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1. Introduction 

Diabetes mellitus has become a global epidemic. According to the World Health 
Organization estimate, about 285 millions people worldwide, corresponding to 6.4% of the 
world’s population, have diabetes in 2010. By 2030, this figure will be more than doubled 
(http://www.worlddiabetesday.org/media/press-materials/diabetes-data).  
Diabetes mellitus is a major cause of morbidity and mortality and is associated with 
increased risks of cardiovascular diseases, stroke, nephropathy, neuropathy, retinopathy 
and other microvascular complications. Type 2 diabetes mellitus is characterized by obesity, 
glucose intolerance, insulin resistance, hyperinsulinemia, hyperglycemia, dyslipidemia and 
hypertension, and accounts for 90% of the total cases of diabetes mellitus. Although the 
clinical course of type 2 diabetes is usually less aggressive compared to its type 1 
counterpart, the end results are equally devastating even with intensive glycemic control.  
The causes of diabetic vascular dysfunction are multifactorial, and involve endothelial-
dependent and -independent mechanisms. The role of endothelial-dependent vascular 
dysfunction in diabetes is well-known, and it is related to increased activity/bioavailability 
of vasoconstrictors such as reactive oxygen species (ROS), reactive nitrogen species (RNS), 
endothelin-1 (ET-1), angiotensin II (Ang II) and thromoxane A2 (TXA2), and reduced 
activity/bioavailability of endothelium-derived relaxing factors (EDRFs) such as nitric oxide 
(NO), carbon monoxide (CO), prostacyclin (PGI2) and endothelium-derived hyperpolarizing 
factors (EDHFs) (Avogaro et al., 2006; De Vriese et al., 2000; Xu & Zou, 2009).  The role of 
endothelial-independent vascular dysfunction in diabetes mellitus, however, has received 
less attention, and it is by no means less important, because vascular smooth muscle 
physiology is profoundly modulated by diabetes mellitus.  
A major ionic mechanism that facilitates vascular smooth muscle relaxation is the activation 
of the large conductance Ca2+-activated K+ (BK) channels. Because of their large conductance 
and high density in vascular smooth muscle cells, BK channels are a key determinant of 
vascular tone, regulating tissue perfusion in response to changes in membrane potential and 
intracellular Ca2+ homeostasis (Ledoux et al., 2006). Substantial experimental and clinical 
evidence exists indicating that vascular BK channel function is impaired in type 2 diabetes 
(Feng et al., 2008; Liu et al., 2008). Multiple mechanisms are known to produce BK channel 
dysfunction in diabetes mellitus. In this article, we will describe the cellular and molecular 
mechanisms that underlie vascular BK channel dysfunction in type 2 diabetes. We will also 
provide a detailed treatise on the altered BK channel gating associated with type 2 diabetes.   
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2. Vascular BK channel structure and function  

The BK channel  subunit is encoded by the Slo1 gene (KCa1.1, KCNMA1) and the functional 
channel has a homotetrameric assembly. The BK- subunit shares homology with all 
voltage-gated K+ channels containing a backbone of six transmembrane domains (S1 to S6) 
in which the S1-S4 constitute the voltage-sensing unit and the S5-P loop-S6 form the ion 
permeation domain which encompasses the conserved K+ selectivity filter (TVGYG) (Cui et 
al., 2009; Ma et al., 2006). In addition, it has unique structural features. It has an additional 
transmembrane domain, S0, so the N-terminus is extracellular, and the C-terminus has 4 
hydrophobic segments (S7 to S10) that contain two regulators of conductance for potassium 
(RCK1 and RCK2) (Fig. 1) (Jiang et al., 2002). Functionally, two high-affinity Ca2+ sensing 
regions with Ca2+ concentration at half-maximal effect (EC50) in the 10-6 M range have been 
proposed. One is the Ca2+ bowl (889-QFLDQDDDD-897) in RCK2 (Bao et al., 2004; Schreiber 
et al., 1999; Xia et al., 2002) and the other (D362/D367) is located in RCK1 (Xia et al., 2002; 
Zeng et al., 2005). The RCK1s and RCK2s from the homotetrameric channel form an 
octameric gating ring which regulates K+ efflux through allosteric control by the Ca2+-bowl 
and the voltage sensor (Yuan et al., 2010). The extracellular N-terminus of BK- subunit is 
important for functional coupling with BK-ǃ subunit (Meera et al., 1997). In fact, the BK-ǂ 
subunit S0, S1, S2, S3, and S6 are all implicated for functional and physical interaction with 
BK- subunits (Lee & Cui, 2010; Morrow et al., 2006; Orio et al., 2006).  
The BK-1 subunit is the predominant subtype in vascular smooth muscle cells. It contains 
two transmembrane (TM1 and TM2) domains connected by a relatively large extracellular 
loop which can reach the inner mouth of the channel central pore, and can modulate 
scorpion toxin and tetraethylammonium (TEA) binding and regulate channel permeability 
(Hanner et al., 1997; Meera et al., 2000; Shen et al., 1994). The TM1 is thought to interact with 
the S2 of an adjacent BK- subunit and the TM2 with S0 of another adjacent BK- subunit 
(Fig. 1) (Liu et al.,). BK-1 subunits are abundantly expressed in vascular smooth muscle 
cells.  BK channel activity is profoundly regulated by BK-ǃ1 which significantly enhances the 
channel voltage- and Ca2+-sensitivity (Cox & Aldrich, 2000; McManus et al., 1995; Meera et 
al., 1996; Xia et al., 1999), modulates channel kinetics (Nimigean & Magleby, 1999; Tanaka et 
al., 1997; Zeng et al., 2003) and stabilizes BK- expression (Toro et al., 2006). The importance 
of BK-1 subunits in the regulation of vascular physiology is underscored by the 1 subunit 
knockout mice, in which Ca2+ sparks are uncoupled to BK channels in the vascular smooth 
muscle cells, and these animals are hypertensive (Brenner et al., 2000; Pluger et al., 2000). In 
addition, there is a compensatory increase in vascular BK-ǃ1 expression in spontaneously 
hypertensive rats (Chang et al., 2006), while a gain-of-function mutation in BK-ǃ1 (E65K) is 
associated with low prevalence of diastolic hypertension in humans (Fernandez-Fernandez 
et al., 2004; Kelley-Hedgepeth et al., 2008; Nielsen et al., 2008) and with reduced risk of 
myocardial infarction and stroke, particularly in elderly women (Senti et al., 2005).  
BK channels maintain smooth muscle cell Ca2+ homeostasis and regulate vascular tone 
through a negative feedback mechanism. Activation of the voltage-gated Ca2+ channels in 
vascular smooth muscle cells triggers Ca2+ release from the sarcoplasmic reticulum (Ca2+ 
sparks) which activates the BK channels in its vicinity and gives rise to the spontaneous 
transient outward currents (STOCs). STOCs hyperpolarize the cellular membrane potential, 
which in turn inactivates the voltage-gated Ca2+ channels, thereby relaxes the vascular 
smooth muscles (Brenner et al., 2000; Lohn et al., 2001; Pluger et al., 2000). In addition, the 

presence of splice variants of BK- subunits (Xie & McCobb, 1998) contributes to the 
diversity of BK channel function in the body.  
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Fig. 1. Vascular BK channel structure. A: Membrane topology of BK- and BK-1 subunits. 
Domain boundaries and the Ca2+ bowl are indicated. S0-S6 corresponds to the seven 

transmembrane domains of BK- subunit; TM1 and TM2 represent the transmembrane 

domains of BK-1 subunit. B: Orientation of BK- and BK-1 subunits in tetrameric BK 

channels, where the TM1 interacts with the S0 of adjacent BK- and the TM2 interacts with 

the S2 of another adjacent BK-. (Fig. 1B was adapted from Liu et al., 2010).  

3. Regulation of vascular BK channel activity by signaling molecules 

BK channels are targets of many signaling molecules and biological vasoactive mediators, 
which include protein kinases  (Barman et al., 2004; Chae et al., 2005; Schopf et al., 1999; Tian 
et al., 2004), protein tyrosine kinases (Alioua et al., 2002; Lu et al., 2010), phospholipids 
(Vaithianathan et al., 2008), polyunsaturated fatty acid metabolites of the cytochrome P-450 
epoxygenase (Campbell et al., 1996; Lauterbach et al., 2002; Lu et al., 2001; Wang et al. 2011; 
Zhang et al., 2001), the lipoxygenase (Obara et al., 2002; Zink et al., 2001) and the 
cyclooxygenase pathways  (Burnette and White, 2006; Tanaka et al., 2004; Yamaki et al., 
2001), reactive oxygen species (ROS)  (Lu et al., 2006; Tang et al., 2004), reactive nitrogen 
species (RNS)  (Liu et al., 2002; Lu et al., 2006),  nitric oxide (NO) (Mandala et al., 2007; Wu 
et al., 2002), carbon monoxide (CO) (Dong et al., 2007; Wu et al., 2002), heme (Jaggar et al., 
2005; Tang et al., 2003), angiotensin II (Ang II) (Minami et al., 1995; Zhang et al., 2010), 
endothelin -1 (ET-1) (Minami et al., 1995) and steroid hormones (Han et al., 2008; Lovell et 
al., 2004). It is worthwhile to point out that the regulation of BK channels by these signaling 
molecules is frequently complicated by the exhibition of signal cross-talk, with species and 
tissue specificity.    
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4. Impaired vascular BK channel function in the early stages of type 2 
diabetes – Deficiency in the bioavailability of BK channel activating 
vasodilators 

A commonly used animal model for the study of type 2 diabetes is the Zucker Diabetic Fatty 
(ZDF) rats, which are derived from selective inbreeding of Zucker Obese rats with the 
highest blood glucose levels (Shafrir, 1992). There animals exhibit many features found in 
patients with non-insulin dependent diabetes mellitus, including obesity, insulin resistance, 
hyperglycemia, hypertriglyceridemia, hypercholesterolemia (Corsetti et al., 2000; Shafrir, 
1992), and microvascular pathology (Oltman et al., 2009; Oltman et al., 2008; Yang et al., 
2000). ZDF rats have been used for studying insulin resistance (Kuhlmann et al., 2003; 
Srinivasan and Ramarao, 2007; Zhou et al., 1999), and vascular dysfunction (Oltman et al., 
2009; Oltman et al., 2008; Zhou et al., 2005). We found that vascular BK channel function is 
impaired in ZDF rats and that the culprits change with progression of the disease.  
In the early stages of diabetes development (2 to 4 weeks with blood glucose >300 mg/dl), 
BK channel-mediated vasodilatation in ZDF rats was impaired. Fig. 2A shows that 
arachidonic acid (AA) produced 50% less dilatation in the isolated coronary arteries from 
ZDF rats, compared to those from Lean control rats. The AA effects were significantly 
inhibited by preincubation with indomethacin (the cyclooxygenase inhibitor) in Lean rat 
vessels but not in ZDF rat vessels. Exposure of freshly isolated coronary smooth muscle cells 

to 1 M AA produced a 4-fold increase in whole-cell K+ currents in Lean rats, while these 
effects were significantly blunted in those from ZDF rats (Fig. 2B). The effects of AA on K+ 
current activation were inhibited by preincubation with indomethacin, suggesting that the 
vasoactive molecules were cyclooxygenase products of AA (Lu et al., 2005).  
 

 

Fig. 2. Reduced arachidonic acid (AA)-mediated dilatation of coronary arteries and BK 
channel activation of coronary arterial smooth muscle cells from ZDF rats with 8 weeks of 
diabetes. A: Effects of AA on coronary arterial relaxation in Lean and ZDF rats with and 

without a 30-min incubation with indomethacin (10 M). Compared to Lean rats, AA-
mediated vasorelaxation was diminished in ZDF rats and the AA effects were abolished by 

preincubation with indomethacin. B: Time course of the effect of 1 M AA on coronary 
smooth muscle K+ currents in Lean control rats and ZDF rats. Group results on the increase 
in BK current density (iberiotoxin sensitive component) before and after exposure to AA are 
represented by the bar graphs. (adapted from Lu et al., 2005) 
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The reduced AA-induced vasodilatation and diminished BK channel activation resulted 
from deficient PGI2 bioavailability in the ZDF vasculature (Lu et al., 2005). Protein 
expression of PGI2 synthase (PGIS) was down-regulated by 65% in the coronary arteries of 

ZDF rats (Fig. 3A), leading to a 6.8-fold reduction in the conversion of AA to 6-keto PGF1, 
the stable product of PGI2 metabolism, in ZDF vessels (Fig. 3B). Exposure to the stable PGI2 

analog, iloprost (1 M), produced similar BK channel activation in coronary smooth muscle 
cells from Lean control rats and ZDF rats, indicating that the ability of BK channels to 
respond to agonist activation was intact.  
The biophysical properties of BK channel were intact during the early stages of diabetes in 
ZDF rats. Whole-cell BK current density and current-voltage relationships were not 
different between coronary smooth muscle cells from Lean control and ZDF rats (Fig. 4A 
and 4B). Determination of BK channel sensitivity to voltage- and Ca2+-mediated activation 
of single channels in inside-out excised membrane patches also showed similar opening 
probability (Po)-voltage and Po-Ca2+ relationships between Lean and ZDF rats (Fig. 4C 
and 4D). There was no significant difference in the voltage at half maximal activation 
(V0.5) or in the equivalent charge movement (z) value between Lean and ZDF rats.  The 
Ca2+ EC50 and the Hill coefficient (which reflects the cooperativity of Ca2+ binding) for the 
Po-Ca2+ curves were likewise similar between the two groups, suggesting that in the early 
stage of type 2 diabetes, the voltage- and Ca2+-dependent activation of BK channels were 
intact in ZDF rats.  
 
 

 
 
 

Fig. 3. Decreased PGI2 synthase (PGIS) expression and PGI2 production in coronary arteries 
from ZDF rats. A: Immunoblot with statistical analysis of PGIS expression in arteries of Lean 
and ZDF rats. B: Analysis of AA metabolism in coronary arteries from Lean rats and ZDF 

rats. Isolated vessels from 3 pairs of Lean and ZDF rats were incubated with 5 M [3H] AA 

(specific activity 1 Ci/nM) for 1 h at 37C. Lipids were extracted and analyzed by HPLC. 

The major peak at 7.5 min has the same retention time as a 6-keto-PGF1 standard, the stable 
product of PGI2 that was significant decreased in ZDF rat vessels. (adapted from Lu et al., 
2005).  
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Fig. 4. Normal BK channel activity from the coronary smooth muscle cells of ZDF rats with 
8-week development of hyperglycemia. A: Representative tracings of whole-cell BK currents 
(iberiotoxin-sensitive components) from freshly isolated coronary smooth muscle cells of 
Lean and ZDF rats. BK currents were elicited with 10 mV increments from -40 mV to +200 
mV with a holding potential of -60 mV in the presence of 0.2 M free Ca2+ in the pipette 
solution.  B: The current-voltage (I-V) relationships of BK channels from Lean and ZDF rats. 
C: Ca2+ dose-dependent curves obtained from inside-out single BK channel currents 
recorded at +60 mV from coronary smooth muscle cells of Lean and ZDF rats. D: The open 
probability-voltage (Po-V) relationship obtained from inside-out single BK channel currents 
of Lean and ZDF rats in the presence of 1 M free Ca2+ in the bath solution. There were no 
significant differences in current density, Ca2+-sensitivtiy and voltage-sensitivity of BK 
channels between ZDF rats and age-matched Lean rats.  

We also found that AA-induced dilatation was impaired in the small mesenteric arteries of ZDF 
rats at 4 weeks after the development of diabetes. The effects of AA were dependent on 
lipoxygenase activity and ZDF vessels showed an 81% downregulation in 12-lipoxygenases 
protein expression accompanied by a 54% reduction in AA conversion to its vasoactive product, 
12-hydroxyeicosatetraenoic acid (Zhou et al., 2005). Moreover, AA-mediated vasodilatation in 
Lean rats was partially abolished by iberiotoxin, while exogenous application of 12-
hydroxyeicosatetraenoic acid produced similar vasodilatation in Lean control and ZDF rat 
vessels, suggesting that the impaired AA-induced dilatation in mesentery arteries of ZDF rats is 
due to the deficiency of 12-lipoxygenase generated vasodilating metabolites (Zhou et al., 2005). 
Hence, during the early stages of type 2 diabetes, a common feature that impairs BK channel-
mediated vasodilatation is the reduced bioavailability of BK channel activating vasodilators.  

5. Impaired vascular BK channel function in the advanced stages of type 2 
diabetes – Altered channel intrinsic biophysical properties  

5.1 Reduced Ca
2+

-dependent BK channel activation in ZDF rats with advanced 
diabetes 
With further progression in type 2 diabetes, the biophysical properties of BK channel were 
altered, giving rise to BK channelopathy. Fig. 5A illustrates the normalized BK channel Po-V 
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curves in the coronary smooth muscle cells from ZDF rats with 8 months of hyperglycemia 
and from age-matched Lean control rats. Inside-out BK currents were elicited from freshly 

isolated coronary smooth muscle cells in the absence of Ca2+ and in the presence of 1 M 
free Ca2+ in the bath solution. Without Ca2+, the Po-V relationships from Lean and ZDF rats 
were identical, indicating that the intrinsic voltage-dependent activation of BK channels 

remained unchanged. In the presence of 1 M free Ca2+, the Po-V relationships were 
leftward shifted in both Lean and ZDF rats, but there was a significant lag in the effects of 
Ca2+ on the shift in the Po-V relationship in ZDF rats, suggesting a decreased Ca2+-
dependent BK channel activation in these animals. Changes in the intrinsic free energy of 

Ca2+-binding (Ca2+) that contributes to BK channel activation can be estimated, based on 

the shift of Po-V relationship from 0 to 1 M free Ca2+ in Lean and ZDF rats, using the 

equation: Ca2+ = (zeV0.5), where z is the number of equivalence charge movement, e is 
the elementary charge (Shi et al., 2002). There was a 62.3% reduction in the change in free 
energy for Ca2+-binding to BK channels in ZDF rats. Any decrease in the free energy for 
Ca2+-binding must be associated with reduced Ca2+-sensitivity and/or Ca2+ cooperativity in 
BK channel function. These results indicated that Ca2+-dependent activation was less 
favorable in ZDF rats at an advanced stage of type 2 diabetes. 
Since the intrinsic voltage-sensitivity of BK channel was not significantly changed in ZDF rats 
1 to 8 months after developing hyperglycemia, according to our experimental results 
(unpublished observations), the Ca2+ EC50 value can be used to evaluate BK channel Ca2+-
sensitivity. Fig. 5B shows the Ca2+ dose-dependent curves of coronary arterial BK channel 
activation from Lean and ZDF rats with 6 months of diabetes. In ZDF rats, there was reduced 
maximal channel Po, a rightward shifted Po-V relationship with a smaller value of the Hill 
coefficient, compared to those in Lean rats. Hence, impaired BK channel function in ZDF rats 
at advanced stages of type 2 diabetes was due to reduced free energy for Ca2+ binding to the 
channel with reduced Ca2+ cooperativity and reduced sensitivity to Ca2+ -mediated activation.  
 

 

Fig. 5. Impaired Ca2+-dependent BK channel activation in the coronary smooth muscle cells 
from ZDF rats 8 months after development of diabetes. A: The Po-V relationships of BK 
channels from ZDF rats and age-matched Lean rats in the absence of and in the presence of 

1 M free Ca2+ in the bath solution. Less Ca2+-dependent leftward shift was observed in ZDF 
rats, compared with Lean rats.  B: Ca2+ dose-dependent curve of BK channel activation from 
Lean and ZDF rats. Reduced maximal channel Po, increased Ca2+ EC50 and decreased slope 
steepness were found in ZDF rats, indicating that BK channel Ca2+-sensitvity and Ca2+-
cooprativity were impaired in ZDF rats. (adapted from Lu et al., 2008).  
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5.2 Altered vascular BK channel kinetics in ZDF rats with advanced diabetes 
To better understand the altered Ca2+-dependent BK channel activation in ZDF rats, we 
examined the Ca2+-dependent gating properties in ZDF rats and age-matched Lean rats. We 
compared single channel gating between Lean and ZDF rats at various Ca2+ concentrations 

from 1 M to 100 M with a testing potential of +60 mV. Fig. 6 illustrates typical tracings of 
inside-out single-channel BK currents in Lean and ZDF rats with expanded details. In the 

presence of 1 M Ca2+, BK channel Po was much higher in Lean rats than in ZDF rats. An 

increase of Ca2+ to 10 and 100 M markedly increased the channel Po in both Lean (Fig. 6A) 
and ZDF rats (Fig. 6B). However, increased cytoplasmic Ca2+ enhanced Po in Lean rats by 
significantly prolonging the mean channel open durations without altering the channel 
mean closed durations. In contrast, increased cytoplasmic Ca2+ augmented Po in ZDF rats 
by significantly abbreviating channel mean closed durations without a marked increase in 
channel mean open durations (Fig. 6C and 6D). These results indicated that there was an 
altered gating response to activation by Ca2+ in vascular BK channels in ZDF rats. Because 

normal intracellular Ca2+ concentration can reach >10 M, especially in the vicinity of the 
microdomains where calcium sparks are elicited, these fundamental changes in BK channel 
properties are physiologically relevant.  
 

 

Fig. 6. Altered single BK channel openings in ZDF rats 6 months after development of 
diabetes. Representative inside-out single BK channel currents were recorded at +60 mV 
from freshly isolated coronary smooth muscle cells of ZDF rats and age-matched Lean rats 

in the presence of 1 M Ca2+ (A) and 100  M Ca2+ (B). Plots of relationships between Ca2+ 
concentrations and mean burst durations (C) and mean closed times (D) of BK channels in 
Lean and ZDF rats are shown. Compared with Lean rats, ZDF rats had shorter mean burst 
open durations and longer mean closed durations. Data are presented as mean ± SE. *p < 
0.05 vs. Lean (n = 6).   (adapted from Lu et al., 2008).  

www.intechopen.com



 
Impaired Vascular BK Channel Function in Type 2 Diabetes Mellitus   

 

61 

BK channel gating kinetics is known to contain multiple components of open and closed 
dwell-times. Based on single BK channel kinetic analysis from our group and other 
laboratories, the best fit of the open dwell-time distribution histograms showed three 

components: fast (o1), intermediate (o2) and slow (o3); the closed dwell-time distribution 

histograms showed four components: fast (c1), intermediate (c2), slow (c3) and very slow 

(c4) (Fig. 7) (Lu et al., 2001; Lu et al., 2008; McManus & Magleby, 1988; McManus & 
Magleby, 1991). Compared to Lean rats, BK channels from the coronary arterial smooth 
muscle cells of ZDF rats had shorter open dwell-times and longer closed dwell-times, in 
agreement with the lower channel opening probability observed in ZDF rats (Fig. 5). These 
changes in BK channel gating were consistent with reduced free energy for Ca2+-dependent 
channel activation, favoring BK channel closure in ZDF rats.  
 

 

Fig. 7. Altered Ca2+-dependent kinetics of BK channel from ZDF rats after 8 months of 
diabetes. Representative histograms of single BK channel open and closed dwell-time 

durations in the presence of 1 M, 10 M and 100 M free Ca2+ in the bath solution. Dwell-

time distributions were best fitted with three open dwell-time components (o) and four 

closed dwell-time components (c). The values of each time constants and its relative weight 
(in parentheses) are shown in each histogram. Dashed lines represent distribution of 
exponential components, determined by the logarithm likelihood ratio test.  

An intriguing observation during single BK channel recordings in coronary smooth muscle 
cells from ZDF rats with 8 months of diabetes was the conspicuous increased encounter of 
subconductance openings (Fig. 8A). Amplitude histograms fitted with a Gaussian function 
clearly showed four levels of subconductance and channel state transition appeared to be slow 
with subconductance constituting ¾ of full channel opening seen 20% of the time (Fig. 8B and 
8C),  while BK channel subconductance openings was less frequently observed in Lean rats. 
Although the underlying mechanism of BK channel subconductance openings is not fully 
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understood, this may be due to the conformational changes that each subunit of the tetrameric 
channel has to make from a closed state to an open state as the channel opens (Chapman & 
VanDongen, 2005). Normally, such transitions of conformational states are too transient to be 
discerned (Ferguson et al., 1993). However, conditions that cause slowing of the tetrameric 
conformational transitions would result in prolonged sojourn of intermediate state 
conformations and lead to discernible subconductance openings. The reduced Ca2+ 

cooperativity and Ca2+ sensitivity in BK- subunits of ZDF rats with advanced diabetes could 
cause slowing of the conformational transitions of the heteromeric states. The cooperative 
conformational changes of the channel subunits can be estimated from the relationship 
between the number of subconductance states and their relative frequencies. As shown in Fig. 
8D, the relative frequency was plotted against each subconductance state in Lean and ZDF 

rats, which were fitted by a single exponential function: y=exp(x), where  is the fitting 

constant and  is the coefficient of subunit conformational change. The coefficient of BK 
channel subunit conformational change was estimated to be 3.3 in Lean rats and 1.4 in ZDF 
rats, in agreement with the reduction of the Hill coefficient of the Ca2+ dose-dependent curve 
from 4.1 in Lean rats to 1.1 in ZDF rats (Fig. 5B). Hence, these observations suggested that 
changes in Ca2+-cooperativity and in subunit conformations in BK channels could be coupled, 
but such coupling was impaired in ZDF rats with more frequent subconductance openings. 
 

 

Fig. 8. Increased BK channel subconductance openings in ZDF rats with advanced diabetes.  
A: Representative single BK current recordings were obtained at +60 mV in the presence of 1 

M free Ca2+, with selected segments that showed expanded details, demonstrating the 
presence of 4 sublevels of openings. B: Amplitude histogram was fitted using a Gaussian 
function and showed four peaks with unitary amplitudes of 4 pA (Sub1), 8 pA (Sub2), 12 pA 
(Sub3) and 16 pS (Sub4 or fully open). The relative frequencies of each subconductance state 
were calculated by the area under each component of the Gaussian function. C: Relative 
frequencies were plotted against subconductance states, and the relationships were fitted using 
a single exponential function. The coefficient of subconductance conformational changes was 
estimated to be 3.3 in Lean rats (n=3) and 1.4 in ZDF rats (n=3). (adapted from Lu et al., 2008).  
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5.3 Downregulation of vascular BK-1 subunit expression in ZDF rats with advanced 
diabetes  

BK-1 subunits play an important role in the regulation of channel Ca2+- and voltage-

sensitivity. Fig. 9 shows the loss of BK-1-mediated channel activation in ZDF rats with 6 

months of diabetes.  Dehydrosoyasaponin-1 (DHS-1) is a cell-impermeable BK-1 subunit-

specific activator, enhancing BK channel activity by acting on the cytoplasmic surface of 

the membrane. DHS-1 (0.1 M) applied to the bath solution in inside-out excised 

membrane patches significantly increased the Po of BK channels in Lean rats, but not 

those in ZDF rats (Fig. 9A and 9B). A 2.1-fold reduction in BK-1 protein expression was 

observed in ZDF rats while BK- expression was unchanged (Fig. 9C and 9D).  The 

downregulation of vascular BK-1 expression appears to be a common feature in BK 

channelopathy for both type 1 and type 2 diabetes (Dong et al., 2008; Lu et al., 2008; 

McGahon et al., 2007; Zhang et al., 2010).  Since the BK-1 subunit is known to modulate 

the Ca2+- and voltage-dependent activation of BK channels and the subconductance 

activity of BK channel is also thought to be regulated by BK-1 subunits (Nimigean & 

Magleby, 1999), we can conclude that the vascular BK channelopathy in type 2 diabetes is 

produced by the downregulation of BK-1 expression.   

In addition to changes in the BK-1-mediated channel regulation, the BK- subunit may also 

undergo alterations in intrinsic properties as a result of prolonged diabetes. For example, 

hyperglycemia is known to enhance production of ROS, and H2O2 has been shown to 

directly inhibit BK channel function through redox modulation of the BK- C911 residue  

 

 

Fig. 9. Impaired the 1-mediated channel activation and reduced BK-1 expression in the 
arteries of ZDF rats 8 weeks after the development of diabetes. A: Inside-out single BK 
currents recorded in the coronary smooth muscle cells from ZDF rats and age-matched Lean 

rats at +60 mV in the presence of 0.5 M free Ca2+ at baseline, with application of 0.1 μM 
DHS-1, followed by drug wash out. Bar graphs show a significant DHS-1-induced increase 
in BK channel Po in Lean rats, but not in ZDF rats. B: Immunoblot analysis shows significant 

decrease in BK-1 expression but not that of BK- expression in the aortas from ZDF rats, 
compared to those from Lean rats. (adapted from Lu et al., 2008) 
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(Lu et al., 2006; Tang et al., 2004).  Also, the molecular mechanism that underlies the 

downregulation of BK-1 in type 2 diabetes is unknown. However, we have recently 

reported that in type 1 diabetes and in human coronary smooth muscle cells cultured with 

high glucose, BK-1 protein degradation was significantly accelerated through upregulated 

ubiquitin-proteasomal pathway (Zhang et al., 2010). Taken together, it is most likely that the 

above mechanisms could contribute to vascular BK channel dysfunction in type 2 diabetes, 

although direct confirmation will be necessary using appropriate tissues from human and 

animal models with type 2 diabetes mellitus.    

6. Summary 

Vascular BK channel function is impaired in type 2 diabetic animals. During the early stages of 
diabetic development, abnormal BK channel function is likely due to reduced activity and 
bioavailability of vasodilators (e.g., PGI2, 12-hydroxyeicosatetraenoic acid) or increased 
activity and bioavailability of vasoconstrictors (e.g., Ang II, ROS). However, the BK channel 
biophysical properties remain intact. During advanced stages of type 2 diabetes, vascular BK 
channel gating properties, especially those pertaining to Ca2+-dependent kinetics, are altered. 

These changes in BK channel gating are associated with reduced BK-1 subunit expression and 

increased BK- subunit post-translational modification, contributing to BK channelopathy and 
vascular complications in type 2 diabetes. These results suggest that the potential therapeutic 
targets for restoring BK channel function are dependent on  progression of the disease. Hence, 
a better understanding on the fundamental mechanisms of BK channel dysfunction in 
association with type 2 diabetes may help us provide better approaches for the treatment of 
diabetic vascular complications and improve the quality of life in these patients.  
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