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1. Introduction 

Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disorder of the elderly. 
It is characterized by widespread loss of central cholinergic neuronal function (Butters et al., 
1995). The only symptomatic treatment proven to be effective to date is the use of 
cholinesterase inhibitors (ChEI) to augment surviving cholinergic activity (Giacobini, 2003, 
Terry & Buccafusco, 2003). Two types of ChE enzyme are found in the Central Nervous 
System (CNS), acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; 
EC 3.1.1.8).  
AChE and BuChE share 65% amino acid sequence homology despite being encoded by 
different genes on human chromosomes 7(7q22) and 3(3q26), respectively (Soreq & Zaku, 
1993). Acetylcholinesterase is responsible for the hydrolysis of acetylcholine at the synaptic 
cleft and the neuromuscular junction in response to nerve action potential (Massoulie et al., 
1993) while the BuChE preferentially acts on butyrylcholine, but also hydrolyzes 
acetylcholine (Cokugras, 2003). In addition, both AChE and BuChE seem to be involved in 
roles that are independent of their catalytic activities, such as cell differentiation and 
development (Behra et al., 2002, Meshorer et al., 2002). BuChE and AChE are able to catalyze 
the hydrolysis of acetylcholine (ACh) at a rate of >10,000 molecules per second (Bazelyansky 
et al., 1986). 
Because BuChE is relatively abundant in plasma (about 3 mg/liter), and can degrade a large 
number of ester-containing compounds, it plays important pharmacological and 
toxicological roles (Lockridge & Masson, 2000). For instance, BuChE is a potential 
detoxifying enzyme to be used as a prophylactic scavenger against neurotoxic 
organophosphates such as the nerve gas soman (Lockridge & Masson, 2000, Massoulie et al., 
1993, Xie et al., 2000). 
Previously, the relative contribution of BuChE to the regulation of ACh levels was largely 
ignored presumably due to unclear physiological function of BuChE (Chatonnet & 
Lockridge, 1989, Mack & Robitzki, 2000, Massoulie, Pezzementi, 1993, Xie, Stribley, 2000). 
However, there is growing evidence that both enzymes regulate ACh levels and may also 
play a part in the development and progression of AD (Greig et al., 2001). 
In the normal brain, AChE represents approximately 80% of ChE activity with BuChE 
comprising the remainder (Giacobini, 1964). In advanced AD, however, AChE activity may 
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be reduced to 55-67% of normal levels in specific brain regions, while BuChE activity 
increases (Giacobini, 1964, Greig, Utsuki, 2001, Mack & Robitzki, 2000). Cytochemical 
studies have revealed that in certain neuronal pathways of some species, BuChE replaces 
AChE (Graybiel & Ragsdale, 1982). The BuChE may also have a role in the aggregation of ǃ-
amyloid protein (Aǃ) that occurs in the early stages of senile plaque formation in AD 
(Guillozet et al., 1997). Selective inhibition of BuChE versus AChE derives from an ability to 
utilize the additional space present in the gorge of BuChE.  
From the resolved 3D structures of various cholinesterases, it is known that the active sites 
residues of these enzymes lay at the bottom of a 20 Å deep hydrophobic gorge (Bourne et al., 
1995, Doorn et al., 2001, Harel et al., 1992, Nachon et al., 2005, Nachon et al., 2005, Nicolet et al., 
2003, Sussman et al., 1991, Tormos et al., 2005). Due to a large cavity of this gorge BuChEs 
accept in comparison to AChEs, broader variety of substrates and inhibitors (Radic et al., 1993, 
Saxena et al., 1999, Saxena et al., 1997). For instance they metabolize butyrylcholine, the choline 
ester with large acyl moiety whose hydrolysis by vertebrate AChEs is negligible. 
Although a similar peripheral site has been described for human BuChE but site-directed 
mutagenesis and photo-affinity labeling studies showed that its location and the response 
upon ligand binding differ significantly from those of AChE (Graybiel & Ragsdale, 1982, 
Perry et al., 1978).  
Structure-activity analysis is the foundation for understanding the structural features of 
both the inhibitors and the target receptors involved in particular biological process and 
thus helps to design more effective inhibitors (Cho et al., 1996). It appears relatively difficult 
to find a reliable predictive model based on the calculated energies obtained by docking 
(Donini & Kollman, 2000, Tame, 1999). To overcome this problem, highly predictive QSAR 
i.e., CoMFA (Cramer Iii et al., 1988) and CoMSIA (Klebe et al., 1994) modeling techniques 
have been developed by using the technique of structure-based alignments of the substrates. 
These models can be used to identify important protein-ligand interactions and are found to 
be consistent with the crystal structure of the protein-ligand complex (Prathipati et al., 2005). 
The availability of X-ray crystal coordinates of inhibitors bound with the receptor have 
contributed to formulate effective predictive 3D-QSAR models based on (1) identification of 
possible conformations of related inhibitors in the active site and (2) understanding of the 
interactions of the inhibitors with the receptor in three-dimension (Debnath, 1999). A 3D-
QSAR experiment performs two functions: the derivation of a statistically significant and 
highly predictive model that is used to estimate and rank new compounds for planned 
synthesis and the provision of an easily interpretable graphical tool which can identify a 
particular physicochemical property for increased affinity and selectivity (Klebe, 1998). 
These physicochemical properties include steric bulk, partial charge, local hydrophobicity, 
or hydrogen bond donor and acceptor (Bohm et al., 1999). 
The level-dependent contouring of usual CoMFA-field contributions highlights those 
regions in space where the aligned molecules would favourably or unfavourably interact 
with a possible environment. The CoMSIA field contributions identify those areas within the 
region occupied by the ligand that “favour” or “dislike” the presence of a group with a 
particular physicochemical property. This association of required properties with a possible 
ligand shape is a more direct indicator to check whether all features important for a 
particular activity are present in the structures under consideration (Klebe, Abraham, 1994). 
The discovery of natural cholinesterase inhibitors has been a very challenging area of drug 
development due to the involvement of cholinesterases in Alzheimer’s disease and other 
related dementias. We have previously reported a number of new natural inhibitors of 
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cholinesterases (AChE and BuChE) isolated from indigenous medicinal plants (Atta ur et al., 
2000, Atta ur et al., 2004, Atta ur et al., 2004, Atta ur et al., 2002, Kalauni et al., 2001). The 
steady state inhibition kinetics, pharmacological profiles, SAR and molecular docking 
studies have been conducted on a similar series of compounds for AChE inhibition (Khalid 
et al., 2004, Khalid et al., 2004, Zaheer-Ul-Haq et al., 2003, Zaheer ul et al., 2003). 
In the present study, two 3D-QSAR methods, CoMFA and CoMSIA, were applied and 
evaluated in order to accurately predict the inhibitory activity. For this reason a set of 
structurally similar cholinesterase inhibitors (both BuChE and AChE) were used to create a 
predictive model. The results from this study will be helpful for the design of new and more 
potent cholinesterase inhibitors.  
Docking is one method in which the binding of an inhibitor to a receptor can be explored 
(Dominguez et al., 2003, Jain, 2003, Johnson et al., 2003, Sabnis et al., 2003, Todorov et al., 
2003, Vicker et al., 2003, Wang et al., 2003, Wu et al., 2003, Zhou et al., 2003). In CoMFA or 
other 3D-QSAR studies, the molecule alignment and conformation determination are so 
important that they affect the success of a model. In the present case, a bound complex of 
steroidal alkaloid with cholinesterase was not available, and therefore, a computational 
method has to be implemented to determine possible conformations and alignment of a set 
of molecules so that 3D-QSAR can be carried out. Several strategies have been used in the 
past, to determine the conformation and alignment of molecules. Of them, docking is an 
attractive way to align molecules for CoMFA and/or CoMSIA. Several applications of 
docking alignment with CoMFA have been reported (Buolamwini & Assefa, 2002, Hu & 
Stebbins, 2005, Medina-Franco et al., 2004, Pan et al., 2006, Wei et al., 2005). 
Recently, we used FlexX and FRED (FRED, 2007) to successfully dock a set of steroidal 
alkaloid inhibitors into the active site gorge of cholinesterase. A 3D-QSAR model was 
developed based on the docked conformation of the most active compound. In this paper 
we have performed CoMFA modeling utilizing the genetic algorithm (GA) in the selection 
of the ligand conformations. Previously this GA strategy has been utilized by Yuan and 
Zaheer ul Haq et al (Yuan et al., 2004, Yuan & Petukhov, 2006, Zaheer ul et al., 2008) and 
found that this is very efficient in terms of the reliability of the CoMFA models. GA is 
inspired by natural selection in evolution (Holland, 1975). GA approaches the optimum of a 
given function in the same way nature selects the individual fittest for the environment. The 
GA uses a blind search strategy, requiring no knowledge of the properties of the function to 
be optimized, thus enabling the algorithm to be applied to a variety of optimization 
problems from robot behavior to drug design (Fogel et al., 1966, Forrest, 1993, Goldberg, 
1989). 

2. Materials and methods  

2.1 Biological data  
The cholinesterase inhibitory activities, represented by IC50 (μM), were obtained from recently 
published data (Atta ur, Choudhary, 2000, Atta ur, Feroz, 2004, Atta ur et al., 2003, Atta ur et 
al., 1997, Atta ur, Zaheer ul, 2004, Atta ur, Zaheer ul, 2002, Kalauni, Choudhary, 2001, Khalid, 
Zaheer ul, 2004) (Table 1). The structures of inhibitors are presented in Table 2. The pIC50 (-
logIC50) values were used to derive 3D-QSAR models. From a total of forty compounds, a 
training set was created with thirty five compounds (with the case of BuChE) and thirty three 
compounds (with the case of AChE) while other 5 compounds were used as the test set (Table 
1). This test set was used to validate the predictive ability of the training set.  
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S. 
No. 

Comp. 
No. 

Compound Name 
IC50 (µM) 

BuChE 

IC50 (µM) 

AChE 

pIC50 

BuChE 

pIC50 

AChE 

1 SAR01 Isosarcodine 1.89±0.06 10.31±0.13 5.72 2.99 
2 SAR02 Iso-N-formylchoneformine 4.07±0.11 6.36±0.22 5.39 3.20 
3 SAR03 Saracodinine 12.51±0.06 40.04±0.13 4.9 2.40 
4 SAR04 Sarcorine 10.33±0.02 69.99±0.056 4.99 2.15 
5 SAR05 Na-Demethylsaracodine 16.55±0.20 204.2±4.951 4.78 1.69 
6 SAR06 Saracocine 3.86±0.01 20±1.30 5.41 2.70 
7 SAR07 Sarcodine 18.31±0.74 49.77±1.26 4.74 2.30 
8 SAR08 Salignenamide-A 4.63±0.07 50.64±0.930 5.33 2.30 
9 SAR09 Vaganine-A 2.32±0.06 8.59±0.155 5.63 3.07 
10 SAR10 Saligcinnamide 4.84±0.12 19.99±0.123 5.32 2.70 
11 SAR11 Salignenamide-C 38.36±0.74 61.3±2.02 4.42 2.21 
12 SAR12 5,6-Dehydrosarconidine 1.89±0.06 20.29±1.82 5.72 2.69 
13 SAR13 Salignamine 25.7±0.63 249±10.23 4.59 1.60 
14 SAR14 Salignenamide-D 23.78±0.15 185.2±7.66 4.62 1.73 
15 SAR15 Salignenamide-E 3.65±0.02 6.21±0.234 5.44 3.21 
16 SAR16 Salignenamide-F 4.07±0.11 6.357±0.224 5.39 3.20 
17 SAR17 2ǃ-Hydroxyepipachysamine-D 28.96±0.01 78.2±2.325 4.54 2.11 
18 SAR18a Salonine-B 4.50±0.07 ------- 5.35 ------- 
19 SAR19 Salonine-A 32.70±1.20 33.4±3.21 4.49 2.48 
20 SAR20 Salonine-C 32.20±0.50 7.8±0.5 4.49 3.11 
21 SAR21 Salignarine-F 1.90±0.20 30.2±2.0 5.72 2.52 
22 SAR22 16-Dehydrosarcorine 3.95±0.53 12.5±0.01 5.4 2.90 
23 SAR23 Axillarine-C 17.99±0.22 227.92±8.677 4.74 1.64 
24 SAR24 Axillarine-F 18.24±0.01 182.4±5.542 4.74 1.74 
25 SAR25 Dictyophlebine 3.65±0.02 6.21±0.23 5.44 3.21 
26 SAR26 Sarsalignenone 4.29±0.03 5.83±0.070 5.37 3.23 
27 SAR27 Nepapakistamine 25.00±0.79 50.1±1.35 4.6 2.30 
28 SAR28 Sarcoveganin-C 1.50±0.02 187.8±0.71 5.82 1.73 
29 SAR29 Salignarine-C 1.25±0.01 19.7±0.05 5.9 2.71 
30 SAR30 Sarsalignone 2.18±0.04 7.02±0.007 5.66 3.15 
31 SAR31 N-Methylformamidesalonine-B 10.50±0.30 48.6±2.7 4.98 2.31 

32 SAR32 a 5,14-dehydro-Na-
demethylsaracodine 

25.00±0.60 ------- 4.6 ------- 

33 SAR33 Axilliridine-A 2.49±0.06 5.21±0.105 5.6 3.28 

34 SAR34 
14-Dehydro- Na-
demtehylsaracodine 

10.10±0.15 183.1±2.60 5 1.74 

35 SAR35t Vaganine-D 10.00±0.120 46.89±1.94 5 2.33 
36 SAR36 t 2-Hydroxysalignarin E 6.91±0.06 15.99±0.13 5.16 2.80 
37 SAR37 t Epipachysamine-D 2.82±0.02 28.93±0.54 5.55 2.54 
38 SAR38 t 2-Hydroxysalignamine 20.95±3.20 82.5±2.22 4.68 2.08 
39 SAR39 t 2,3-Dehydrosarsalignone 32.20±0.50 7.0±0.1 4.49 3.15 
40 SAR40 Alkaloid C 22.13±0.14 42.2±0.26 2.65 2.37 

t = test set 
a = not included in AChE modelling 

Table 1. Inhibitory Activities of the Compounds 
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2.2 Modeling tools  
All molecular modeling and comparative molecular field evaluations were performed using 
SYBYL 7.2 (Sybyl, 2007), running on AMD Athlon (tm) workstation. The aliphatic amine 
groups of all compounds were considered protonated. Geometry optimizations were 
performed using the Tripos forcefield (Clark et al., 1989) with a distance-dependent 
dielectric and the Powell conjugate gradient algorithm. Gasteiger Huckel charges were used. 
All water molecules, sulfate and chloride anions, glycerol, fucose, N-acetyl-D-glucosamine 
and 2-(N-morpholino)-ethanesulfonic acids were removed from the original protein data 
bank file. 
 

 
Comp. No. R1 R2 R3 R4 Unsaturation 

SAR01 H NCH3Ac H N(CH3)2  
SAR02 H N(CH3)2 H NHCHO  
SAR03 H N(CH3)2 H N(CH3)2 ∆5,6 
SAR04 H NHAc H N(CH3)2  
SAR05 H NHCH3 H NCH3Ac  
SAR06 H N(CH3)2 H NCH3Ac ∆5,6 
SAR07 H N(CH3)2 H NCH3Ac  
SAR08 H NHCOCH=CCH3CH(CH3)2 H N(CH3)2  
SAR09 H HN-Senecioyl OAc N(CH3)2  
SAR10 H CH3N-Cinnamoyl H N(CH3)2  
SAR11 OH HN-Tigloyl OAc N(CH3)2 ∆14,15 
SAR12 H NHCH3 H N(CH3)2 ∆16,17 
SAR13 H OCH3 H NHCH3 ∆5,6 & ∆16,17 
SAR14 ǂ-OH HN-Tigloyl H N(CH3)2 ∆4,5 & ∆16,17 
SAR15 H N(CH3)COCH=C(CH3)CH(CH3)2 H N(CH3)2 ∆16,17 
SAR16 H N(CH3)COCH=C(CH3)CH(CH3)2 H N(CH3)2  
SAR17 OH HN-Benzoyl H N(CH3)2  
SAR18 H OCH3 H N(CH3)2 ∆5,6 & ∆16,17 
SAR19 OH HN-Tigloyl OH N(CH3)2 ∆14,15 
SAR20 H HN-Tigloyl H N(CH3)2 ∆4,5 & ∆14,15 
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SAR21 H HN-Tigloyl OH N(CH3)2 ∆5,6 
SAR22 H NHCOCH3 H N(CH3)2 ∆16,17 
SAR23 OH HN-Benzoyl OAc N(CH3)2  
SAR24 OH HN-Tigloyl OAc N(CH3)2  
SAR25 H NHCH3 H N(CH3)2  
SAR27 OAc HN-Tigloyl OAc NHCH3 ∆16,17 
SAR29 OH HN-Senecioyl H N(CH3)2 ∆5,6 
SAR31 H OCH3 H NCH3(CHO) ∆5,6 & ∆16,17 
SAR32 H NHCH3 H NCH3Ac ∆5,6 & ∆14,15 
SAR34 H NHCH3 H NCH3Ac ∆14,15 
SAR35 H HN-Senecioyl OAc N(CH3)2 ∆16,17 
SAR36 OH HN-Tigloyl H N(CH3)2 ∆4,5 
SAR37 H HN-Benzoyl H N(CH3)2  
SAR38 OH OCH3 H N(CH3)2 ∆5,6 & ∆16,17 
SAR40      

 
Comp. No. R Unsaturation 

SAR26 HN-Tigloyl ∆5,6 & ∆14,15 
SAR28 HN-Tigloyl ∆2,3 & ∆16,17 
SAR30 HN-Tigloyl ∆5,6 
SAR33 HN-Benzoyl ∆2,3 
SAR39 HN-Tigloyl ∆2,3 & ∆5,6 

Table 2. Chemical Structures of the Compounds 

2.3 Docking 
FlexX, incremental construction algorithm (Rarey et al., 1996), was used to choose the 
appropriate binding conformations of the steroidal alkaloids inhibitors into the BuChE 
binding pocket. The crystal structure of human BuChE (pdb code: 1P0I) was used. One of 
the most active compound, SAR29 (see Table 2), was docked into the binding pocket and the 
best conformation was used as a template to align rest of the compounds. The FlexX scoring 
function was used to select the best conformation. Prior to dock the inhibitors with protein 
crystal structure, a re-docking of co-crystallized ligand with 1P0I was performed to validate 
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the docking protocol. The top most docked solution was found in good agreement with the 
crystal structure of the co-crystallized ligand. The RMSD between the docking solution and 
the crystal structure was 1.53 Å. 
Molecular docking with AChE was carried out using FRED docking program. FRED (Fast 
Rigid Exhaustive Docking) is a protein-ligand docking program, which takes a 
multiconformer library/database and receptor file as input and output molecules of the 
input database most likely to bind to the receptor (FRED, 2007, McGann et al., 2003). 
First stage in FRED docking is a shape fitting process, which takes a set of ligand conformers 
as input and tests them against a “bump map” (a Boolean grid with true values where 
ligand atoms can potentially be placed). Orientations that clash with the protein or are 
distant from the active site are rejected. The crude docking solutions are further tested 
against a pharmacophore feature if specified and any poses that do not fit in the 
pharmacophore criteria are rejected. Poses surviving the shape fitting routine can then be 
passed through up to three scoring function filters in the screening process. Available 
scoring functions in FRED are ChemScore, PLP, ScreenScore, and Gaussian shape fitting 
(McGann, Almond, 2003). 

2.4 Conformational sampling and alignment  
The selected poses for SAR29 (one of the most active compound against BuChE) and SAR33 
(one of the most active compound against AChE) were used as templates in structure 
alignment for all molecules in the respective series. For BuChE, this step was performed by 
using an incremental construction algorithm and a scoring function based on intermolecular 
interactions and overlapping density functions implemented in the Flexible Superposition 
(FlexS) technique (Lemmen et al., 1998). The minimum volume overlap was set at 0.6 and 
the number of alignments per ligand was used initially as 30 (default) but was changed for 
the cases where optimum alignment was not obtained. The Gasteiger Huckel charges were 
calculated during conformational alignment with FlexS. A top-ranked conformer for each 
compound was initially utilized for CoMFA modeling and then the ten best conformations 
were used in order to explore all possible conformational space for each compound. The ten 
best poses were selected based on the following:  
1. FlexS ranks and 
2. If the pose is correctly oriented on the template.  
The Figure 1a represents the alignment of the molecules using SAR29 as a template for 
BuChE modeling. 
In the case of AChE, the superimposition was performed using the ROCS from openeyes 
(OE ROCS, 2008). The ROCS is a Rapid Overlay on Crystal Structures (ROCS). ROCS 
method has a number of applications in virtual screening, lead hopping and in 3D-QSAR. 
ROCS can be utilized as an alignment method in order to produce the conformations which 
subsequently can be utilized in conformations sensitive 3D-QSAR i.e. CoMFA. The ROCS 
was used with its default settings except the maximum numbers of conformations and 
numbers of best hits to be saved were 30 and 1000, respectively. ROCS overlays the 
multiconformer compound’s database in shape and chemistry with respect to the reference 
ligand. The overlays can be performed very quickly based on a description of the molecules 
as atom-centered Gaussian functions. ROCS maximizes the shared volume between a query 
molecule and a single conformation of a database molecule. Figure 1b represents the 
alignment of the molecules using SAR33 as a template for AChE modeling. 
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Fig. 1. Superposition of all studied inhibitors: a) BuChE using SAR29 as template b) AChE 
using SAR 33 as template 

2.5 CoMFA modeling based on genetic algorithm 
The overall strategy for CoMFA GA modeling is shown as a scheme in Figure 2. A brief 
description of the procedure is outlined here. To explore the multiple conformations of the 
ligands, a genetic algorithm analysis was applied in the selection of ligand’s conformations 
for CoMFA. The genetic algorithm consisted of the following steps: 
Initialization: This step generates an initial population Pi of CoMFA models using one 
randomly selected conformation among pre-filtered conformations of each ligand. The 
population size was set to 100.  
Iterations:  
Crossover: Exchange the conformations of corresponding ligands for any two models in the 
population Pi. The crossover ratio was set to 50:50. 
Mutation: For randomly selected ligands, replace the conformations obtained in step 1 with 
randomly selected conformations in the database. Store the results as a temporary 
population Ptmp. The mutation rate was set to 0.05. 
Selection: Generate new CoMFA models for Ptmp. Compare their q2 values with those 
generated for population Pi and keep the best models in population Pi+1. 
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Until: The 100 generations limit is reached or the best model remains unchanged for 10 
consecutive generations. 
 

 Docking of the most active inhibitor inside the binding site of the 

enzyme using docking method e.g. FlexX, FRED etc 

Superimposing rest of all ligands on to the top rank pose of the template 

molecule using either FlexS or ROCS and selecting the multiple 

conformations for each ligand based on specified criteria 

Dividing the ligands into training and test compounds randomly 

Applying the CoMFA GA run 

Getting an acceptable q2 value (in a way that minimizing the chances of 

over-fitting) 

Validating the model reliability by external predictions of the test set 

molecules 

Explanation of CoMFA contour maps with respect to the binding site 

characteristics 

Proceeding for further analyses (e.g. CoMSIA) 

Pi 

Cross Over 

Mutation 

Selection 

Pi + 1 

 
Fig. 2. Scheme for overall procedure applied during GA based 3D-QSAR modeling 

2.6 CoMFA fields 
Training sets of, thirty five compounds (with the case of BuChE) and thirty three 
compounds (with the case of AChE; see Table 1), were selected from the existing database, 
representing the diversity of structures and activities. After alignment, the molecules were 
inserted as rows of a QSAR table along with their respective IC50 values (as pIC50). CoMFA 
steric and electrostatic fields were calculated as described below and entered as columns in 
the QSAR table. Standard steric and electrostatic CoMFA field energies of each inhibitor 
were calculated using an sp3 probe atom with a +1 charge at all intersections in regularly 
spaced (2.0 Å) grids surrounding each molecule. Lennard Jones 6-12 potential and 
coulumbic potential functions, within the Tripos forcefield (Clark, Cramer, 1989) and a 
distance dependent (1/r) dielectric constant were used in the calculation. The grid box 
dimensions were determined by the “create automatically” features in the CoMFA module 
within the “SYBYL” program. The same grid box was used in all calculations. An energy 
cutoff of 30 kcal/mol for both steric and electrostatic contributions was set as threshold and 
the electrostatic terms were dropped within regions of steric maximum i.e., 30 kcal/mol. 
Five additional inhibitors (Table 1) were selected as a predictive set to test the robustness of 
the resulting model. They were aligned with template structures using the same alignment 
protocol as described earlier and finally their activities were predicted. 
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2.7 CoMSIA fields  
Another 3D-QSAR procedure, CoMSIA can avoid some inherent deficiencies arising from 
the functional forms of Lennard-Jones and Coulumb potentials used in CoMFA. In CoMSIA, 
a distance dependent Guassian-type functional form has been introduced. This can avoid 
singularities at the atomic positions and the dramatic changes of potential energy due to 
grids in the proximity of the surface. Meanwhile, no arbitrary definition of cut-off limits is 
required in CoMSIA and the contour maps of the relative spatial contributions of the 
different fields can be substantially improved. This is essential for the interpretation in terms 
of separate property fields. The procedures of getting a 3D-QSAR model from a CoMSIA 
can be summarized into following three steps.  
First, all molecules are structure-based or field-based aligned. 
Then, an evenly-spaced rectangular grid is generated to enclose the molecular aggregate. A 
probe atom is placed at every lattice point to measure the electrostatic, steric, hydrophobic, 
and H-bond donor or acceptor fields. 
Finally, the results from the field samplings are combined with the biological activities from 
the tested compounds are put into a table and partial least squares (PLS) fitting is applied to 
obtain the final CoMSIA model. 
To choose the appropriate components and to check the statistical significance of the 
models, leave-one-out cross-validations were used by PLS. Then, the final 3D-QSAR model 
was derived from no cross-validation calculations. The CoMSIA results are finally 
interpreted graphically by field contribution maps using the field type “stdev*coeff”. 
Similar to the usual CoMFA approach, a data table has been constructed from similarity 
indices (Klebe, 1998) calculated via a common probe atom that is placed at the intersections 
of a regularly spaced lattice. A grid spacing of 2 Å has been used throughout this study. 
Similarity indices AF, K between the compounds of interest and a probe atom, systematically 
placed at the intersections of the lattice, have been calculated according to equation 1 (e.g., at 
grid point q for molecule j of the data set). 

 2
,( ) ( )q r

probe k ik iqFK i
A j e aw w -=-å  (1) 

Where i = summation index over all atoms of the molecule j under investigation; ωik = actual 
value of the physicochemical property k of atom i; ωprobe, k = probe atom with charge +1, ǂ = 
attenuation factor; and riq = mutual distance between probe atom at grid point q and atom i 
of the test molecule. Large values of ǂ will result in a strong attenuation of the distance-
dependent consideration of molecular similarity. Accordingly, there is little averaging of 
local feature matches of the molecules being compared. With small values of ǂ, also remote 
parts of each molecule will be experienced by the probe and the global molecular features 
become more important. In the present study the ǂ has been set at 0.3. With this selection, at 
a given lattice point the property value of an atom of the molecule under investigation (e.g., 
the partial atomic charge) is experienced in 1 Å distance by 74.1%, in 2 Å by 30.1% and in 3 
Å by 6.7% of its total value. This permits a reasonable “local smearing” of the molecular 
similarity indices and should help to avoid extreme dependencies on small changes of the 
mutual alignments (Bohm, St rzebecher, 1999). In the present study five physicochemical 
properties k (steric, electrostatic, hydrophobic and hydrogen bond donor and acceptor) were 
evaluated, using a common probe atom with 1 Å radius and charge, hydrophobicity and 
hydrogen-bond property of +1. Steric property fields were expressed by the third power of 
the atomic radii. Local hydrophobicities were associated using atom-based parameters 
developed by Viswanadhan et al (Viswanadhan et al., 1989). 
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2.8 Statistical analysis/PLS 
Correlations were derived using the method of Partial Least Squares (PLS) (Geladi & 
Kowalski, 1986) and cross validated to reduce the probability of obtaining chance correlations. 
As used in this report, the cross-validated q2 refers to the squared correlation coefficient of 
the equation derived from the cross-validation of the training set to determine the optimum 
number of principal components. The conventional r2 is the fitted correlation of the training 
set using the optimum number of principal components with no cross validation. The 
predictive r-squared was calculated by the equation 2. 

 
SSD PRESS

predictive r squared
SSD

-
- =  (2) 

Where SSD is sum of squared deviations and PRESS is predictive residual sum of squares. 

3. Results and discussion  

3.1 Docking 
The best docking poses for SAR29 and SAR33 inside the binding pockets of BuChE and 
AChE are shown in Figure 3a and 3b, respectively. The poses indicated that the ligands were  
 

 
Fig. 3. Docked poses of most active compound a) SAR29 for BuChE and b) SAR33 for AChE 
within the surrounding binding site residues. The figures are rendered by MOE Ligand 
interaction 

www.intechopen.com



  
Alzheimer’s Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets 

 

614 

accommodated well inside the binding sites. The compound enters the cavity preferably by 
ring A. This might contribute highly to the stabilization of the complex since the steroid 
backbone of the ligand is highly hydrophobic due to its aliphatic character and therefore, 
not well hydrated. The main hydrophobic interactions between the hydrocarbon skeleton of 
the inhibitors and the cholinesterases binding sites were observed with the most common 
residues i.e. Thr, Tyr, Trp, Ala, and Phe.  

3.2 3D-QSAR of inhibitors 
3.2.1 Model selection 
The CoMFA based on GA, resulted in several models and among them, the final model 
selection is an important issue. With the case of BuChE, four different models have been 
selected based on q2 values. Among them, models 72 and 80 were obtained with the cutoff q2 
≥ 0.65; and the other two models 9 and 21, with the cutoff q2 ≥ 0.90 (Table 3). 
 

Parameters Model9 Model21 Model72 Model80 

q2 a 0.902 0.911 0.730 0.701 

r2 b 0.998 0.998 0.994 0.979 

SEE c 0.022 0.020 0.040 0.072 

F-value d 2326.92 2957.134 738.562 264.356 

No. of Components e 6 6 6 5 

Fraction f     

Steric 0.499 0.484 0.500 0.531 

Electrostatic 0.501 0.516 0.500 0.469 

Predictive r-Squared g 0.441 0.523 0.311 0.682 

PRESS h 0.384 0.328 0.475 0.218 
a Cross-validated correlation coefficient.  
b Noncross-validated correlation coefficient.  
c Standard error of estimate.  
d F-test value.  
e Optimum number of components obtained from cross-validated PLS analysis and same used in final 
non-cross-validated analysis.  
f Field contributions.  
g Correlation coefficient for test set predictions.  
h Predicted residual sum of squares.  

Table 3. Summary of Statistics and Field Contributions for the Top Four CoMFA Models 
with the case of BuChE 

The external predictivity of the CoMFA model is extremely important in terms of the 
applicability of the CoMFA model. Therefore, it was decided to use the predictive-r2 as a 
criterion for final selection of the one best model. As reflected by the Table 3, model 80 has 
the highest predictive-r2 value and hence the lowest PRESS value for the test set predictions. 
Therefore, model 80 was selected as the best CoMFA model. In addition, to study the effect 
of charges on 3D-QSAR studies, different methods were employed to calculate the charges 
on ligands included in this study. Quantitative comparisons of the charges calculated by 
different methods are reported in Table 4. Different charges resulting from different 
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calculation methods may influence the results of CoMFA as well as CoMSIA, but there is no 
significant effects of charges observed during our study for this particular steroidal class of 
compounds. 
With the case of AChE, another way of model selection was done. In each case of GA run 
the predictive- r2 was also calculated and compared it with each generation’s top model. The 
default settings of 100 individuals and 100 generations were used but the GA resulted in 
early termination with 28th generation due to achieving the cutoff value of fitness function 
(i.e. q2 = 0.80). The graphical representation is presented in Figure 4. The generation number 
six (highlighted in circle in Figure 4) was the first in identifying the acceptable q2 as well as 
the predictive r2. Hence, the model number six was utilized for further analysis with the 
case of AChE.  
 

S.No. Charges Method CoMFA CoMSIA 
  q2 r2 Components q2 r2 Components 
1 Gasteiger Marsilli 0.696 0.989 6 0.636 0.980 5 
2 Gasteiger Huckel 0.701 0.979 5 0.627 0.982 5 
3 Huckel 0.673 0.988 5 0.637 0.981 5 
4 MMFF94 0.716 0.993 6 0.669 0.986 4 
5 Pullman 0.697 0.989 6 0.630 0.981 5 
6 Delre 0.680 0.987 5 0.634 0.980 6 

Table 4. Influence of Different Charges on BuChE Predictive Model 
 

 
Fig. 4. Comparison between q2 and predictive –r2 over the generations with AChE modeling  
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3.2.2 Predictive power of the 3D-QSAR model 
The final results of CoMFA and CoMSIA analysis in both cases (i.e. BuChE and AChE) with 
2.0 Å grid spacing are shown in Table 5 and Table 6, respectively. PLS analysis yielded 
consistent results. The optimal components that produce the best cross-validation linear 
regression coefficient were used to produce the non-cross-validated model. The inhibitory 
activities (pIC50) and the calculated activities using CoMFA and CoMSIA models for training 
set and test set are listed in Table 7. Graphic representation of observed vs calculated 
inhibitory activity is shown in the Figure 5. Best selected 3D-QSAR models showed good 
prediction for five tested compounds, which reflects that the derived models were 
satisfactory enough in respect to statistical significance and actual predictive ability. 
 

 
 

 
Fig. 5. Plots of the predicted versus experimental activity data of 3D-QSAR from both 
CoMFA and CoMSIA for training and test compounds a) BuChE and b) AChE 
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Parameters 
CoMFA CoMSIA 

S, E (h) S, E, H, D, A (h) S, E (h) S, E, H (h) S, E, H, A (h) S, E, H, D (h) 

q2 a 0.701 0.627 0.382 0.444 0.386 0.615 

SEP b 0.273 0.305 0.393 0.373 0.392 0.310 

No. of  
Components c 5 5 5 5 5 5 

r2d 0.979 0.982 0.880 0.927 0.924 0.967 

SEE e 0.072 0.085 0.174 0.135 0.138 0.090 

Field  
Contributions  

0.531,  
0.469 

0.064, 0.173, 
0.135, 0.373, 
0.255 

0.330,  
0.670 

0.211, 0.393,
0.396 

0.122, 0.237,  
0.251, 0.390 

0.102, 0.246,  
0.197, 0.456 

F-value f 264.356 185.867 40.877 70.649 68.035 166.192 

Predictive  
r-squared g 

0.682 0.453 0.228 0.529 0.048 0.774 

a Cross-validated correlation coefficient.  
b Standard error of predictions.  
c Optimum number of components obtained from cross-validated PLS analysis and same used in final 

non-cross-validated analysis.  
d Noncross-validated correlation coefficient.  
e Standard error of estimate.  
f F-test value.  
g Correlation coefficient for test set predictions.  
h CoMFA and CoMSIA with different field contributions such as steric (S), electrostatic (E), hydrophobic 

(H), donor (D), and acceptor (A) fields. 
 
 
 
 
 
 
 

Table 5. Results of CoMFA and CoMSIA Analyses for Compounds Used in Training Set 
(BuChE modeling)  
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Parameters 
CoMFA CoMSIA 

S, E (h) S, E, H, D, A (h) S, E (h) S, E, H (h) S, E, H, A (h) S, E, H, D (h) 

q2 a 0.632 0.630 0.661 0.641 0.650 0.636 

SEP b 0.374 0.355 0.359 0.370 0.358 0.359 

No. of 
Components c 6 3 6 6 5 4 

r2d 0.989 0.909 0.979 0.984 0.966 0.947 

SEE e 0.066 0.176 0.090 0.078 0.111 0.136 

Field 
Contributions  

0.524, 
0.476 

0.066, 0.237, 
0.114, 0.307, 
0.276 

0.201, 
0.799 

0.139, 
0.568, 
0.293 

0.095, 
0.349, 
0.160, 
0.396 

0.087, 
0.341, 
0.172, 0.401 

F-value f 377.882 96.415 220.40 269.126 154.86 125.930 

Predictive 
r-squared g 0.964 0.985 0.877 0.917 0.954 0.888 

a Cross-validated correlation coefficient.  
b Standard error of predictions.  
c Optimum number of components obtained from cross-validated PLS analysis and same used in final 
non-cross-validated analysis.  
d Noncross-validated correlation coefficient.  
e Standard error of estimate.  
f F-test value.  
g Correlation coefficient for test set predictions.  
(h) CoMFA and CoMSIA with different field contributions such as steric (S), electrostatic (E), 
hydrophobic (H), donor (D), and acceptor (A) fields. 
 
 
 
 
 
 
 

Table 6. Results of CoMFA and CoMSIA Analyses for Compounds Used in Training Set 
(AChE modeling)  
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S.No. 
Compou
nd 

Actual 
pIC50 

BuChE 

CoMFA 
Predicted 
pIC50 

BuChE 

CoMSIA 
Predicted 
pIC50 

BuChE 

Actual 
pIC50 

AChE 

CoMFA 
Predicted 
pIC50 

AChE 

CoMSIA 
Predicted 
pIC50 

AChE 

Training set 
1 SAR01 5.72 5.61 5.65 2.99 3.07 2.98 
2 SAR02 5.39 5.44 5.43 3.2 3.13 3.23 
3 SAR03 4.90 4.90 5.01 2.4 2.41 2.58 
4 SAR04 4.99 5.04 5.01 2.15 2.18 2.44 
5 SAR05 4.78 4.73 4.75 1.69 1.69 1.75 
6 SAR06 5.41 5.38 5.37 2.70 2.71 2.65 
7 SAR07 4.74 4.72 4.76 2.30 2.32 2.36 
8 SAR08 5.33 5.29 5.19 2.30 2.25 2.51 
9 SAR09 5.63 5.63 5.82 3.07 3.09 2.84 
10 SAR10 5.32 5.37 5.28 2.70 2.72 2.95 
11 SAR11 4.42 4.44 4.54 2.21 2.25 2.26 
12 SAR12 5.72 5.75 5.67 2.69 2.72 2.74 
13 SAR13 4.59 4.62 4.66 1.60 1.76 1.72 
14 SAR14 4.62 4.65 4.65 1.73 1.68 1.71 
15 SAR15 5.44 5.42 5.48 3.21 3.15 3.14 
16 SAR16 5.39 5.39 5.37 3.20 3.19 3.02 
17 SAR17 4.54 4.66 4.66 2.11 2.13 2.08 
18 SAR18 a 5.35 5.39 5.36 ------- ------- ------- 
19 SAR19 4.49 4.45 4.43 2.48 2.44 2.17 
20 SAR20 4.49 4.46 4.50 3.11 3.07 3.14 
21 SAR21 5.72 5.69 5.74 2.52 2.55 2.81 
22 SAR22 5.40 5.41 5.34 2.90 2.85 2.91 
23 SAR23 4.74 4.74 4.69 1.64 1.60 1.79 
24 SAR24 4.74 4.65 4.61 1.74 1.71 1.89 
25 SAR25 5.44 5.48 5.40 3.21 3.22 3.29 
26 SAR26 5.37 5.43 5.45 3.23 3.19 3.20 
27 SAR27 4.60 4.62 4.64 2.30 2.36 2.22 
28 SAR28 5.82 5.80 5.89 1.73 1.74 1.89 
29 SAR29 5.90 5.93 5.87 2.71 2.74 2.51 
30 SAR30 5.66 5.65 5.53 3.15 3.20 3.19 
31 SAR31 4.98 4.96 5.06 2.31 2.30 2.14 
32 SAR32a 4.60 4.60 4.51 ------- ------- ------- 
33 SAR33 5.60 5.54 5.50 3.28 3.33 2.97 
34 SAR34 5.00 5.01 5.03 1.74 1.77 1.58 
35 SAR40 2.65 2.613 2.620 2.37 2.18 2.05 
Test set 
36 SAR35 5.00 4.80 5.07 2.33 2.35 2.31 
37 SAR36 5.16 5.17 5.17 2.80 2.82 2.87 
38 SAR37 5.55 5.24 5.56 2.54 2.31 2.49 
39 SAR38 4.68 4.82 4.66 2.08 2.10 2.21 
40 SAR39 4.49 4.74 5.11 3.15 3.11 3.17 

a = not included in AChE modeling 

Table 7. Comparisons of Experimental and Calculated Biological Activities of the 
Compounds by Using CoMFA and CoMSIA Analyses 
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3.2.3 Graphical interpretation of the results (CoMFA) 

3.2.3.1 BuChE 

CoMFA steric and electrostatic fields from the final non-cross-validated analysis were 
plotted as three-dimensional colored contour maps in Figure 6a. The field energies at each 
lattice point were calculated as the scalar results of the coefficient and the standard 
deviation associated with a particular column of the data table (stdev*coeff), plotted as the 
percentage of contribution to the CoMFA equation. These maps show regions where 
differences in molecular fields are associated with differences in biological activity.  
The steric interactions are represented by green and yellow colors while electrostatic 
interactions are represented by red and blue colors (Figure 6a). In the green regions of steric 
contour plot, bulky substituent enhances biological activity while bulky substituent in the 
yellow region is likely to decrease activity. The green steric contour near the substituent at 
C20 of the D ring indicates that any bulky substituent is preferred at this position. This may 
provide more possibilities to establish hydrophobic interactions with peripheral site of the 
target protein. This observation is consistent with the experimental findings as compound 
SAR13 is less active than SAR38 because SAR13 is having less bulky substituent at C20 than 
SAR38. 
In electrostatic contour map blue-colored contours represent regions where electropositive 
groups increase activity whereas red colored regions represent areas where electronegative 
groups enhance activity. The electrostatic contour plot on the set of compounds showed that 
there is a red-colored region situated close to the substituent at C3 that is to say, the negative 
charges at this region are in a high demand for ligand binding and a charge withdrawing 
group linked to this position will enhance the biological activity. This observation also 
correlates with the experimental determinations, for example, the compound SAR37 is more 
active than compound SAR17. The only difference in both of them is the presence of a 
hydroxyl group at C-2 in compound SAR17 which makes SAR17 less active than SAR37 
since C2 position is covered by the blue contour map. On the other hand a negative group at 
C-4 position makes compound SAR26, SAR28, SAR30, and SAR33 the most active 
compounds among the listed compounds. The presence of a double bond between C-5 and 
C-6 makes compound SAR06 more active than compound SAR07, which has otherwise 
identical structure. 

3.2.3.2 AChE 

In Figure 7a it is possible to observe two well-defined zones (close to the substituent at 
position C-4 and side chain at C-3 position) in which the presence of negative density favors 
an increase of AChE inhibitory activity. Furthermore, the presence of a double bond in ring 
B, between C-5 and C-6, also increases the activity. Small zones near C-2 have an opposite 
effect, that is, a negative density decreases the activity: for example, the only difference 
between compounds SAR17 and SAR37 is the presence of a hydroxyl group at C-2, which 
makes compound SAR17 less active than SAR37, on the other hand a negative group at C-4 
position makes compounds SAR33, SAR30 and SAR26 the most active compounds in our 
study. Similarly, the presence of a double bond between C-5 and C-6 makes compound 
SAR06 more active than compound SAR07 which has an otherwise identical structure. 
Figure 7a displays two big zones near position C-4 and near the side chain at C-3, where the 
presence of bulky substituents decreases the activity. The region between C14 and C15 is 
also not favorable for bulky groups, which assigns a further role to the presence of the 
double bond in ring D as it means the lack of a further substitution. This difference can be 
easily seen by comparing compounds SAR30 and SAR26. 
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Fig. 6. a) The CoMFA (stdev*coeff) steric and electrostatic contour plots for BuChE 
modeling. The favorable steric areas in green; disfavored steric areas in yellow. The positive 
potential favored area in blue; positive potential disfavored areas in red. The most active 
compound in the series (SAR29) is shown as the reference compound. b) The CoMSIA 
(stdev*coeff) steric and electrostatic contour plots. Color scheme same as in figure 6a. The 
most active compound in the series (SAR29) is shown as the reference compound. c) The 
CoMSIA (stdev*coeff) hydrophobic contour plots. The favorable hydrophobic areas 
indicated by yellow color, whereas the disfavored hydrophobic areas are shown by white 
color. The most active compound (SAR29) is shown as the reference compound. d) The 
contour plots of the CoMSIA (stdev*coeff) H-bond donor and acceptor fields. The favorable 
H-bond donor in cyan; unfavorable H-bond donor in purple. The favorable H-bond acceptor 
in magenta; unfavorable H-bond acceptor in red. The most active compound (SAR29) is 
shown as the reference compound 
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Fig. 7. a) The CoMFA (stdev*coeff) steric and electrostatic contour plots for AChE modeling. 
The favorable steric areas in green; disfavored steric areas in yellow. The positive potential 
favored area in blue; positive potential disfavored areas in red. The most active compound 
in the series (SAR33) is shown as the reference compound. b) The CoMSIA (stdev*coeff) 
steric and electrostatic contour plots. Color scheme same as in figure 7a. The most active 
compound in the series (SAR33) is shown as the reference compound. c) The CoMSIA 
(stdev*coeff) hydrophobic contour plots. The favorable hydrophobic areas indicated by 
yellow color, whereas the disfavored hydrophobic areas are shown by white color. The most 
active compound (SAR33) is shown as the reference compound. d) The contour plots of the 
CoMSIA (stdev*coeff) H-bond donor and acceptor fields. The favorable H-bond donor in 
cyan; unfavorable H-bond donor in purple. The favorable H-bond acceptor in magenta; 
unfavorable H-bond acceptor in red. The most active compound (SAR33) is shown as the 
reference compound 
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3.2.4 Graphical interpretation of the results (CoMSIA) 

3.2.4.1 BuChE 

The CoMSIA steric and electrostatic fields based on PLS analyses are represented as 3D 
contour plots in Figure 6b. In the electrostatic contour map, positive charge can be appeared 
closer to the regions of positive coefficients (blue) and negative charge can be moved closer 
to the regions of negative coefficients (red). A close inspection of the electrostatic contour 
plots (Figure 6b), reveals that for the tested molecules the electropositive groups are more 
preferred and appearance of the blue regions near R4 zone, indicate that more positive 
charge group substituted at this zone on the parent skeleton will enhance the biological 
activity.  
In the steric contour map, it can be seen that, the areas (green contour) correspond to regions 
where steric occupancy with bulky groups are preferred and the areas encompassed by 
yellow contour should be sterically avoided. For the studied compounds on ring A, there 
exist two contour areas, a larger favorable area near the group substituted at the C3 on the 
ring A, and at the opposite site, a relatively smaller unfavorable area. Due to the steric 
complementarity between receptor and inhibitor, the positions which are encompassing the 
green region are sterically preferred to produce good steric interactions with the receptor 
and hence increasing the inhibitory activity. By observing the steric contour map with the 
compound SAR29 (one of the most active compound; Table 2), it can be readily seen that the 
green contour covered the whole carbonyl and double bond region at the senecioyl group 
while the terminal substituent on double bond in senecioyl group is covered by yellow 
contour. The green area is indicating that bulky substituent at double bond but adjacent to 
the carbonyl position will enhance the biological activity. Similarly, a smaller terminal 
substituent on the double bond will enhance the inhibitory activity. For example, the 
structure of the compound SAR12 has relatively small substituent, in the form of –NHCH3, 
at C3, while SAR35 has a bulky substituent in the form of senecioyl group, shows less 
inhibitory activity than compound SAR12. The same is observed if we compare the 
compound SAR25 with SAR35. 
The contour map of hydrophobic properties indicates (Figure 6c) one distinct 
hydrophobically favorable site, a larger region near the R2 zone, which means that groups 
with high hydrophobicity (indicated by yellow contour in Figure 6c) will favor biological 
activity. It can be reasonably presumed that ring A combined with a substituent on it, is 
composed of a large hydrophobic core, and will produce a strong hydrophobic interaction 
with the receptor. This observation is also consistent with the CoMFA steric contour map 
(Figure 6a) in which the sterically more crowded substituent is necessary to enhance the 
biological activity at the same R2 zone (see Figure 8 for R zones descriptions). 
The graphical interpretations of the field contributions of the H-bond properties are shown 
in Figure 6d as both H-bond donor and H-bond acceptor fields. In principle, they should 
highlight the areas beyond the ligands where putative hydrogen partners in the enzyme can 
form H-bonds that influence binding affinity. The hydrogen bond donor and acceptor fields 
showed the favorable (cyan) area near the amido group and the H-bond acceptor field 
showed the favorable (magenta) area around the oxygen atom in amido group (Figure 6d). 
This may be due to the involvement of hydrogen bonding during interaction with target. 
Superimposition of the CoMFA and CoMSIA coefficient contour maps on the ligand in the 
active site of BuChE (Figure 9a and 9b) additionally supports the result that most of the 
interactions are hydrophobic in nature and the residues nearby the hydrophobic favorable 
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area are mostly consisting of hydrophobic amino acids (i.e., Gly, Val, and Leu). As depicted 
in the figures 9a and 9b, the substituents at position R2 is placed in the hydrophobic pocket 
formed by Leu286, Gly116, Gly117, Val288, and Ala199. A green color contour map of 
CoMFA model (Figure 6a) and similarly of green contour of CoMSIA (Figure 6b) is 
appeared at this position suggesting for bulky substituents at this position. Another yellow 
color CoMSIA contour near the same R2 region suggesting the favorable hydrophobic 
interaction with the receptor hydrophobic pocket which is formed by the same amino acid 
residues. Most of the amino acid residues near the yellow contour regions are in 
hydrophobic in nature e.g., Gly, Val, and Leu. The same is true when comparing the CoMFA 
and CoMSIA contour maps within the active site residues of acetylcholinesterase (Figure 9c 
and 9d) 
 
 
 
 
 

 
 
 
 
 

Fig. 8. An example of representative compound; showing important regions of the parent 
skeleton; circled here, as R1, R2, R3 and R4 
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Fig. 9. a) CoMSIA contour plots superimposed within the active site of BuChE with 
compound SAR29 b) CoMFA contour plots superimposed within the active site of BuChE 
with compound SAR29 c) CoMFA contour plots superimposed within the active site of 
AChE with compound SAR33 d) CoMSIA contour plots superimposed within the active site 
of AChE with compound SAR33 

3.2.4.2 AChE 

The CoMSIA steric and electrostatic descriptors (Figure 7b) for the set of AChE inhibitors 
remain similar as the CoMFA and hence not described further. The CoMSIA hydrophobic 
descriptors are presented as contour maps in Figure 7c. The contour map of hydrophobic 
properties indicates a favourable region around the substituents as R2 (yellow contours in 
Figure 7c), pointing the hydrophobic groups is advantageous for the AChE inhibitory activity. 
The graphical interpretations of the H-bond properties are shown in Figure 7d. The contours 
present in the Figure 7d signify the importance of H-bond donor and acceptor characters in 
the region. In principle, almost all compounds have amide group present in the region and 
hence presence of these contours is correlated with potentially donor and acceptor amide 
group. 
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4. Conclusion  

Present study correlates the cholinesterase inhibitory activities of isolated natural 
compounds with the steric, electrostatic and hydrophobicity parameters. Statistically 
significant 3D-QSAR models of the steroidal alkaloids inhibitors were designed by 
exploring multiple conformations of each ligand using the genetic algorithm. An alignment 
technique scheme was generated from the docking results and it yielded highly predictive 
3D-QSAR models. The good correlation observed in all cases of 3D-QSAR supports the 
proposed method of alignment and selection of conformers. 
Final models were validated by the prediction of inhibitory activities of the test set 
compounds. In terms of external predictions, CoMSIA and CoMFA both performed great. A 
comparison of the 3D-QSAR PLS coefficient contour maps with the structural and functional 
features of the binding sites also showed good correlation. It is evident from the contour plots 
of both analyses that the hydrophobic effect plays main contribution to the cholinesterase 
inhibitory activity and it’s quite in agreement with the fact that the cholinesterases are having a 
wide active site gorge lining with hydrophobic amino acid residues. Also, bulky groups in the 
side chain at R2 position generally cause the increase in activity but at the same time the 
bulkier substituent at position R3 resulted in decreasing the activity. This R3 position is 
covered by a yellow steric contour and hence the bulkiness at this region is detrimental to the 
activity. The preference for bulky group at position R2 as described in CoMFA, seems to be 
correlated in CoMSIA with increased hyrdrophobicity expected at the same region.  As an 
attempt to exploiting the cholinesterase inhibitors for 3D-QSAR approach combined with all 
detailed information obtained by 3D-QSAR models, we strongly believe that this study can 
help to design novel molecules with improved activity in near future.  
The results, together with the good correlations between the actual and predicted inhibitory 
activities, demonstrate the power of combined docking/QSAR approach to explore the 
probable binding conformations of compounds at the active sites of the protein target. 
Additionally, present study also demonstrates that charges resulting from different 
calculation methods may influence the results of CoMFA as well as CoMSIA, although in 
our case this effect has not been significant. This is evident from the q2 values calculated for 
different charge calculation methods (Table 4). 
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Alzheimer's Disease Pathogenesis: Core Concepts, Shifting Paradigms, and Therapeutic Targets, delivers the

concepts embodied within its title. This exciting book presents the full array of theories about the causes of

Alzheimer's, including fresh concepts that have gained ground among both professionals and the lay public.

Acknowledged experts provide highly informative yet critical reviews of the factors that most likely contribute to

Alzheimer's, including genetics, metabolic deficiencies, oxidative stress, and possibly environmental

exposures. Evidence that Alzheimer's resembles a brain form of diabetes is discussed from different

perspectives, ranging from disease mechanisms to therapeutics. This book is further energized by discussions

of how neurotransmitter deficits, neuro-inflammation, and oxidative stress impair neuronal plasticity and

contribute to Alzheimer's neurodegeneration. The diversity of topics presented in just the right depth will

interest clinicians and researchers alike. This book inspires confidence that effective treatments could be

developed based upon the expanding list of potential therapeutic targets.
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