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1. Introduction   

The electric vehicle (EV) was conceived in the middle of the previous century. EV’s offer the 
most promising solutions to reduce vehicular emissions. EV’s constitute the only commonly 
known group of automobiles that qualify as zero-emission vehicles. These vehicles use an 
electric motor for propulsion, batteries as electrical-energy storage devices and associated 
with power electronics, microelectronics, and microprocessor control of motor drives. 
The doubly fed induction motor (DFIM) is a wound rotor asynchronous machine supplied 
by the stator and the rotor from two external source voltages. This machine is very attractive 
for the variable speed applications such as the electric vehicle and the electrical energy 
production. Consequently, it covers all power ranges. Obviously, the requested variable 
speed domain and the desired performances depend of the application kinds (Vicatos & 
Tegopoulos, 2003, Akagi & Sato, 1999, Debiprasad et al., 2001, Leonhard, 1997, Wang & 
Ding, 1993, Morel et al., 1998 and Hopfensperger et al., 1999). 
The use of DFIM offers the opportunity to modulate power flow into and out of the rotor 
winding in order to have, at the same time, a variable speed in the characterized super–
synchronous or sub–synchronous modes in motor or in generator regimes. Two modes can 
be associated to slip power recovery: sub–synchronous motoring and super–synchronous 
generating operations. In general, while the rotor is fed through a cycloconverter, the power 
range can attain the MW order which presents the size power often reserved to the 
synchronous machine (Vicatos & Tegopoulos, 2003, Akagi & Sato, 1999, Debiprasad et al., 
2001, Leonhard, 1997, Wang & Ding, 1993, Morel et al., 1998, Hopfensperger et al, 1999a, 
1999b, Metwally et al., 2002, Hirofumi & Hikaru, 2002 and Djurovic et al., 1995). The DFIM 
has some distinct advantages compared to the conventional squirrel-cage machine. The 
DFIM can be controlled from the stator or rotor by various possible combinations. The 
disadvantage of two used converters for stator and rotor supplying can be compensated by 
the best control performances of the powered systems (Debiprasad et al., 2001). Indeed, the 
input–commands are done by means of four precise degrees of control freedom relatively to 
the squirrel cage induction machine where its control appears quite simple. The flux 
orientation strategy can transform the non linear and coupled DFIM-mathematical model 
into a linear model leading to one attractive solution for generating or motoring operations 
(Sergeial, 2003).  
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It is known that the motor driven systems account for approximately 65% of the electricity 

consumed in the world. Implementing high efficiency motor driven systems, or improving 

existing ones, could save over 200 billion kWh of electricity per year. This issue has become 

very important especially following the economic crisis due to the oil prices raising, the new 

energy saving technologies are appearing and developing rapidly in this century (Leonhard, 

1997, Longya & Wei, 1995, Wang & Cheng, 2004, Zang & Hasan, 1999, David, 1988 and 

Rodriguez et al., 2002). In this framework, the DFIM continues to find great interest since the 

birth of the idea of the double flux orientation (Drid et al., 2005a, 2005b). The philosophy of 

this idea is to get a simpler machine model expression (ideal machine) (Drid et al., 2005a). 

Consequently, in the same time, we can solve a non linear problem presented by the DFIM 

control and step up from many digital simulations toward the experimental test by the use 

of the system dSPACE-1103. This method gives entire satisfaction and consolidates our 

theory, especially using the Torque Optimization Factor TOF strategy (Drid et al., 2005b). 

Always the search for a solution has more optimal, us nap leans towards the minimization 

of the copper losses in the DFIM.  

In this chapter we developed an optimization factor Torque Copper Losses Optimization 

TCLO. The chapter will be organized as follows. The DFIM mathematical model is 

presented in section 3. In section 4, the robust nonlinear feedback control is exposed. Section 

5 concerns the two energy torque optimization strategies TOF and TCLO. In the section 6, 

simulation results are exposed and comparative illustration shows the performances in 

energy saving between TOF and TCLO.   

2. The DFIM model 

Its dynamic model expressed in the synchronous reference frame is given by 

Voltage equations: 

 




















rrj
dt

rd
rirRru

ssj
dt

sd
sisRsu

 (1) 

Flux equations: 

 










siMrirLr

riMsisLs
  (2) 

From (1) and (2), the state-all-flux model is written like:  

 



































rrj
dt

rd
r

rT

1
s

sLrT

M
ru

ssj
dt

sd
r

rLsT

M
s

sT

1
su

  (3) 

The electromagnetic torque is done as 
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 



 


 *

rsm
rLsL

PM
eC  (4) 

The copper losses are giving as: 

 
2
ri.rR2

si.sRclP   (5) 

The motion equation is: 
 

 
dt

d
JdeC


   (6) 

 

In DFIM operations, the stator and rotor mmf’s (magneto motive forces) rotations are 

directly imposed by the two external voltage source frequencies. Hence, the rotor speed 

becomes depending toward the linear combination of theses frequencies, and it will be 

constant if they are too constants for any load torque, given of course in the machine 

stability domain. In DFIM modes, the synchronization between both mmf’s is mainly 

required in order to guarantee machine stability. This is the similar situation of the 

synchronous machine stability problem where without the recourse to the strict control of 

the DFIM mmf’s relative position, the machine instability risk or brake down mode become 

imminent. 

3. Nonlinear vector control strategy 

3.1 Double flux orientation 
It consists in orienting, at the same time, stator flux and rotor flux. Thus, it results the 

constraints given below by (7). Rotor flux is oriented on the d-axis, and the stator flux is 

oriented on the q-axis. Conventionally, the d-axis remains reserved to magnetizing axis and 

q-axis to torque axis, so we can write (Drid et al., 2005a, 2005b) 
 

 













0rqsd

rrd

ssq

  (7) 

 

Using (7), the developed torque given by (4) can be rewritten as follows: 

 .rsckeC    (8) 

where,
rLsL

PM
ck


  

s Appears as the input command of the active power or simply of the developed torque, 

while r  appears as the input command of the reactive power or simply the main 

magnetizing machine system acting. 
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3.2 Vector control by Lyapunov feedback linearization 
Separating the real and the imaginary part of (3), we can write: 

 






























rqu4f
dt

rqd

rdu3f
dt
rdd

squ2f
dt

sqd

sdu1f
dt
sdd

  (9) 

Where f1, f2, f3 and  f4 are done as follows : 

 






















rdrrq4sq34f

rqrrd4sd33f

sdsrq2sq12f

sqsrd2sd11f

  (10) 

With: 

 
sT

1
1 
 ; 

rLsT

M
2 
 ; 

sLrT

M
3 
 ; 

rT

1
4 
  

Tacking into account of the constraints given by (7), one can formulate the Lyapunov 
function as follows  

 02)rrd(
2

12)ssq(
2

12
rq

2

12
sd2

1
V    (11) 

From (11), the first and second quadrate terms concern the fluxes orientation process 
defined in (7) with the third and fourth terms characterizing the fluxes feedback control. 
Where its derivative function becomes 

 
)rrd)(rrd(

)ssq)(ssq(rqrqsdsdV








  (12) 

Substituting (9) in (12), it results  

 

)rrdu3f()rrd(

)ssqu2f()ssq(

)rqu4f(rq)sdu1f(sdV













  (13) 

Let us define the following law control as (Khalil, 1996): 
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





















)rrd(4Kr3frdu

)ssq(3Ks2fsqu

rq2K4frqu

sd1K1fsdu



  (14) 

Hence (14) replaced in (13) gives: 

 

02)rrd(4K

2)ssq(3K2
rq2K2

sd1KV




  (15) 

The function (15) is negative one. Furthermore, (14) introduced into (9) leads to a stable 
convergence process if the gains Ki (i=1, 2,3, 4) are evidently all positive, otherwise:  

 




































0

t

)*
ssqlim(

0

t

)*
rrdlim(

0

t
rqlim

0

t
sdlim

  (16) 

In (16), the first and second equations concern the double flux orientation constraints applied 
for DFIM-model which are define above by (7), while the third and fourth equations define the 
errors after the feedback fluxes control. This latter offers the possibility to control the main 
machine magnetizing on the d-axis by rd and the developed torque on the q-axis by sq. 

3.3 Robust feedback Lyapunov linearization control 
In practice, the nonlinear functions fi involved in the state space model (9) are strongly 
affected by the conventional effect of induction motor (IM) such as temperature, saturation 
and skin effect in addition of the different nonlinearities related to harmonic pollution due 
to the supplying converters and to the noise measurements. Since the control law developed 
in the precedent section is based on the exact knowledge of these functions fi, one can expect 
that in real situation the control law (14) can fail to ensure flux orientation. In this section, 
our objective is to determine a new vector control law making it possible to maintain double 
flux orientation in presence of physical parameter variations and measurement noises. 
Globally we can write: 

 ifif̂if    (17) 

On, if̂ : True nonlinear feedback function (NLFF) 

if : Effective NLFF 

if : NLFF variation around if . 

Where: i = 1, 2, 3 and 4. 
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The ∆fi can be generated from the whole parameters and variables variations as indicated 

above. We assume that all the ∆fi are bounded as follows: |∆fi| < i; where are known 

bounds. The knowledge of i is not difficult since, one can use sufficiently large number to 

satisfy the constraint|∆fi| < i. 

The ∆fi can be generated from the whole parameters and variables variations as indicated 

above. 

Replacing (17) in (9), we obtain 
 

 






























rqu4f4f̂
dt

rqd

rdu3f3f̂
dt
rdd

squ2f2f̂
dt

sqd

sdu1f1f̂
dt
sdd

  (18) 

 

The following result can be stated. 

Proposition: Consider the realistic all fluxes state model (18). Then, the double fluxes 

orientation constraints (7) are fulfilled provided that the following control laws are used 
 

 
























)rrdsgn(44K)rrd(4Kr3f̂rdu

)ssqsgn(33K)ssq(3Ks2f̂squ

)rqsgn(22Krq2K4f̂rqu

)sdsgn(11Ksd1K1f̂sdu




  (19) 

 

where  Kii  i and Kii > 0  for i=1; 4. 

Proof. Let the Lyapunov function related to the fluxes dynamics (18) defined by 
 

 02)rrd(
2

12)ssq(
2

12
rq

2

12
sd2

1
1V    (20) 

 

One has 
 

 
   

    0V)rdsgn(44K4f)rrd()sqsgn(33K3f)ssq(

)rqsgn(22K2frq)sdsgn(11K1fsd1V








  (21) 

 

where V  is given by (15). Hence the if variations can be absorbed if we take: 
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4f44K

3f33K

2f22K

1f11K









4f44K

3f33K

2f22K

1f11K









  (22) 

 

The latter inequalities are satisfied since iK >0 and iiKiif   

Finally, we can write: 
 

 0V1V     (23) 

 

Hence, using the Lyapunov theorem (Khalil, 1996), on conclude that 
 

 



































0

t

)*
ssqlim(

0

t

)*
rrdlim(

0

t

rqlim

0

t
sdlim

  (24) 

 

The design of these robust controllers, resulting from (19), is given in the followed figure 2   
The indices w can be : sd, sq, rd and rq, (i = 1,2,3 and 4 ) 

4. Energy optimization strategy 

In this section we will explain why and what is the optimization strategy used in this work. 

Fig. 1 illustrates the problem which occurs in the proposed DFIM vector control system 

when the machine magnetizing excitation is maintained at a constant level.   

4.1 Why the energy optimization strategy? 
Considering an iso-torque-curve (hyperbole form), drawn from (8) for a constant torque in 

the ),( rs  plan and lower load machine ( Fig.1), on which we define two points A and B, 

respectively, corresponding to the two machine magnetizing extreme levels. Theses points 

concern respectively an excited machine ( ConstWb1r  ) and an under excited machine 

( ConstWb1.0r  ). Both points define the steady state operation machine or equilibrium 

points. The machine rotates to satisfy the required reference speed acted by a given slope 

speed acceleration Const
dt

d



 . So, the machine in both magnetizing cases must 

develop a transient torque such as:  
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Fig. 1. Illustration of the posed problem in the DFIM control system with constant excitation. 

 


 JroC
dt

d
J0rCeTC   (25) 

On the same graph, we define a second iso-torque-curve CeT=Const in the ),( rs   plan. This 

curve is a transient one on which we place two transient points A’ and B’. Here we distinguish 

the first transitions A–A’ and B–B’ due to the acceleration set, respectively for each 

magnetizing case. Both transitions are rapidly occurring in respect to the adopted control. 

Once the machine speed reaches its reference, the inertial torque is cancelled ( = 0), then 

the developed torque must return immediately to the initial load torque Cro, characterized 

by the second transitions A’–A  and B’–B towards the preceding  equilibrium points A and 

B. One can notice that during the transition B–B’, corresponding to the under excited 

machine, the stator flux can attain very high values greater than the tolerable limit ( maxs ), 

and can tend to infinite values if the load torque Cro tends to zero. So the armature currents 

expressed by the following formula deduced from (2) and (7) are strongly increased and can 

certainly destruct the machine and their supplied converters. 

 
s.jr.ri

s.jr.si




  (26) 

Where, 
rL.

1
;

sL.

1
;

rL.sL.

M








  

In the other hand, for the case A (excited machine), if the A–A’ transition remains tolerable, 
the armature currents can present prohibitory magnitude in the steady state operation due 
to the orthogonal contribution of stator and rotor fluxes at the moment that the machine is 
sufficiently excited. The steady state armature currents can be calculated by (26), where we 

can note the amplification effect of the coefficients ,  and .  
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4.2 Torque optimization factor (TOF) design 
In the previous sub-section, the problem is in the transient torque, especially when the 
machine is low loaded. So it becomes very important to minimize the torque transition such 
as (Drid, 2005b): 

 0
dt

edC
   (27) 

where,  

 rd
r

eC
sd

s

eC
edC 








   (28) 

This condition should be realized respecting the stator flux constraint given by  

 maxss    (29) 

In this way the rotor and stator fluxes, though orthogonal, their modulus will be related by 
the so-called TOF strategy which will be designed from the resolution of the differential 
equations (27-28) with constraint (29) as follows:  

 









maxss

0srrs


 (30) 

from (29) we can write 

 maxsrsrrs     (31) 

thus,     

 
r

r

maxs

s










  (32) 

the resolution of (32) leads to 

 rlnC
maxs

s 



   (33) 

where C is an arbitrary integration constant, therefore   

 
)C(

er maxs

s 



   
(34)

 

Since, the main torque input-command in motoring DFIM operation is related to the stator 
flux, it becomes dependent on the speed rotor sign and thus we can write 

 








0ifs

0ifs
)sgn(ssq   (35) 
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with (35), (34), the rotor flux may be rewritten as follows  

 
)C(

er maxs

sq






   
(36)

 

The resolution of (32) gives place to the arbitrary integration constant C from which the 
TOF-relationship (36) can be easily tuned. This one can be adjusted by a judicious choice of 
the integration constant, while figure 2 presents TOF effect on armature DFIM currents with 
C-tuning. Note that this method offers the possibility to reduce substantially the magnitude 
of the armature currents into the machine and we can notice an increase in energy saving. 
Hence using TOF strategy, we can avoid the saturation effect and reduce the magnitude of 
machine currents from which the DFIM efficiency could be clearly enhanced. 
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Fig. 2. TOF effect on armature DFIM currents 

4.3 Torque-copper losses optimization (TCLO) design 

In many applications, it is required to optimize a given parameter and the derivative plays a 

key role in the solution of such problems. Suppose the quantity to be minimized is given by 

the function )x(f , and x is our control parameter. We want to know how to choose x to make 

)x(f as small as possible. Let’s pick some x0 as the starting point in our search for the best x.  

The goal is to find the relation between fluxes which can optimize the compromise between 

torque and copper losses in steady state as well as in transient state, (i.e. for all {Ce} find 

(s,r) let min{Pcl}) (Drid, 2008). From (5), (8) and (26), the torque and copper losses can be to 

written as:  

 









2
s2a2

r1aclP

s.r.ckeC
  (37) 
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2)rL.(

rR
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











 

The figure 3 represents the layout of (37) for a constant level of torque and copper losses in 

the (s, r) plan. These curves present respectively a hyperbole for the iso-torque and ellipse 
for iso-copper-losses. From (37) we can write: 

 02
el

C2aclP2
r

2
ck4

r
2
ck1a    (38) 

To obtain a real and thus optimal solution, we must have: 

 02
el

C2a2
ck1a44

cl
P4

ck    (39) 

The equation (39) represents the energy balance in the DFIM for one working DFIM point as 
shown in fig.3. Then, one can write:     

 
2
ck

2
el

C2a1a4
clP    (40) 

This equation shows the optimal relation between the torque and the copper losses. 
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Fig. 3. The iso–torque curves and the iso–losses curves in the plan (s, r) 
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4.4 Finding minimum Copper-losses values 
The Rolle’s Theorem is the key result behind applications of the derivative to optimization 
problems. The second derivative test is used to finding minimum point.  
We can rewrite (37) as: 

 



















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2
r.2

ck

2
eC2a4

r
2
ck1a

2
r.2

ck

2
eC

2a2
r1aclP

r.ck
eC

s

  (41) 

The computations of the first and second derivatives show that the critical point is given 
by: 

 
4

1

2
ck1a

2a2
eC

rc 












   (42) 

For which:  

 01a8
4
rc.2

ck

2
eC2a64

rc
2
ck1a2

2
rd

)rc(clP2d










  (43) 

We can see that the second derivative is positive and conclude that the critical point is a 
relative minimum. 

5. Simulation 

Figure 4 illustrates a general block diagram of the suggested DFIM control scheme. Here, we 

can note the placement of optimization block, the first estimator-block which evaluates 

torque and the second estimator-block which evaluates firstly the modulus and position 

fluxes, respectively s, r , s and r, from the measured currents using (2) and secondly the 

feedback functions f1, f2, f3, f4 given by (10). Optimization process allows adapting the main 

flux magnetizing defined by rotor flux to the applied load torque characterized by the stator 

flux. With the analogical switch we can select the type of the reference rotor flux. The switch 

position 1, 2 gives respectively TCLO and TOF for optimized operation and the position 3 

for a magnetizing constant level.  

The Figure 5 shows the speed response versus time according to its desired profile drawn 

on the same figure. Figure 6 illustrate the fluxes trajectory of the closed–loop system. It 

moves along manifold toward the equilibrium point. We can notice the stability of the 

system.  Figures 7 and 8 show respectively the stator and the rotor input control voltages 

versus time during the test. Figure 9 present the copper losses according to the stator flux 

variations in steady state operation and we can see the contribution of the TCLO compared 

to the TOF. Finally figure 10 present the dissipated energy versus time from which we can 

observe clearly the influence of the three switch positions on the copper losses in transient 

state. We can conclude that the TCLO is the best optimization. 
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Fig. 4. General block diagram of control scheme 
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Fig. 5. Speed response 
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Fig. 6. Fluxes trajectories of the closed–loop system 

 
 
 
 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-400

-300

-200

-100

0

100

200

300

400

Time (sec.)

S
ta

to
r 

v
o

lt
ag

e 
  
V

sa
  
 (

v
)

 
 
 

Fig. 7. The input control stator voltage response in the stator reference frames with TCLO 
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Fig. 8. The input control rotor voltage response in the stator reference frames with TCLO 
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Fig. 9. Minimized copper losses in steady state operation with TOF and TCLO 
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Fig. 10. Total copper losses versus time during test for the three switch positions (Energy 
saving illustration)  

6. Conclusion 

In this chapter was presented a vector control intended for doubly fed induction motor 
(DFIM) mode. The use of the state-all-flux induction machine model with a flux orientation 
constraint gives place to a simpler control model. The stability of the nonlinear feedback 
control is proven using the Lyapunov function. 
The simulation results of the suggested DFIM system control based on double flux 
orientation which is achieved by the proposed DFIM control demonstrates clearly the 
suitable obtained performances required by the references profiles defined above. The speed 
tracks its desired reference without any effect of the load torque. Therefore the high control 
performances can be well affirmed. To optimize the machine operation we chose to 
minimize the copper losses.  The proposed TCLO factor performs better than the already 
designed TOF. Indeed, the energy saving process can be well achieved if the magnetizing 
flux decreases in the same way as the load torque. It results in an interesting balance 
between the core losses and the copper losses into the machine, so the machine efficiency 
may be largely improved. The simulation results confirm largely the effectiveness of the 
proposed DFIM control system. 

7. Appendix 

The machine parameters are:  
Rs =1.2 ; Ls =0.158 H; Lr =0.156 H; Rr =1.8 ; M =0.15 H; P =2 ;J = 0.07 Kg.m² ; Pn = 4 Kw ; 
220/380V ; 50Hz ; 1440tr/min ; 15/8.6 A ; cos = 0.85.  

8. Nomenclature 

s, r Rotor and stator indices.  
d, q  Direct and quadrate indices for orthogonal components  

x  Variable complex such as:    xm.jxex  .   
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x  It can be a voltage as u , a current as i or a flux as   
*x  Complex conjugate 

rR,sR  Stator and rotor resistances 

rL,sL   Stator and rotor inductances  

rT,sT  Stator and rotor time-constants (Ts r=Ls, r/Rs, r) 

  Leakage flux total coefficient (  =1- M²/LrLs)  

M   Mutual inductance 

  Absolute rotor position    

P Number of pairs poles 

 Torque angle 

s, r Stator and rotor flux absolute positions  

 Mechanical rotor frequency (rd/s) 

 Rotor speed  (rd/s) 

s Stator current frequency (rd/s)  

r Induced rotor current frequency (rd/s)    

J   Inertia 

d Unknown load torque  
Ce Electromagnetic torque 
~ Symbol indicating measured value 
^ Symbol indicating the estimated value 
* Symbol indicating the command value  
DFIM Doubly Fed Induction Machine 
TOF Torque Optimization Factor 
TCLO     Torque Copper Losses Optimization 
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