlo simulations assuming 

normal and for the illustration of heavy tails, student-t distributions with 4 and 2 degrees of 

freedom for illustrational purposes. MC can also easily incorporate asymmetry (not 

reported). The procedure is as follows. From any original distribution each loss distribution 

is mapped on a percentile-to-percentile basis to a standard well-behaved distribution. A 

correlation structure between the standard distributions is defined and this indirectly 

defines a correlation structure between the original distributions. The copula therefore gives 

us well-behaved distributions classified as multivariate Gaussian or multivariate student-t. 

We simulate 100 k iterations for each Etotal. For the normal distributions we find a Etotal of 

305.06 with an associated standard deviation of 47.48. The student-t distribution with 4 

degrees of freedom shows a mean of 304.21 with associated standard deviation of 51.82. The 

student-t distribution with 2 degrees of freedom reports a mean of 318.58 with associated 

standard deviation of 222.41. Finally, we calculate the VaR and CVaR densities from 10 k 

MCMC iterations. The VaR (upper) and CVaR (lower) for 99.9% 99.5%, 99.0% and 97.5% 

confidence levels are reported in Figure 15 for the normal, student-t with 4, and student-t 

with 2 degrees of freedom, respectively. For the normal distribution and VaR (CVaR) 99.9% 

confidence level the mean is 453.08 (467.08) with associated standard deviation of 6.4 (8.4). 

For the student-t with 4 df (2df) the VaR 99.9% mean is 668.57 (2423.9) with associated 

standard deviation of 48.6 (512.9). The student-t distribution with 2 degrees of freedom 

shows quite a large VaR/CVaR expected loss. Alternatively, the standard deviation of the 

total loss from n sources of risk can be calculated directly from the relation 

1 1

n n

total i j ij
i j

   
 

   where i is the standard deviation of the loss from the ith source of 

risk and ij is the correlation between risk i and j. For our example with three risks and 3 

business units the total becomes 99.35. From the relationships we can calculate the capital 

requirements. For example, the excess of the 99.9% worst case loss over the expected loss is 

3.09 (normal distribution) times the number calculated for total . The same worst-case loss 

numbers for a one-sided student-t-distribution is 7.17 and 22.33 for 4 and 2 degrees of 

freedom, respectively. For the normal distribution for example we get a worst case loss of 

647.43, which is 342.4 (99.35* 3.44) over the expected loss of 305.03.  

As for the Hybrid approach, the MC mean/mode economic capital (risk) shows 

considerable diversification effects also by using the copula approach. From an assumption 

of 574 separately for the total economic capital the correlation structure report 
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diversification effects lowering the total economic capital to approximately 305 as the new 

risk measure for the corporation as a whole. Capital requirements at 99.9%, 99.5% and 99% 

worst-case loss scenarios for the corporation become 450.69, 434.64 and 414.88, respectively, 

for the normal distributions case. For the student-t distribution with two (four) degrees of 

freedom illustrating a medium (an extreme) heavy tail case, the excess 99.9% and 99.0% 

worst case losses grows to 1131.8 (931.4) and 464.1 (424.6), respectively.  

 

 
 

 
 

 
 

 

 
 

 

Fig. 15. Distributions of VaR and CVaR for Normal and Student-t distributions  

The diversification benefits are to be allocated by an amount i
i

E
x

x





 to the ith business unit, 

where E is the total risk capital and xi is the investment in the ith business unit. By using the 
Euler’s theorem we ensure that the total of the allocated capital is E. Euler’s theorem says:  
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1

( )N

i
iI

VaR
VaR x

x




  where N is the number of components. We can therefore set 

( )
i i

i

VaR
C x

x





 where Ci is the component VaR for the ith component. We define Ei as the 

increase in the total risk capital when we increase xi by xi. A discrete approximation for the 

amount   allocated to business unit i becomes: i

i

E

y




 where ( )ob x Pr . When we increase 

the size of the hydropower generation by 1% its economic capital amounts for market, basis 
and operational risk increases to 151.5, 95.95, and 55.55, respectively. New economic capital 

(hybrid approach) becomes 301.75, so that EHP = 301.75 – 299.73 = 2.02. Increasing the size 
of the network division by 1%, implies an increase in the economic capital for market, basis 

and operational risk to 45.45, 38.38 and 25.25, respectively. The total economic capital 

becomes 300.11, so that ENT = 300.11 – 299.73 = 0.38. The numbers for telecommunication is 

ETC = 300.33 – 299.73 = 0.60. The economic capital allocation gains are therefore divided 
between hydropower generation, network, and telecommunication by 2.02/0.01 = 202, 
0.38/0.01 = 3825, and 0.30/0.01=60, respectively.  

7. Summaries and conclusions 

The paper set out to measure volatility/correlation and market/operational risks for a 
general corporation in European energy markets. Starting with a relevant risk discussion the 
corporation may perform risk analysis based on either the argument of asymmetric 
information relative to owner or based on costs related to financial distress/bankruptcy 
costs. 
For the Nordpool and the EEX energy markets the paper shows estimates of product and 
market volatility/correlations and makes one-step-ahead forecasts. The paper performs a 
model-building approach applying Monte Carlo simulation. Stochastic volatility models are 
estimated and simulated for risk management purposes. From the power law, the extreme 
value theory are used for VaR and CVaR calculations (smoothing out tails). The normal 
distribution assumptions make these analyses a relatively easy exercise for VaR and CVaR – 
distributions. Non-normality can be easily implemented applying Copulas. Finally, risk 
aggregation is shown for market and operational risk for normal as well as student-t 
distributions. 

8. Appendix I : The theory of reprojection and the conditional mean densities 

Having the SV model coefficients estimate ˆ
n  at our disposal, we can elicit the dynamics of 

the implied conditional density of the observables    0 1 0 1
ˆˆ | ,..., | ,..., ,L L np y y y p y y y     . 

Analytical expressions are not available, but an unconditional expectation 

     
0

ˆ 0 0
ˆ... ,..., ,..., , ...

Ln
L L n y yE g g y y p y y d d 

     can be computed by generating an 

simulation  ˆ N
t t L

y


 from the system with parameters set to ˆ
n  and using 

                                                                 
25 Does not equal the total economic capital of 299.73, because we approximated the partial derivatives. 
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   ˆ ˆ ˆ1 / ,...,
n

t L tE g N g y y   . With respect to unconditional expectation so computed, 

define  ˆ 0 1

arg max
ˆ log | ,..., ,

K n
K K LE f y y y  

  


, where  0 1| ,..., ,K Lf y y y    is the SNP 

score density. Now let    0 1 0 1
ˆ ˆ| ,..., | ,..., ,K L K L Kf y y y f y y y     . Theorem 1 of Gallant and 

Long (1997) states that    0 1 0 1
ˆ ˆlim | ,..., | ,...,K L L

K
f y y y p y y y   


 . Convergence is with 

respect to a weighted Sobolev norm that they describe. Of relevance here is that 

convergence in their norm implies that ˆ
Kf  as well as its partial derivatives in 

 1 0,..., ,Ly y y   converges uniformly over  , 1M L    , to those of p̂ . They propose to 

study the dynamics of p̂  by using ˆ
Kf  as an approximation. The result justifies the 

approach. 
Hence, the conditional mean density is from 5 k iterated use of the re-projection procedure. 

For every simulation from the normally distributed coefficients, re-projected scores 

 0 1
ˆ | ,...,K Lf y y y  are estimated and the conditional moments (mean and variance) and the 

filtered volatility are reported. The power law is also evaluated for the conditional mean 

series. Figure 16 report the power law test results for simulated and conditional mean 100 k 

data series. The power law seems to work well for both markets and the four series. 

 

 

( )ob x Pr  

Fig. 16. The Power Law for SV-simulated and Conditional mean series: Log plots for return 

increases:  x is the number of standard deviations ;  is the NP / EEX price 
increases/decreases. 
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