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Pericardial Processing:
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1. Introduction

The pericardium is a biological tissue widely used as a biomaterial for tissue engineering
applications, including the construction of a variety of bioprostheses such as vascular grafts,
patches for abdominal or vaginal wall reparation and, more frequently, heart valves.
However, despite significant advances, some drawbacks have been found in these
bioprostheses such as biological matrix deterioration and tissue degeneration associated
with calcifications, even though xenopericardium or glutaraldehyde-treated autologous
pericardium were used.

In non-autologous pericardial processing, the pericardium must be decellularized in order
to remove cellular antigens and procalcific remnants while preserving extracellular matrix
integrity. A large variety of decellularization protocols exist, such as chemical, physical or
enzymatic methods. Additional cross-linking processing must be carried out to render the
tissue non-antigenic and mechanically strong.

So far, almost all bioprosthetic materials made of pericardium, and used in clinical practice,
are glutaraldehyde-treated bovine or porcine xenopericardium. However, long-term reports
are raising issues concerning their durability, especially highlighting the high risk of
calcification. Regarding heart valves, calcification currently represents the major drawback
leading to potential failure of the bioprosthesis.

The aim of this review is to present current issues, challenges, outcomes and future
prospects of pericardial processing, including decellularization and cross-linking steps.
Understanding current issues and improving pericardial processing will allow refining
bioprosthesis conception and patients’ safety.

2. Characteristics of the pericardium

2.1 Localization and composition
The pericardium is a connective tissue sac surrounding the heart. It is composed by two
layers: a deeper layer closely adherent to the heart, the visceral serous pericardium, or
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438 Biomaterials Science and Engineering

epicardium, and an upper layer: the parietal pericardium. The two layers are separated by
the pericardial cavity. The parietal pericardium can be excised and easily tested without
causing major complications such as contracture or ischemia (Fomovsky et al., 2010).

Fig. 1. Histology of ovine pericardium showing the collagen organization (arrows).
Hematoxylin-Eosin staining.

The pericardium is composed of a simple squamous epithelium and connective tissue. It is a
collagen-rich biological tissue containing mostly type I collagen, as well as glycoproteins
and glycosaminoglycans (GAGs) in addition to its constitutive cells (Figure 1). Collagen is
structured into different levels of organization ranging from fibrils to laminates, fibers and
fiber bundles (Allen & Didio, 1984; Lee & Boughner, 1981). This organization determines the
mechanical properties of the pericardial tissue (Sacks, 2003; Liao et al., 2005; Wiegner &
Bing, 1981; Lee & Boughner, 1985) and provides an anisotropic and non-linear mechanical
behaviour (Zioupos & Barbenel, 1994). Interestingly, depending on the location on the
pericardium, the thickness and mechanical properties vary (Hiester & Sacks 1998a, 1998b).
Thus, the location of the sample that will be harvested should be carefully selected when
designing a tissue engineering protocol.

2.2 Sources of pericardium

Currently marketed heart valve bioprostheses are prepared from bovine or porcine
pericardium (Vesely, 2005). Other pericardial tissues from different species have been
assessed or are currently used in clinical practice such as equine (DeCarbo et al., 2010;
Yamamoto et al., 2009; Sato et al.; 2008.), canine (Lee & Boughner ; 1981; Wiegner & Bing,
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1981; 1985), or, even more unusually, ostrich (Maestro et al., 2006) or kangaroo pericardium
(Neethling et al., 2000; 2002). However, those exogenous grafts raise several issues, and
especially the immune response against the bioprosthesis as well as the viral status of the
graft.

Human autologous pericardium is thus an interesting option, presenting several advantages
over allografts since it is free of donor-derived pathogens and does not induce any immune
response (Mirsadraee et al., 2007), is easily available, easily handled and of low cost.
Ultimately, these characteristics allow for shorter and less aggressive pericardial processing
before implantation of the bioprosthesis. However, because of intermittent reports of its
tendency to retract or become aneurysmal, the general opinion has been negative (Edwards
et al., 1969, Bahnson et al., 1970). For cusp tissue replacement or valve tissue replacement,
stabilization of pericardium is performed with a solution of 0,2% to 0,6% glutaraldehyde in
order to prevent secondary shrinkage (Duran et al., 1998; Al-Halees et al., 1998, 2005; Goetz
et al., 2002).

3. Processing of pericardium

As allografts have been the main source for pericardial bioprostheses currently in use,
significant processing steps have to be performed prior to clinical use. In particular, as
xenogeneic cellular antigens induce an immune response or an immune-mediated rejection
of the tissue, decellularization protocols are widely used to reduce the host tissue response
(Gilbert et al., 2006.). Once decellularized, the free-cell pericardial tissue is composed of
extracellular matrix proteins which are generally conserved among species, and thus can be
easily used as a scaffold for the host cell attachment, migration and proliferation (Schmidt &
Baier, 2000). This scaffold considerably accelerates tissue regeneration. Overall, tissue
decellularization aims at reducing tissue antigenicity and host response while preserving
the mechanical integrity, biological activity and composition of the ECM (Simon et al., 2006;
Gilbert et al., 2006).

3.1 Extracellular matrix decellularization methods

Most decellularization protocols include a combination of various methods, such as
physical, enzymatic or chemical treatments (Gilbert et al., 2006; Crapo et al., 2011). Physical
methods can either rely on snap freezing (Jackson et al.,, 1988; Roberts et al., 1991),
mechanical force (Freytes et al., 2004) or mechanical agitation (Schenke-Layland et al., 2003),
whereas enzymatic protocols employ nucleases, calcium chelating agents or protease
digestion (Teebken et al., 2000; Bader et al., 1998; McFetridge et al., 2004; Gamba et al., 2002).
Regarding physical decellularization processes, sonication, based on the use of ultrasounds
to disrupt the cell membrane, has been investigated. Such treatment considerably affects the
pericardial architecture and full decellularization cannot be achieved. Thus sonication has to
be carried out simultaneously with chemical treatments in order to fully decellularize the
pericardial tissue and remove cellular debris. However, this combination leads to alterations
of the extracellular matrix (ECM) architecture.

For the enzymatic procedure, the main enzyme employed is trypsin, cleaving peptide
bonds on the C-side of arginine and lysine and thus allowing separation of the cells from
the ECM.

Chemical protocols involve use of alkaline and acid treatments (Freytes et al., 2004), ionic
detergents, sodium dodecyl sulfate (SDS), sodium deoxycholate and Triton X-200 (Rieder et
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al. 2004; Hudson et al., 2004), non-ionic detergents, such as Triton X-100 (Grauss et al., 2003),
zwitterionic detergents (Dahl et al., 2003), tri(n-butyl)phosphate (Woods & Gratzer, 2005) as
well as hypertonic or hypotonic solutions (Goissis et al., 2000; Woods & Gratzer, 2005;
Vyavahareet al., 1997; Dahl et al., 2003). These modalities will either mediate lysis of the cells
or solubilization of the cellular components.

Overall, standard decellularization protocols for allografts consist of a multimodal process
starting with the lysis of the cell membrane using either ionic solutions or physical
treatments. This initial step is then followed by enzymatic treatments to separate any
cellular components from the ECM. Subsequently, detergents are used to solubilize the
nuclear and cytoplasmic cellular components. At the end of the procedure, all residual cell
debris is removed from the remaining ECM. A washing step must also be carried out
following the decellularization protocol to remove residual chemicals, thus avoiding any
host tissue response (Gilbert et al., 2006). The efficiency of the decellularization protocol and
the preservation of the ECM have to be assessed using histological tools.

Concerning pericardial decellularization, several protocols, which have provided interesting
results, can be found in the literature. (Courtman et al., 2004; Liang et al., 2004; Wei et al., 2005;
Chang et al., 2005, Mendoza-Novelo et al., 2010, Ariganello et al., 2011 ). Courtman et al.
proposed the use of a non-ionic detergent, Triton X-100 and an enzymatic extraction process.
After this treatment, the acellular matrix was shown to be composed of collagen, elastin and
glycosaminoglycans (GAG). Microscopy revealed that all cellular components were removed
and that matrix ultrastructure was intact. More recently, Mendoza-Novelo et al. compared the
surfactant tridecyl alcohol ethoxylate (ATE) and the reversible alkaline swelling (RAS)
treatments to Triton X-100 (Mendoza-Novelo et al., 2010 ). Histological results indicated a
significant reduction of cellular antigens with these three decellularization processes.
Nevertheless, the native GAG content varied significantly. It decreased from 88.6 + 0.2% to
62.7+1.1% and 61.6 £ 0.6% for RAS treatment, ATE and Triton X-100 respectively.

On human pericardial tissue, Mirsadraee et al. used a protocol employing hypotonic buffer,
SDS, protease inhibitors and nuclease solution. Following decellularization, the tissue is
decontaminated using a peracetic acid solution (Mirsadraee et al., 2006, 2007). With this
process, glycosaminoglycans and structural proteins, such as collagen, remained intact.
Finally, when dealing with autologous pericardium grafting, full decellularization might not
be necessary and thus, simpler protocols can be used. For instance, surgeons commonly
prepare autologous pericardium for heart valve replacement by mechanical friction. This
allows removing sub-pericardial fat before implantation while better preserving the
pericardial architecture stability. This mechanical treatment mainly removes superficial
cells, thus allowing 50% of viable pericardial cells to remain in the graft (personal data). The
preservation of the pericardial architecture as well as part of the pericardial cells, should
maintain a better integrity of the graft, while allowing re-cellularization of the superficial
layers.

3.2 Effects of decellularization

Depending on the protocol, decellularization may have an impact on the structural and
mechanical properties of the treated tissue (Gilbert et al., 2006). According to Zhou et al.,
decellularization protocols differ significantly in terms of alteration of ECM
histoarchitecture (Zhou et al., 2010). For instance, decellularization protocols have a strong
impact on the amount of GAGs remaining in a tissue (Badylak et al., 2009; Mendoza-Novelo
et al., 2010). Removing GAGs from a tissue leads to adverse effects on pericardial
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viscoelastic properties. This can be easily understood since water retention is an important
function of GAGs in tissues (Lovekamp et al., 2006). Moreover, GAG content plays a key
biological role in cellular signaling and communication. Thus, decreasing GAG content
leads to an impaired tissue response and repair. Therefore, the decellularization protocol has
to be carefully chosen depending on the tissue type as well as the targeted application.
Ideally, the process should remove all cellular antigens without compromising the structure
and mechanical properties of the tissue.

Liao et al. (Liao et al., 2008) investigated the effect of three decellularization protocols on the
mechanical and structural properties on porcine aortic valve leaflets. These protocols were
based on the use of SDS, Trypsin and Triton X-100. They showed that decellularization
resulted in collagen network disruption, and that the ECM pore size varied as a function of
the protocol used. For example, leaflets treated with SDS displayed a dense ECM network
and small pore sizes, characteristics that may have an impact on the recolonization of
interstitial cells.

It has been demonstrated that decellularization of bovine pericardium with SDS causes
irreversible denaturation, swelling and a decrease in tensile strength compared to native
tissue (Courtman et al. 1994; Garcia-Paéz et al., 2000; Mendoza-Novelo et al., 2009). Because
of these deleterious effects on pericardial tissue, non-ionic detergents are preferred for
decellularization processes (Mendoza-Novelo et al., 2010 ). Nevertheless, some issues may
be encountered with the use of non-ionic detergents. Indeed, toxic effects (Argese et al.,
1994) and estrogenic effects (Soto et al., 1991; Jobling et al., 1993) have been reported after
the use of non-ionic detergents such as alkylphenol ethoxylates.

Decellularization mediates alterations of the structural and mechanical properties of the
tissue, but this impact varies depending on the protocol used. For instance, Mirsadraee et al.
(Mirsadraee et al., 2006) did not observe any significant changes using an SDS-based
decellularization protocol in the ultimate tensile strength compared to native tissue on
human pericardial tissue. They also observed an increased extensibility of the tissue when
cut parallel to collagen bundles.

Tissue decellularization reduces the cellular and humoral immune response targeted against
the bioprosthesis (Meyer et al., 2005). However, removing cells does not ensure adequate
removal of xenoantigens, nor mitigation of the immune response (Goncalves et al., 2005;
Kasimir et al., 2006; Simon et al., 2003; Vesely et al., 1995). For this reason, decellularization
protocols have turned to antigen removal protocols (Ueda et al., 2006; Kasimir et al., 2005). The
presence of cell membrane antigens, such as oligosaccharide beta-Gal has been reported to
lead to an immune response that can be prevented by effective decellularization (Badylak et
al., 2008). Interestingly, Griffiths et al. (Griffiths et al., 2008) used an immunoproteomic
approach to study the ability of bovine pericardium to generate a humoral immune response.
They identified thirty one putative protein antigens. Some of them, such as albumin,
hemoglobin chain A and beta hemoglobin have been identified as xenoantigens. Recently,
Ariganello et al. provided evidence that decellularized bovine pericardium induced less
differentiation of the monocytes to macrophages compared to polydimethylsiloxane or
polystyrene surfaces (Ariganello et al., 2010; 2011). Nevertheless, the effects of the host
immune response to acellular pericardium remain to be fully characterized. Understanding
this phenomenon is necessary to develop new pericardium preparations and thus improve
biological scaffold integration and clinical safety (Badylak & Gilbert, 2008).

Overall, no optimal decellularization treatment has been identified so far, but depending on
the target tissue as well as the implantation site, the protocol can be adapted to provide the
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best decellularization efficiency / functional characteristics ratio. Moreover, some additional
treatment can be performed following the decellularization step in order to improve the
mechanical and biological features of the graft.

4. Pericardial extracellular matrix treatment

The decellularization process will lead to important alterations of the biomaterial. Its
mechanical strength will be diminished and after implantation it will undergo rapid
resorption. Hence, approximately 60% of the mass of the ECM is degraded and resorbed
between one and three months after in vivo grafting (Badylak & Gilbert, 2008). It has also
been noted that acellular pericardial tissue, mostly made of type I collagen, is highly
thrombogenic (Keuren et al.,, 2004). Finally, preventing calcification of the graft is also a
priority to ensure the long-term benefit of the implantation.

To optimize the features of the bioprosthesis before its clinical grafting, several treatments

have been developed and are summarized in Table 1.

Reagents References
Acyl azide (Petite et al., 1990)
Carbodiimides (Sung et al., 2003)
Cyanimide (Pereira et al., 1990)
Dye-mediated photooxidation (Moore et al., 1994)
Epoxy compound (Sung et al., 1997)
Formaldehyde (Nimni et al, 1988)
Genepin (Sung et al., 1999, 2003; Wei et al., 2005)
Cross-linking ~ Glutaraldehyde (Huang-Lee et al, 1990; Jayakrishnan et al.,
treatment 1996; Thubrikar et al., 1983)
Glutaraldehyde acetals (Yoshioka et al., 2008)
Penta-golloyl glucose (Tedder et al., 2008)
Phytate (Grases et al., 2006, 2008)
Proanthocyanidin (Han et al., 2003)
Reuterin (Chen et al., 2002)
Tannic acid (Cwalina et al., 2005; Jastrzebska et al., 2006;
Wang et al., 2008)
Chitosan (Nogueira et al., 2010)
) RGD polypeptides (Dong et al., 2009)
ti‘;i‘::e‘i . Silkfibroin (Nogueira et al., 2010)
Heparin sodium (Lee et al., 2000)
Titanium (Guldner et al., 2009)
Amino acids (Jorge-Herrero et al., 1996;
Moritz et al., 1991)
Glycine (Lee et al., 2010)
o Heparin (Lee et al., 2000, 2001)
Post-fixative Hyaluronic acid (Ohri et al., 2004)
treatment ..
L-arginine (Jee et al., 2003)
L-glutamic (Grimm et al., 1991; Leukauf et al., 1993)
Lyophilization (Santibafiez-Salgado et al., 2010)
Sulphonated poly(ethylene oxide) (Lee et al., 2001)

Table 1. Pericardial processing.
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4.1 Cross-linking treatment of pericardial tissue

Cross-linking processing must be carried out to render the tissue non-antigenic,
mechanically strong and to minimize xenogeneic tissue degradation (Eliezer et al., 2005;
Love, 1997). Nevertheless, degradation should not only be considered as a negative
phenomenon, as low molecular weight peptides formed during ECM degradation may
have a chemo-attractant potential for several cell types (Badylak & Gilbert, 2008). It is thus
the degradation rate of the scaffold that should be primarily considered and evaluated.
Depending on the application and cells involved, the degradation rate has to be
investigated to ensure proper host cell recruitment and tissue remodelling. The pathways
of the immune response involved in this process remain to be fully described (Badylak &
Gilbert, 2008).

Introducing cross-links between the polypeptide chains of the ECM has been shown to
reduce immunogenicity of the pericardium (Mirsadrae et al., 2007) as well as its
biodegradability (Taylor et al., 2006) by increasing its resistance to enzymatic degradation.
Until now, glutaraldehyde (GA)-fixed bovine pericardium has been preferred as a substitute
to autologous human pericardium. GA was first introduced by Carpentier et al. (Carpentier
et al.,, 1969) as a cross-linking reagent to chemically modify the collagen and render the
tissue immunologically acceptable in the human host. Fixation was shown to increase
stability and strength of the pericardium (Jayakrishnan & Jameela, 1996). GA remains the
gold standard as a cross-linking reagent despite its well-known drawbacks. Indeed, GA has
been reported to accelerate the calcification process, which considerably limits its
application. Calcification is thus the main cause of long-term failure of GA-fixed pericardial
valves (Gallo et al., 1985; Grabenwoger et al., 1996). Furthermore, a GA-treated pericardium
has a poor ability to regenerate in vivo due to the cross-linking of the tissue. Moreover GA
residues display cytotoxic effects preventing host cell attachment, migration and
proliferation (Huang-Lee et al., 1990).

It is now accepted that GA cross-linking increases tissue stiffness (Thubrikar et al., 1983)
with the possibility of tissue buckling (Vesely et al., 1988). Standard use of GA cross-linking
leads to a high risk of calcific degeneration as well as tissue fatigue (Grabenwoger et al.,
1992). This is mostly due to inflammatory and cytotoxicity changes (Huang Lee et al., 1990),
and continuous wear and tear leading to collagen fiber fragmentation.

Besides glutaraldehyde, several cross-linking compounds have been reported in the
literature such as genipin (Wei et al., 2005) or epoxy compound (Sung et al., 1997). These
alternative methods are used to bridge hydroxylysine residues of different polypeptide
chains or amino groups of lysine by oligomeric or monomeric crosslinks (Sung et al., 2003).
Because of the adverse effects of cross-linking with glutaraldehyde or other aldehyde
treatments such as formaldehyde (Nimni et al., 1988) or dialdehyde starch (Rosenberg,
1978), numerous non-aldehyde treatments have been proposed, such as carbodiimides
(Sung et al., 2003), glycerol (Ferrans et al., 1991), glycidal ethers (Thyagarajanet al., 1992)
including poly(glycidylether) (Noishiki et al., 1986), acyl azide (Petite et al., 1990), cyanimide
(Pereira et al., 1990), genipin (Wei et al., 2005), or dye-mediated photo-oxidation, phytate
(Grases et al., 2008).

Genipin, obtained from the fruits of Gardenia jasminoides ELLIS (Fujikawa et al., 1987; Tsai et
al., 1994), exhibited better results than glutaraldehyde regarding its cytotoxicity (Sung et al.,
1999), inflammatory response, ability to prevent calcification and tissue-induced mechanical
properties (Wei et al., 2005). Epoxy compound, initially proposed by Noishiki et al. (Noishiki
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et al., 1989), was shown to be less cytotoxic, superior in pliability and to better inhibit
calcification than glutaraldehyde (Sung et al., 1997).

Carbodiimides generate amide-type crosslinks via direct cross-linking of the polypeptide
chains. Use of carbodiimide cross-linking leads to the activation of the carboxylic acid
groups of glutamic or aspartic acid residues to obtain O-acylisourea groups. Hydroxyline
residues or free amino groups of lysine generate a nucleophilic attack which allows cross-
link formation (Timkovich, 1977). It was noted that adding N-hydroxysuccinimides to
carbodiimides considerably increases cross-link number (Olde Damink et al., 1996). In
addition, the use of carbodiimides displayed increased stability towards enzymatic
degradation on collagen-based tissue such as pericardium (Sung et al., 2003).
Glutaraldehyde acetal cross-linking reagent has been developed with glutaraldehyde in acid
ethanolic solution (Yoshioka & Goissis, 2008), protecting free aldehydic reactive groups and
minimizing the polymeric formation of glutaraldehyde. This reduces superficial effects with
glutaraldehyde cross-linking on pericardial tissue.

Crosslinking of the pericardial tissue with a dye-mediated photo-oxydation process
provides chemical, enzymatic and in vivo stability as well as biomechanical integrity of the
treated tissue (Moore et al., 1994). Penta-golloyl glucose, a collagen-binding polyphenol,
stabilizes collagen, preventing its degradation, and allows progressive host cell infiltration
as well as ECM remodeling. An in vivo study has shown that porcine pericardium does not
calcify with such treatment at 6 weeks when implanted subdermally in rats (Tedder et al.,
2008). Reuterin, an antimicotic and antibacterial compound obtained from Lactobacillus
reuteri (Axelsson et al., 1989), has been studied as a crosslinking reagent (Chen et al., 2002). It
is a three-carbon aldehyde reacting, as formaldehyde, with free amino groups. Reuterin
cross-linked pericardium exhibits comparable results to glutaraldehyde in terms of
resistance against enzymatic degradation, denaturation temperature and free amino group
content, while decreasing cytotoxic effects (Chen et al., 2002). Tannic acid has been studied
on pericardial tissue and was shown to crosslink proteins by creating multiple hydrogen
bonds due to its hydroxyl groups (Cwalina et al., 2005; Jastrzebska et al., 2006). It exerts an
anti-inflammatory effect, especially on macrophages, as well as an anti-calcification effect on
glutaraldehyde-fixed bovine pericardium (Wang et al., 2008). Proanthocyanidin, a natural
crosslinking reagent with polyphenolic structures, has the potential to create a stable
hydrogen-bonded structure and to increase collagen synthesis, generating
nonbiodegradable collagen matrices (Han et al., 2003). Proanthocyanidin-treated pericardial
tissues are non-cytotoxic and resist against enzyme digestion, and have been shown to be
compatible with cell attachment and proliferation. Phytate has been suggested as an anti-
calcification reagent (Grases et al., 2006, 2008) and has achieved promising results, to be
validated by further studies. Other amide-type crosslinks, based on the activation of
carboxyl groups, have been studied, such as diphenylphosphorylazide or
ethyldimethylaminopropyl carbodiimide. It appears, according to Jorge-Herrero et al., that
these two chemical treatments are not a good alternative compared to glutaraldehyde.
Indeed, pericardial tissues treated with those reagents are less resistant to calcifications and
proteolytic attacks (Jorge-Herrero et al., 1999).

Numerous alternative treatments to glutaraldehyde cross-linking have been developed and
investigated over the years. However, most of them were mainly evaluated in vitro and
compared only to glutaraldehyde. A comprehensive comparative study of the different
reagents remains to be conducted in terms of benefits regarding the tissue properties as well
as their potential toxicity or deleterious effects.
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4.2 Coating of the pericardium

Another possible post-decellularization treatment resides in the coating of the bioprosthesis.
This procedure should allow improvement of graft integration at the site of implantation as
well as decreasing degradation of the pericardial tissue.

Coating bovine pericardium with biopolymeric films, either chitosan or silk fibroin, has
been investigated by Nogueira et al. (Nogueira et al., 2010). These methods are interesting
approaches and both treatments appear to be non-cytotoxic. Nevertheless, chitosan does not
allow endothelialisation and silk fibroin-coated bovine pericardium calcifies in vivo. Further
investigation has to be performed to tackle these major concerns.

In their study, Dong et al. suggested treating bovine pericardium with acetic acid coupled
with RGD polypeptides (Dong et al., 2009). Acetic acid increases pericardial scaffold pore
size and porosity while RGD peptides is meant to improve cell adhesion and growth.
Hence, RGD polypeptides have been identified in fibronectin (Pierschbacher & Ruoslahti,
1984), collagen, vitronectin and membrane proteins (Ruoslahti & Pierschbacher, 1987). These
sequences have an impact on integrins, which display cell adhesion receptor roles
controlling cell signaling pathways.

4.3 Pericardium anti-calcification treatments

The mechanism of calcification on glutaraldehyde-treated pericardium is not well
understood because of its complexity. Nevertheless, there is evidence that pericardial tissue
residual antigens, free aldhehyde groups of glutaraldehyde and phospholipids are involved
in this mechanism.

Thus, circulating antibodies can contribute to pericardial calcification due to a possible
immune response. Free aldehyde groups of glutaraldehyde can attract host plasma calcium,
increasing tissue calcification. Phospholipids may bind calcium and play an important role
in the calcium phosphate crystal formation. Several strategies have been investigated to
tackle these major issues.

Suppression of residual antigenicity has been proposed to prevent calcification and it has
been shown to be effective. This was performed by fixation treatments using a broad range
of high concentrations of glutaraldehyde (Trantina-Yates et al., 2003; Zilla et al., 2000). To
remove free aldehyde groups, a large number of amino acids or amino compounds were
studied. Post-fixation treatments with amino acids displayed an improved spontaneous
endothelialisation in vivo of glutaraldehyde-fixed bovine pericardium (Moritz et al., 1991;
Jorge-Herrero et al., 1996). The use of L-glutamic acid did reduce residual and unbound
aldehyde groups, on glutaraldehyde-fixed bovine pericardium and significantly decreased
the risk of calcification (Grimm et al., 1991; Leukauf et al., 1993). Post-treatment with L-
arginine also resulted in decreased calcium deposition (Jee et al., 2003). Recently, Lee et al.
proposed a post-fixation treatment with glycine (Lee et al., 2010). Early results are promising
but require further investigation on larger studies.

Alcohol solutions, including ethanol, have been investigated as a treatment to remove tissue
phospholipids, thus preventing calcification (Pathak et al.,, 2004; Vyavahare et al., 1998).
Besides, other techniques have been proposed to minimize the side effects of glutaraldehyde
residues on GA-treated pericardium. Lyophilization has been shown to decrease aldehyde
residues, decreasing the risk of calcification and cytotoxicity (Santibafiez-Salgado et al., 2010).
Moreover, treatments with heparin or sulphonated poly(ethylene oxide) following
glutaraldehyde pre-treatment have been proposed (Lee et al., 2000, 2001). Both methods block
side effects of GA residues and thus prevent calcification of the pericardium. Finally, a
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modified adipic dihydrazide hyaluronic acid has been proposed to be grafted on to
glutaraldehyde-treated bovine pericardium (Ohri et al., 2004). Calcifications decreased
considerably with this post-treatment compared to the control group at two weeks following a
subcutaneous implantation in mice.

5. Applications of the pericardium as a biomaterial

So far, the pericardium has been mostly used for cardio-vascular applications, i.e. vascular
grafts (Schmidt & Baier, 2000; Chvapil et al., 1970; Matsagas et al., 2006; Menasche et al.,

Pericardium Surgical fields Product Company
source
Soft tissue repair -Peripatch® Implantable Neovasc,
Hernia repair surgical tissue Maverick Biosciences PTY Limited,
Abdominal & thoracic -TutoMesh® Tutogen medical GmbH, RTI Biologics,
wall defects Medé&Care,
Biovascular Inc,
Novomedics

Strip reinforcement ~ -Veritas Peristrips® Dry  Synovis Life Technology

Orbital repair -Tutopatch® Tutogen medical GmbH, RTI Biologics,
-Ocugard® Med&Care,
Biovascular Inc,
Novomedics
Dural repair -Lyolem ®r All BP National tissue Bank Malaysia
Perivascular Patch -Peripatch® biologic Neovac

vascular patch

Cardiac reconstruction -Peripatch® Implantable Neovasc, Maverick Biosciences PTY

Bovine or and repair Surgical Tissue Limited
porcine  Heart valve -PercevalS® aortic valve Sorin group
replacement -Mitroflow® pericardial
aortic valve “
-Freedom solo® Edwards Life Sciences

-Carpentier-Edwards
PERIMOUNT® Magna
EaseAortic Heart Valve
-Carpentier-Edwards
PERIMOUNT® Magna
Mitral Ease Heart Valve
-Carpentier-Edwards
PERIMOUNT® Theon
Aortic Heart Valve
-Carpentier-Edwards
PERIMOUNT® Theon
Mitral Replacement
System

“

“

“

Equine Tendon repair -OrthADAPT® Synovis Life Technologies Inc

Valvuloplasty -Xeno or (tissue bank) or Lausberg et al, 2006

Human Heart valve autologous grafts Mirsadaee et al, 2006

Table 2. Applications of pericardium as medical devices.
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1984; Moon & West; 2008), and heart valves (Ishihara et al., 1981; Schoen & Levy, 1999;
Flanagan & Pandit, 2003; Vesely, 2005). Pericardial bioprostheses have also been described
for the treatment of acquired cardiac pathologies, including postinfarction septal defects
(David et al., 1995), reconstruction of mitral valve annulus (David et al., 1995a, 1995b) or
outflow obstruction (Sommers & David, 1997).

Additionally, pericardium has also been used for the construction of bioprostheses in non-
cardiac treatments such as patches for vaginal (Lazarou et al, 2005) or abdominal wall
reparation (Limpert et al., 2009), dural repair (Cantore et al., 1987) or tracheoplasty (Dunham
etal., 1994).

6. Conclusion

For clinical application, pericardial tissue has to be decellularized to prevent an immune
responses or immune-mediated rejection of the pericardium. Various decellularization
protocols have been largely reviewed here. The choice of the decellularization strategy has an
impact on the mechanical properties, the scaffold pore size, the scaffold tissue integration and
the development of long-term calcification. All these considerations should be carefully taken
into account when designing new pericardial-based biomaterials. Currently, glutaraldehyde
is the gold standard for pericardial treatment used in clinical practice. Nevertheless, it has
important drawbacks including cytotoxic effects, prevention of host cell attachment,
migration and proliferation (Huang-Lee et al., 1990), and a high propensity to calcify.
Alternative treatments to replace or complement glutaraldehyde crosslinking of the
pericardium have been investigated using other crosslinking reagents, decellularization,
lyophilisation or coating with biopolymers (Nogueira et al., 2010). Despite many studies, it is
still difficult to know which strategy to adopt regarding pericardial treatment. First, we do
not have enough follow-up to permit evaluation of most of these alternatives and treatments.
Second, every new treatment proposed is generally compared only to glutaraldehyde. It is
thus not possible to classify these treatments by efficiency. Finally, the protocol for an optimal
treatment depends largely on the final application targeted. In addition, there have been
recent advances in tissue regeneration with the emergence of cell therapy and new
pericardial treatments with cellular growth factors promoting recellularization (Chang et al.,
2007). However, further improvements need to be achieved to transform these techniques
into clinical applications. The use of autologous pericardium in cardiac valvular therapy is
also a challenging alternative. Nevertheless, it still currently requires the development of
local pericardial treatments aiming to favor the valvular remodelling. The understanding of
current issues and the improvement of pericardial processing may have a huge impact for
bioprothesis conception and patient safety.
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