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1. Introduction 

Diabetes, notably type 2 diabetes, is a major and prevalent health problem with a minimal 

current estimate of 250 million sufferers worldwide, a prediction of 366 million by 2030 and, 

based on the evidence of numerous reports, we can also anticipate an excessive morbidity and 

mortality rate in this population primarily as a result of cardiovascular disease (Kannel & 

McGee, 1979; Wild et al., 2004).  As reflected by the data from the 1991 United Kingdom 

Prospective Diabetes Study, UKPDS, with 5102 subjects with type 2 diabetes, and the 1993 

Diabetes Control and Complications Trial, DCCT, with 1441 type 1 diabetics, the established 

dogma for the best form of management for patients with diabetes is tight glycaemic control 

(DCCT 1993; UKPDS 1991, 1998). Such conclusions have been re-emphasised as reflected by a 

report by Standl and colleagues (2009) indicating that the incidence of cardiovascular events 

associated with diabetes is reduced by 10-15% per 1% reduction in absolute glycated 

haemoglobin, HBA1c, levels. In addition, the Emerging Risk Factors Collaboration (ERFC) 

study, a collaborative meta-analysis of 102 prospective studies, made the observation that the 

pre-existence of diabetes enhanced the risk of vascular disease more than two fold (ERFC, 

2010). Furthermore, the ERFC study of 820,900 participants also concluded that a 50-year-old 

with diabetes died approximately 6 years earlier than a person without diabetes and that 

diabetes was moderately associated (but not necessarily causality) with death from certain 

cancers such as liver, pancreas, bladder, breast, colorectal, lung and ovary as well as other 

causes including infectious diseases, degenerative disorders and others (ERFC, Seshasai et al 

2011). Nonetheless, a ‘glucocentric’ approach to the treatment of diabetes was delivered a 

setback with the results, released in 2007, from the Action to Control Cardiovascular Risk in 

Diabetes, ACCORD study of 10,251 patients. The intensified glucose lowering arm of the 

ACCORD study with 5,128 patients targeted glycated haemoglobin, HBA1c, of <6% was 

discontinued when it became apparent that such an intensive regimen resulted in a 

significantly higher all-cause risk of death of 22% and a 35% increase in cardiovascular 

mortality (Gerstein et al., ACCORD, 2008).  In contrast, data from the Action in Diabetes and 

Vascular Disease, ADVANCE, that was released shortly after that from the ACCORD study 

provided no evidence of an increased mortality amongst the 11,140 high-risk patients who 

were randomly assigned to either standard or intensive glucose control (HbA1c of 6.5 or less) in 

the study, but also reported a 10% reduction in combined micro- and macrovascular events 

(ADVANCE 2008). Similarly for the Investigators in the Veterans Affairs Diabetes Trial, 
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VADT, wherein 1791 military veterans were subjected to either an intensive or a standard 

therapy for glycaemic control no significant increase in mortality was noted, but there was no 

significant reduction in microvascular events excepting a reduction in the progression of 

albuminuria (Duckworth et al., 2009). 

Although, initially, it appeared that no one particular subgroup in the ACCORD study had 

a particularly higher mortality, independent concerns have been raised concerning an 

elevated cardiovascular risk with some of the drugs used in these studies, for instance as 

reported in the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of glycaemia 

in Diabetes, RECORD, study (Goldfine 2008; Komajda 2010). New information also indicates 

that additional post-hoc subgroup analysis from the ACCORD trial may be helpful in the 

identification of sub-groups (Calles-Escandon, 2010). In addition, the meta analysis 

performed by the Collaborators on Trials of Lowering Glucose, CONTROL, on the data 

from the ACCORD, ADVANCE, UKPDS and the VDAT trials concluded that a more 

intensive glucose-lowering regimen did reduce, albeit modestly, major cardiovascular 

events in patients with type 2 diabetes, but increased major hypoglycaemic episodes 

(Turnbull et al., 2009). Issues over the make up of the patient groups versus the onset of 

diabetes have also been raised, as have questions over the benefits of intensive glycaemic 

control versus cholesterol and/or blood pressure lowering (ACCORD 2010a,b; Emanuele, 

2010; Nilsson 2010; Yudkin & Richter, 2010). A 2009 meta analysis of 5 trials that addressed 

intensive control of glucose and cardiovascular outcomes indicated that intensive compared 

with standard glycaemic control did significantly reduce coronary events without an 

increased risk of death; however, population variability may be evident regarding the 

optimum mechanism, speed, and extent of reduction (Ray et al., 2009).  Putting all of these 

data sets together and considering the conclusions from a number of meta-analysis and 

subgroup analysis that have been completed and reviewed one can conclude that the 

management of glycaemia remains central to the treatment of patients with diabetes and 

important for reducing cardiovascular disease risk, but individualised treatment is to be 

preferred (Mazzone, 2010).  This conclusion is supported by the 2011 recommendations 

made by the American Association of Clinical Endocrinologists (AACE) (Handlesman et al., 

2011). Nonetheless questions remain as to how to optimise the treatment protocols for the 

better protection of patients with diabetes from cardiovascular disease as well as stroke.  

To summarize, although further analysis and potentially new studies are required what 

does remain clear is that the morbidity and mortality associated with diabetes 

predominantly reflect cardiovascular pathophysiological sequelae that result in a 2- to 4-fold 

increase in the incidence of coronary artery disease, a 10-fold increase in peripheral vascular 

diseases and a 3- to 4-fold increase mortality rate that, primarily, reflect a doubling of the 

risk of vascular disease (Grundy et al 2002; ERFC 2010).  

2. Diabetes, cardiovascular disease and endothelial dysfunction 

Changes in the function of the endothelium are argued to be early indicators of the onset of 
vascular disease including that associated with diabetes and, as an example, are apparent 
prior to the detection of atherosclerotic plaque development (McLenachan et al., 1990; 
Werns et al., 1989). Endothelial dysfunction is frequently defined as a reduced endothelium-
dependent vasodilatation (EDV) response to either an endothelium-dependent vasodilator, 
such as acetylcholine or bradykinin, or to flow-mediated vasodilatation. This functional 
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definition of endothelial dysfunction is one that can be readily demonstrated using the 
methodology first described by Furchgott and Zawadzki in their 1980 in vitro study of 
endothelium-dependent relaxation to acetylcholine in rabbit aortae and has been extended 
to include wire and pressure myography studies in small arteries from animals as well as 
man. In humans, both non-invasive and invasive techniques have been applied to measure 
both vasodilator and flow-mediated vasodilatation and the data generated have advanced 
our understanding of the pathophysiology of coronary artery disease in humans (Anderson 
et al., 1995; Bohm et al., 2005).  It is not just the vasodilatation response that is decreased or 
lost, but, in addition, an increased expression of adhesion molecules including the soluble 
adhesion molecules, sE-Selectin and sICAM-1, pro-inflammatory molecules, altered 
regulation of smooth muscle cell proliferation and the development of a procoagulatory 
state. Increased levels of the soluble adhesion molecules, sE-Selectin and sICAM-1, and also 
the endothelium-specific marker, soluble thrombomodulin have been determined by 
biomarkers for the risk and severity of diabetes-associated coronary artery disease and 
cardiovascular disease in general (Constans 2006; Thorand 2006).   Thus, a revised and 
broader definition of ‘endothelial dysfunction’ is required and has been suggested by 
Triggle & Ding (2010):  
“Endothelial dysfunction reflects a reduced (EDV) response to either an endothelium-dependent 
vasodilator, such as acetylcholine (or bradykinin), or to flow-mediated vasodilatation that is 
accompanied by elevated expression of adhesion molecules, enhanced vascular smooth muscle 
proliferation and the development of a hypercoagulatory state.” 
Endothelial dysfunction has been demonstrated in a number of studies to be both an early 
indicator of vascular disease and a predictor of a future cardiovascular event (see Esper et 
al., 2006). Furthermore, endothelial dysfunction in diabetes has been linked to 
hyperglycaemia- and hyperlipidaemia (hypertriglceridemia)-induced oxidative stress as 
demonstrated in both human and animal studies (Ceriello et al., 2002; Monnier et al., 2006; 
Triggle et al., 2005). Furthermore, high glucose induces both premature senescence and 
reduces total numbers of endothelial progenitor cells (EPCs) and thus impairs both repair 
and angiogenic processes (Balestrieri et al., 2008). Endothelial cells normally have a 
relatively long turnover rate that has been stated to be approximately three years, however, 
damage to the endothelium results in replacement by regenerated cells that may not have 
the same properties as normal endothelial cells (Brandes et al., 2005; Vanhoutte, 2010). 

2.1 Hyperglycaemia and endothelial dysfunction 
Elevated glucose levels acutely as well chronically affect vascular function. Acute effects 
include a rapid loss of flow-mediated EDV in humans with a pronounced delayed recovery 
in type 2 diabetes that most likely reflects a glucose-induced uncoupling of endothelial nitric 
oxide synthase (eNOS) secondarily to the oxidation of the key eNOS co-factor 
tetrahydrobiopterin (BH4) (Ihlemann, 2003; Kawano et al, 1999; reviewed by Ding & Triggle, 
2010).  A key observation is the ratio BH4 to BH2 (oxidised product of BH4) that is critical for 
eNOS function as BH4 and BH2 bind with equal affinity to eNOS and hyperglycaemia 
promotes BH4 oxidation (Crabtree et al., 2008). Studies with the db/db leptin receptor 
mutant diabetic mouse also substantiate the important role of the BH4/BH2 ratio in 
endothelial function (Pannirselvam et al., 2002; 2003; 2006). Simply supplementing with BH4 
in the presence of hyperglycaemia may not improve eNOS function, or at best only acutely, 
as persistent hyperglycaemia will, via enhanced superoxide production, oxidise BH4 to BH2. 
Interestingly ascorbic acid, but not vitamin E, helps stabilize BH4 and increases eNOS 
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activity of aortic endothelial cells from ApoE-deficient mice (d’Uscio et al., 2003) and also 
porcine endothelial cells (Huang et al., 2000). 
Under hyperglycaemic conditions the glycolytic and oxidative phosphorylation pathways 
are overloaded and the result is the shunting of glucose and the intermediates of glucose 
metabolism, namely fructose 1,6 biphosphate and glyceraldehyde 3 phosphate, into pro-
oxidative stress pathways such as hexosamine metabolism, sorbitol metabolism, protein 

kinase C activation, -ketoaldehyde formation and methyglyoxol/advanced glycated end 
product (AGE) formation (Robertson, 2005). In addition, glucose in the physiological 
range of 4 to 10mM, following metabolism and protein kinase C activation, rapidly 
depresses voltage-gated potassium channel, Kv, currents in rat mesenteric myocytes and 
inhibits Kv channel modulation by endothelin-1 (Rainbow et al., 2006). Kv channels are 
key regulators of vascular tone (Knot and Nelson, 1995; Cole et al., 2005) and thus 
glucose-induced reduction of Kv channel activity would have profound effects on blood 
flow, glucose disposal and ultimately could contribute to the development of insulin 
resistance and hyperglycaemia-linked vascular disease (Straub and Nelson, 2006). 
Calcium homeostasis is also affected and exposure of primary endothelial cells for 24-72 
hours to high glucose also alters Store-Operated Ca2+ Entry (SOCE) and has been 
associated with changes in expression of the Transient Receptor Potential Channel 1 
(TRPC1) (Bishara and Ding, 2010). Comparable changes have been reported in the 
expression levels of TRPC1 and also another Store-Operated Ca2+ Channel protein, STIM1, 
in the coronary artery of of the Ossabaw pig model of diabetes (Edwards et al., 2010). An 
increase in expression levels of TRPC1 has also been associated with vascular disease and 
injury thus suggesting that alterations in SOCE may be closely associated with the 
development of vascular disease and thus, potentially, another target for therapeutic 
intervention (Kumar et al., 2006; van Breemen et. al., 2006). 

2.2 Postprandial hyperglycaemia is an important risk factor 
The importance of postprandial regulation of blood glucose as a determinant of the impact 

of hyperglycaemia on vascular function is receiving increasing attention (Ceriello 2005; 

Woerle et al., 2007; Aryangat & Gerich 2010) and another confounding influence seems to be 

that the impact of oscillating levels of glucose on endothelial function may be more 

damaging than sustained high glucose (Ceriello 2008a). Indeed, a high postprandial glucose 

‘spike’ starting from a lower basal fasting glucose may be more damaging than that 

produced by the equivalent ‘spike’ level, but starting from a higher basal glucose simply 

because it is the extent of the change in glucose that determines the degree of endothelial 

dysfunction (Ceriello, 2008b). Data from the RIAD study (Risk Factors in Impaired Glucose 

Tolerance for Atherosclerosis and Diabetes) also indicated that the postprandial glucose 

‘spike’ is a better predictor of carotid artery intima-media thickness (a measure of 

atherosclerosis) than fasting glucose or HbA1c (Hanefield et al., 2000; Temelkova-Kurtschiev 

et al., 2000). Thus, collectively these data indicate that reducing the extent of post-prandial 

excursions in blood glucose should reduce cardiovascular events. 

2.3 Consequences of chronic hyperglycaemia 
Chronic exposure to high glucose results in the non-enzymatic formation of AGEs, alters 
proteasome function, as well as produces epigenetic changes in histone methylation and 
demethylation that, secondary to glucose-induced elevated oxidative stress, result in 
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persistent gene activation that likely forms the basis for the development of ‘hyperglycaemic 
memory’ (Brasacchio et al., 2009; Cognali, 2008; Queisser et al., 2010; Vlassara & Palace, 
2002). Hyperglycaemic memory is a serious consequence of a lack of adequate glycaemic 
control as, despite restoration of normoglycaemia, vascular disease continues to progress 
(reviewed by Triggle & Ding, 2010). Figure 1 summarizes the potential contributions of 
AGEs and epigenetic changes to the development of hyperglycaemic memory, pancreatic 
beta cell dysfunction and vascular disease:  
 

 

Fig. 1. Hyperglycaemia induces both endothelial and pancreatic -cell dysfunction. The 
long-term sequelae of hyperglycaemia results in cardiovascular disease include peripheral 
vascular disease (PVD) and coronary artery disease (CAD). 

If AGEs are important contributors to hyperglycaemic memory then arguably tight and 
aggressive glycaemic control should be translated into better protection against future 
cardiovascular events (Chalmers & Cooper, 2008). In addition, early treatment designed to 
reduce cellular reactive species, glycation and the build up of AGEs should minimize long-

term diabetic complications (Ceriello, 2009). Glucose toxicity is also linked to pancreatic -
cell apoptosis that may involve several pathways including links to oxidative stress, 
endoplasmic (ER) stress, changes in the expression of the antiapoptotic protein Bcl-2 and 
epigenetic changes in the promoter for nuclear factor kappa B (NF-KB) subunit p65  (Eizirik 
et al., 2008; El-Osta et al., 2008; McKenzie et al., 2010; Robertson 2004). 

2.4 Antioxidant therapy and diabetic vascular disease 
Although many animal studies clearly indicate that oxidative stress results in endothelial 
dysfunction (see reviews by Ding & Triggle 2010; Triggle & Ding 2010) antioxidant therapy 
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in humans has been demonstrated to be ineffective in reducing mortality [MRC/BHF, 2002]. 
In the MRC/BHF randomised study 20,536 individuals with various prior cardiovascular 
disease morbidities were recruited into 69 hospitals and were treated with either a statin, 
antioxidant vitamin therapy (600 mg E, 250 mg C and 20 mg beta-carotene daily or a 
placebo). Nonetheless, protection of endothelial function as is evident by a reduction in 
oxidative stress as well as enhanced levels of the dimeric ‘coupled’ eNOS can be 
demonstrated by provision of the precursor of BH4, sepiapterin, at least in endothelial cells 
in culture (Ding et al., 2007; Aljofan & Ding, 2010). The role of antioxidant dietary adjuncts 
and therapy in prevention and treatment remains a highly important clinical question and 
Dusting and Triggle (2005) argued that there is a need for re-thinking of the choice of 
antioxidants as well as better-designed studies. Thus, further studies of the benefits of 
antioxidants and, in the cellular setting, appropriately targeted antioxidants to the cellular 
source(s) of excessive free radical production are clearly justified. It is thus of value to reflect 
on the apparent benefits of the natural phenolic resveratrol on lifespan in a number of 
organisms, including yeast, worms, flies as well as mice on a high fat diet (see Baur et al. 
2005). The cellular basis for the protective effect of compounds such as the polyphenol 
antioxidant, resveratrol, in diabetes may be linked to activation of AMP-activated protein 
kinase (AMPK) – the so-called metabolic master switch that has multiple targets facilitating, 
for instance, glucose uptake in muscle, fatty acid oxidation and inhibition of glucose 
production by the liver (Um et al., 2010).  

Antioxidant enzyme levels are low in pancreatic  cells and chronic oxidative stress is 

thought to be a major contribution to  cell dysfunction in diabetes (Robertson, 2004; Tiedge 

et al., 1997). These data suggest that antioxidant therapy should benefit  cell function; 

however, the efficacy of the common antioxidants available either from dietary or 

supplement sources may simply not be high enough to have significant benefit (Robertson, 

2004). Furthermore, with the exception of the PPAR-gamma agonists and incretin-mimetics 

that do have protective and/or trophic effects, direct beneficial effects of most anti-diabetic 

agents on  cells have not been clearly documented (Bonora 2008). 

2.5 Endoplasmic Reticulum (ER) stress and diabetes 
The ER plays a critical role in protein folding and sorting and stress will impair these 

functions resulting in the ‘Unfolded Protein Response’, or UPR, that, initially, despite an 

increase load on the protein folding machinery, helps to maintain homeostasis. Prolonged 

ER stress, which may include oxidative stress secondary to the contribution of molecular 

oxygen to disulphide bond formation, results in cell death via apoptosis and there is 

increasing evidence that ER stress plays an important role in the aetiology of many diseases 

including diabetes and atherosclerosis (Eizirik et al., 2008; Hosoi and Ozawa, 2010; Tabas 

2010; Tu and Weissman 2004). It is also now recognised that UPR is regulated by a signal 

transduction pathway with three major components: 1/ inositol requiring 1 (IRE1); 2/ 

Protein kinase RNA-like ER kinase (PERK); 3/ Activating Transcription factor 6 (ATF6) that 

can all contribute to ER stress. As our knowledge on ER stress expands so do avenues for 

interventions that may slow the progression of a disease (Patil & Walker 2001; Eizirik et al., 

2008). 

Notably in response to obesity, post-prandial hyperglycaemia and the development of 
insulin resistance the insulin producing pancreatic ǃ-cell is exposed to considerable stress as 
newly formed pro-insulin is directed to the ER for appropriate folding. ER stress in the 
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pancreatic ǃ-cell results in progressive pancreatic ǃ-cell dysfunction and death (Fonesca et 
al., 2009). The loss of pancreatic ǃ-cell function is a key contributor to the later stages of type 
2 diabetes and results in the requirement for insulin therapy. A key mediator of ER stress-
induced apoptosis is the transcription factor CHOP (also known as GADD153), which under 
normal conditions has a low expression level, but levels increase with increasing ER stress 
(Eizirik et al., 1993; Oyadomari & Mori, 2004). Similarly the endothelial cell, just like the 
pancreatic ǃ-cell, when exposed to hyperglycaemia responds with an increase in ER stress 
that seems to be secondary to mitochondria metabolism and superoxide generation (Sheikh-
Ali et al., 2010a). Of additional interest and relevant to the protective role of resveratrol is 

that ER stress in endothelial cell is enhanced with the deletion of AMPK2 and that certain 
antioxidants can reduce ER stress (Dong et al., 2010; Sheikh-Ali et al., 2010b). 

3. What can we learn from other mammalian species? 

The “thrifty” gene hypothesis (‘Diabetes Mellitus: A “Thrifty” Genotype Rendered 
Detrimental by “Progress”?’), as originally proposed by Neel, argues that we are descended 
from hunter-gatherers who survived and evolved despite having to cope with an 
unpredictable availability of food and therefore survival was based on “selectivity” to store 
energy as fat (Neel, 1962). Europeans have maintained a comparatively lower prevalence of 
diabetes than most other populations and, perhaps, this can be related to the fact that 
Europeans have arguably been exposed to relatively stable food supply and “modern” 
technology for a comparatively longer period than other ethnic groups.  However, support 
for this latter speculation is reduced by evidence that Australians and North Americans of 
European descent have significantly higher rates of diabetes than their European 
counterparts (Diamond 2003; Dunstan et al., 2002; Harris et al., 1998). Various explanations 
can be provided to explain such differences and whether we accept a “thrifty (like) gene”, or 
a “drifty gene” hypothesis, or even the role(s) of environmental influences such as bacteria 
and viruses, continues to be debated (Diamond 2003: Prentice et al., 2008; Speakman, 2008; 
Zinn, 2010). Of relevance to the thrifty gene debate are data from studies of domesticated 
pigs and cattle that have been bred for countless centuries to store energy for future human 
consumption and yet do not, or only rarely, develop diabetes (Gerstein & Waltman 2006). 
These observations provide a basis for a tentative conclusion that it is possible to provide 
‘protection’ against diet- and hyperglycaemia-induced vascular disease in mammals despite 
exposure to ample food supply and limited exercise and thus warrant further studies of the 
comparative physiology/genetics of these species (Venn-Watson et al., 2011). Nonetheless, 
as reflected in the Ossabaw pig colony on Ossabaw Island, (Georgia, USA) in as little as 500 
years domestic pigs exposed to a feast and famine environment do become prone to the 
development of metabolic syndrome and diabetes when these feral pigs are provided the 
same diet as their domesticated cousins (Gerstein and Waltman, 2006; Whitfield 2003).  
Studies with Ossabaw pigs are providing insights into the pathophysiology of vascular 
disease associated with metabolic syndrome and diabetes (Edwards et al., 2010). The one-
humped camel, Camelus dromedaries, is a desert animal that can withstand both a harsh 
climate and limited supplies of food and water, but, similar to the Ossabaw pig, when 
exposed to a high calorie diet develops signs of diabetes (Ali et al., 2006). On the other hand 
milk from Camelus dromedaries has been known through ethnomedical practice and recent 
clinical trials to lessen the insulin requirements of diabetics (Mohamad et al., 2009). Whether 
the anti-diabetic factor in camel milk, which might be insulin or an insulin-like factor, also 
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provides some protection to the camel when exposed to a high carbohydrate diet is 
unknown. 
It is of interest to note that certain mammalian species, specifically the bottlenose dolphin, 
Tursiops truncates, can maintain high post-prandial glucose levels and a diabetic-like state 
that is probably essential for the dolphin to maintain adequate brain levels of glucose and 
yet not, apparently, truly develop diabetes (Venn-Watson & Ridgway, 2007). About 55 
million years ago dolphins, pigs and ungulates shared a common ancestor that was a 
herbivore and the possible link between elevated blood glucose levels in dolphins may 
relate to the need to maintain adequate glucose levels for an enlarged brain size and 
function (Thewissen & Mador, 1999; Venn-Watson et al., 2007; 2011). Miller and Colagiuri 
(1994) have advanced the hypothesis that for Homo sapiens the low carbohydrate and high 
protein carnivorous diet that existed for about 2 million years up until the end of the last ice 
age disadvantaged the insulin-sensitive phenotype in favour of insulin resistance. 
Europeans have, on the other hand, been exposed to a long period of agricultural 
development and thus the selection process for insulin resistance was relaxed with the result 
that present-day Europeans are more resistant to type 2 diabetes than most other ethnic 
groups (Miller & Colagiuri, 1994).  
The more generally held view is the present obesity/diabetes pandemic has resulted from 
a combination of greater food availability, reduced physical activity and genetic 
susceptibility. We should, however, be cautious about accepting this view without 
considering other influences (Zinn 2010).  A hypothesis advanced by Klimentidis et al 
(2011) is based on the “Canary in the coal mine” analogy and notes that similar trends in 
body weight increase have been observed in some domesticated and non-domesticated 
mammals including feral rats trapped in urban Baltimore that showed a 5.7% increase in 
body weight per decade. The data presented by Klimentidis et al (2011) is suggestive of 
environmental influences such as endocrine-disrupters and infectious diseases that may 
have epigenetic effects on mammalian genomes. Nonetheless the close link between diet, 
a sedentary lifestyle, obesity and cardiovascular disease in humans is difficult to deny. 
Alternatively, or in addition, the “thrifty phenotype” hypothesis argues that poor foetal 
and infant nutrition that negatively affect growth result in permanent changes in glucose 
homeostasis that result in the development of the metabolic syndrome and type 2 diabetes 
(Hales and Barker, 2001).  Calorie restriction on the other hand has been shown to increase 
longevity in rats and, more recently, studies in non-mammalian species that include yeast 
and invertebrate species, have linked longevity to the SIRT1, the mammalian homolog of 
Sir2 (silent information regulator 2 and originally termed MARI, Mating-Type Regulator-
1). In Saccharomyces, Caenorhabditis elegans and Drosophila Sir2 mediates the effects of 
calorie restriction on life extension and therefore has been associated with the regulation 
of longevity (Dali-Youcef, et al., 2007).  Collectively these data have led to the hypothesis 
that, in mammals, SIRT1, by virtue of the key role it plays in post-transcriptional 
regulation, is the central co-ordinator of metabolic regulation and insulin sensitivity and 
obesity (Holness et al., 2010). SIRT1 as a target for the treatment of metabolic diseases is 
discussed in more detail later in this chapter. 
Regardless of the genetic basis for susceptibility to obesity and diabetes evidence for 
atherosclerotic changes linked to a high fat diet is clearly shown in human remains from 
several ancient societies including the mummies of Egyptian pharaohs, priests and other 
privileged members of the Egyptian society back to at least 1500 AD (David et al., 2010). 
These findings seem to parallel those in a society, such as the USA today, where the impact 
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of diet is clearly evident on the prevalence of obesity that from 1976--1980 to 2007--2008, 
increased from 15% to 34% among adults and from 5% to 17% among children and 
adolescents (Freedman et al., 2008). Perhaps Homo sapiens, unlike Sus scrofa domesticus, have 
not evolved, or adapted, sufficiently such that its cardiovascular system cannot withstand 
the abuse of a diabetogenic/atherogenic diet? The debate continues as to whether diabetes 
in Homo sapiens reflects a ‘thrifty’ genotype or simply a genetic drift – the ‘drifty’ gene 
hypothesis with, perphaps, the latter being supported by the Ossabaw pig example (Prentice 
et al., 2008; Speakman 2008)? 

4. How to proceed? 

The results from the ACCORD study questioned the benefits of an overly intensive 
glycaemic control regimen and yet data from animal studies as well the UKPDS & DCCT 
data indicate that hyperglycaemia is detrimental to vascular function and increases 
morbidity and mortality.  Thus, the question arises: “Can we, in addition to pursuing a more 
modest reduction in blood glucose levels and HBA1c, determine new approaches to protect 
the cardiovascular system against glucose toxicity?” In other words: “Are there new 
therapeutic approaches that can provide improved cardiovascular protection?” Most 
therapeutic interventions targeting cardiovascular disease modulate endothelial function 
indirectly via targeting the risk factors linked to endothelial dysfunction. Thus, for 
hypertension, angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor 
blockers (ARBs) are widely used and for dislipidemia the lipid-lowering statins.  Many of 
these drugs have been reported to have pleiotropic effects that improve endothelial function 
and their actions have been reviewed (Dobarro et al., 2009). A number of the drugs that are 
used as anti-hypoglycaemic agents for the treatment of type 2 diabetes also have been 
reported to have direct and/or indirect effects to improve endothelial function. 

4.1 Metformin 
Metformin, a first-line and most widely prescribed drug for the treatment of type 2 diabetes, 
has has been demonstrated to not only correct hyperglycaemia but also to improve endothelial 
function in human subjects (Mather et al., 2001). Metformin also seems more effective in obese 
patients with the recent observation suggesting that metformin, a substrate for organic cation 
transporters, OCTs, and notably OCT1, reduces adipogenesis as a result of an increased action 
in adipocytes from obese patients that could be linked to an elevated expression of OCTs 
(Rotella et al., 2006; Moreno-Navarrete, 2011). The therapeutic efficacy of metformin thus 
makes it an ideal drug to study in terms of its cellular mode(s) of action and, in particular, 
although effective a high level of non-fatal gastrointestinal side effects can reduce patient 
compliance. Metformin, at least in part, mediates its’ cellular action(s) via the activation of 
AMPK with the reported involvement of mitochondrial-derived reactive nitrogen species and 
the requirement of eNOS expression (Mather et al., 2001; Zhou et al., 2001; Zou et al., 2004). 
The ability of metformin to reduce hepatic glucose output has been credited to an action via 
the LKB1 (a serine/threonine kinase)-AMPK/SIRT1 pathways and inhibition of key 
glucogenic genes in the liver (Zhou et al., 2001; Shaw et al., 2005). The role of SIRT1 and GCN5 
(a histone acetyltransferase), two regulators of gluconeogenic gene expression via the 
modulation of cAMP-response element binding protein (CREB), in the action of metformin are 
of particular interest because AMPK is known to activate SIRT1 which, via deacetylase of key 
targets, including LKB1, may mediate the beneficial effects of metformin (Canto et al., 2009; 
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Caton et al., 2011; Lan et al., 2008). As discussed later in this chapter SIRT1 is a key target of 
interest for the treatment of metabolic disorders.  
AMPK-independent actions on hepatic gluconeogenesis and endothelial function have also 
been reported suggesting that the beneficial actions of metformin in type 2 diabetes result 
from effects on several targets including a protective action on complex I and the 
mitochondrial permeability transition pore (PTP) (Detaille et al., 2005; Foretz et al., 2011; 
Zhou et al 2001). Thus, conceivably, metformin has multiple actions on cell metabolism via 
AMPK, SIRT1 and GCN5. 

4.2 The incretins 
Recent advances in new medications for the treatment of type 2 diabetes include the 

introduction of modulators of the incretin pathway such as the glucagon-like peptide-1 

(GLP-1), exenatide, and the dipeptidyl peptidase-4 (DPP-4) inhibitor, sitagliptin, has 

increased the armamentarium for the treatment of type 2 diabetes with favourable clinical 

results (Chia and Egan, 2008; Hansen et al., 2009). Exenatide, however, is inconvenient to 

use as the drug requires sub-cutaneous administration and is also associated with a high 

frequency of nausea (>50%) and vomiting (17%), however, use is associated with improved 

β-cell function and weight loss (Chia & Egan, 2008). Sitagliptin is orally effective, weight 

neutral, well tolerated, but has been associated with a relatively high incidence of 

nasopharyngitis (6.4%) and headache (5.1%) (Amori et al., 2007).  Incretin mimetics have not 

been shown to have direct vascular protective actions although the ability of GLP-1 to 

inhibit cytokine, lipid and glucose induced apoptosis of β-cells would infer that incretin 

mimetics should at least indirectly infer protection via improved β-cell function (Hvidberg 

et al., 1994). 

4.3 Fibroblast Growth Factor 21 (FGF21) 
The human genome encodes 22 members of the Fibroblast Growth Factor superfamily and 
Fibroblast Growth Factor 21 (FGF21) lacks mitogenic activity and is a high profile prospect 
and/or target as a novel therapeutic agent for the treatment of metabolic diseases by virtue 
of its ability to lower plasma glucose, triglycerides as well as improve insulin sensitivity 
(Kharitonenkov et al., 2005; Kharitonenkov and Shanafelt 2009; Kharitonenkov and Larsen 
2011). FGF21 has been reported to enhance insulin-independent uptake via GLUT1 into 
adipocytes and skeletal muscle and dramatically reduce blood glucose levels in the ob/ob, 
leptin-resistant, diabetic mouse (Kharitonenkov et al., 2005; Mashili et al., 2011). Although 
the liver was assumed to be the source of FGF21, brown adipose tissue, skeletal muscle and, 
possibly, other tissues can also express FGF21 thus inferring hepatokine, adipokine and 
myokine functions (Hondares et al., 2011; Mashili et al., 2011). ǃKlotho, a type 1 
transmembrane glycoprotein and a coreceptor for FGF21, is expressed in the mouse aorta 
suggesting that FGF21 may contribute to the regulation of blood vessel function (Fon Tracer 
et al., 2010). FGF21 expression is regulated by both PPAR alpha and gamma activation and 
preclinical assessment of FGF21 indicates a lack of any major side effects (Kharitonenkov 
and Shanafelt); Hondares et al., 2011). FGF21 has important endocrine-functions in the 
regulation of glucose and lipid homeostasis that include an increase in the expression of 
GLUT1 (Mashili et al., 2011; Berglund et al., 2009). Elevated plasma levels of FGF21 are seen 
in humans with type 2 diabetes and mouse models where “FGF21 resistance” is associated 
with a reduced response to the blood glucose and triglyceride lowering and insulin 
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sensitizing actions of FGF21 (Kharitonenkov et al., 2005; Berglund et al., 2009). To date there 
is a lack of any functional data on the effects of FGF21 on vascular function, but, via the 
ability of FGF21 to enhance insulin sensitivity and improve glucose disposal, FGF21 will 
indirectly protect the vasculature against glucose toxicity. Evidence indicating that FGF21 
regulates metabolic homeostasis and enhances mitochondrial oxidative function in 
adipocytes via activation of AMPK and SIRT1 suggests that the effects of FGF21 should also 
be pursued in vascular tissue (Chau et al., 2010). 

4.4 Sirtuins 
The sirtuins are a seven-member family (SIRT1-7) of NAD+-dependent protein deacetylases 
and ADP-ribosyltransferases associated with the regulation of a wide range of biological 
processes ranging from apoptosis, adipocyte and muscle differentiation, and energy 
expenditure to gluconeogenesis and, SIRT1 in particular, has been implicated as the central 
epigenetic controller of metabolism (Michan and Sinclair, 2007; Holness et al., 2010). SIRT1 
gain of function in mice has been shown to increase insulin sensitivity in mice fed a high fat 
diet or backcrossed onto leptin resistant db/db diabetic mice (Banks et al., 2008). 
Overexpression of SIRT1 in the liver of diabetic and obese leptin deficient ob/ob mice 
reduces insulin resistance and reduces expression of X-box binding protein-1 (XBP-1), a key 
transcription factor  that regulates ER stress (Li et al., 2011). Furthermore, treatment of EPCs 
with high glucose downregulated EPC numbers, reduced SIRT1 expression levels and 
increased expression levels of the acetylated Forkhead transcription factor, FoxO1 
(Balestrieri et al., 2008). 
SIRT1 has an ubiquitous distribution and exerts its effects on metabolism via deacetylation-

mediated activation of the peroxisome proliferator-activated receptor-gamma (PPAR) 
transcription co-activator, PGC-1 (Michan and Sinclair, 2007).  PGC-1 increases fatty acid 

utilisation in muscle, whereas in the liver gluconeogenesis is regulated by SIRT1-mediated 

deacetylation and the subsequent nuclear retention of FoxO1. FoxO1 regulates the 

expression of gluconeogenic enzymes and the actions of FoxO1 are suppressed by insulin 

(Jackson et al., 2000). The transcriptional activity of FoxO1 is inhibited by SIRT1-mediated 

deacetylation (Yang et al., 2005). FoxO1 transcriptional activity is also regulated by XBP-1s, 

which, in addition to being involved in the upregulation of genes that reduce ER stress, 

promotes proteasome-mediated degradation of FoxO1 (Zhou et al., 2011). 

SIRT1, PGC-1, and FoxO1 are all targets for intensive investigation as potential additions 

to the armamentarium of drugs for the treatment of obesity, diabetes and cardiovascular 

disease (Alcain & Villalba, 2009; Borradaile & Pickering, 2009; Brandes, 2008; Lavu et al., 

2008; Liang & Ward, 2006; Milne et al., 2007; Nagashima et al., 2010; Zhou et al., 2011). For 

instance, small molecule inhibitors of FoxO1 have been reported to have a hypoglycaemic 

effect in diabetic db/db mice (Nagashima et al., 2011; Tanaka et al., 2010). The oral 

hypoglycaemic agent, metformin, a first line choice for the treatment of type 2 diabetes, also 

has SIRT1, as previously discussed, as one of its potential targets (Caton et al., 2011; Lan et 

al., 2008). Interestingly, the polyphenol antioxidant resveratrol has also been associated with 

positive effects on longevity, activation of SIRT1, and beneficial effects on mice fed a high 

calorie diet (Bauer et al., 2006). 

The overexpression of SIRT1 is cardioprotective and endothelium-specific overexpression of 
SIRT1 decreases atherosclerotic lesions in apoE null mice (Alcendor et al., 2007; Zhang et al., 
2008). Of particular interest in the Zhang et al study (2008) was the observation that calorie 
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restriction increased whereas a high-fat diet decreased the expression of SIRT1; however, 
SIRT1 overexpression overcame high-fat induced endothelial dysfunction and enhanced the 
expression of eNOS. Furthermore, in a cell culture protocol, the overexpression of SIRT1 
was protective against apoptosis (Zhang et al., 2008). The constitutively active 
serine/threonine protein kinase, LKB1, has been reported to be a binding partner and 
intracellular target for SIRT1 in porcine aortic endothelial cells and SIRT1-mediated 
deacetylation of LKB1 may be a key pathway for promoting proliferation and retarding 
endothelial senescence via limiting LKB1/AMPK activation as a result of proteasome-
mediated degradation of LKB1 (Zu et al., 2010).  
 

 

Fig. 2. Summarises the key cellular pathways that are involved with the effects of metformin 

and FGF21 on endothelial function and gluconeogenesis. SIRT1 can activate, as depicted by a 

solid blue arrow, a target via deacetylation (Ac), or inactivate via deacetylation (Ac) as 

depicted by a dotted red arrow. Thus, SIRT1 can via deacetylation, enhance eNOS activity, 

reduce apoptosis via inactivation of NF-kB and p53, reduce endothelial cell senescence via the 

acetyl transferase GCN5 deacetylation and subsequent degradation of LKB1 thus limiting 

phosphorylation-mediated AMPK activation, and also, in the liver, decrease, gluconeogenesis 

via deactylation of FoxO1. Metformin and FGF21 may have direct effects on both SIRT1 and 

AMPK and SIRT1 and metformin, via GCN5, can activate PGC-1ǂ thus promoting fatty acid 

utilization. 

Metformin, as already mentioned, is currently the most widely used oral hypoglycaemic 
agent and possesses insulin-sensitizing actions and also has proven endothelial protective 
actions in humans subjects with diet-treated type 2 diabetes (Mather et al., 2001).  Mather et 
al (2001) measured blood flow responses to intraarterial administration of endothelium-
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dependent (acetylcholine) versus endothelium-independent (sodium nitroprusside) and 
nitrate-independent (verapamil) vasodilators using forearm plethysmography. Subjects who 
received metformin demonstrated statistically significant improved responses to 
acetylcholine versus placebo, but not nitroprusside-stimulated or verapamil-stimulated 
blood flow. Several studies indicate that one of the targets for metformin is SIRT1, possibly 
in part also involving AMPK, with subsequent multiple target actions that include an 
inhibition of hepatic gluconeogenesis (Caton et al., 2010; Detaille et al., 2005; Foretz et al., 
2011; Zhou et al., 2001). SIRT1 activation has also been shown to increase the generation of 
NO via the deacetylation of eNOS at lysines 496 and 506 (Mattagajasingh et al., 2007) thus 
providing a cellular basis for the improvement of acetylcholine-mediated forearm blood 
flow in human subjects with diabetes that was reported by Mather et al (2001). Thus, 
metformin provides us a valuable prototype drug to serve as a template for the 
development of new and possibly more specific drugs with fewer side effects that target the 
key cellular pathway(s). 

5. Conclusion 

Good glycaemic control remains an important target in the treatment of diabetes, however, 
new approaches to the treatment of diabetes, metabolic diseases and glucose toxicity that 
offer improved benefits over existing treatments are required. Studies of the beneficial 
effects of FGF21 on metabolism and, in particular, glucose utilization as well as elucidation 
of the metabolic and cell survival pathways regulated by SIRT1 and its cellular targets, such 
as FoxO1, appear to be worthy avenues for further study. 
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