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1. Introduction

Aeroacoustics is the branch of Fluid Mechanics studying the mechanism of generation
of noise by fluid motions and its propagation. The noise generation is associated with
turbulent and unsteady vortical flows, including the effects of any solid boundary in the flow.
Experimental studies in this field are very difficult, requiring anechoic wind tunnels and very
sensitive instruments able to capture high frequency, low amplitude, pressure fluctuations.
Computational Aeroacoustics (CAA) can be a powerful tool to simulate the aerodynamic
noise associated to complex turbulent flow fields. As sound production represents only a
very minute fraction of the energy associated to the flow motion, CAA methods for acoustic
propagation have to be more accurate compared to the solution schemes normally used in
Computational Fluid Dynamics (CFD).
A direct approach to aeroacoustic problems would imply to solve numerically the full
Navier-Stokes equations for three-dimensional, unsteady, compressible flows. Sound
would then be that part of the flow field which dominates at large distances from the
region characterized by intense hydrodynamic fluctuations, propagating at the local sound
speed. The direct noise simulation is hardly achievable in practice, except for very simple
configurations of academic interest, and in a limited region of space. Even if the small
amplitude of the fluctuations allow a linearization, the equations of acoustic disturbances
on an arbitrary base flow are very complicated and their solution is not straightforward.
To solve aeroacoustic problems of practical interest some simplifying approximations are
necessary. One way to obtain realistic solutions is provided by the hybrid approach. It
decouples the computation of the flow field from the computation of the acoustic field. When
using a hybrid method the aeroacoustic problem is solved in two steps: in the first step, the
hydrodynamic flow field is solved using a CFD method, then the noise sources are identified
and the acoustic field is obtained. Extraction of noise sources from the fluid dynamic field
can be done using an aeroacoustic theory such as the Lighthill’s analogy [Crighton (1975);
Goldstein (1976)]. A hybrid approach is based on the fundamental assumption that there is
a one-way coupling of mean flow and sound, i.e., the unsteady mean flow generates sound
and modifies its propagation, but sound waves do not affect the mean flow in any significant
way. This assumption is not so restrictive, because acoustic feedback is possible only when
the mechanical energy in the unsteady mean flow is weak enough to be influenced by acoustic
disturbances. This occurs principally in the vicinity of a starting point for flow instability (for
instance, upstream edges of cavities or initial areas of shear layers). Since the fluid-dynamic
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field and the acoustic field are computed separately, numerical accuracy for the mean flow
simulations used as an input of hybrid methods is less critical than in direct computation.
Simpler, more flexible and lower-resolution schemes are applicable provided that numerical
dissipation is carefully controlled to prevent the artificial damping of high-frequency source
components. Incompressible flow solutions can be adequate for evaluating acoustic source
terms based on the low Mach numbers approximation. Time-accurate turbulence simulation
approaches such as DNS, LES, DES and unsteady RANS methods can be used to compute the
space-time history of the flow field, from which acoustic sources are extracted. Because of the
high computational cost of the time-accurate simulations, there have been efforts to use steady
RANS calculations in conjunction with a statistical model to generate the turbulent acoustic
terms.
Once the acoustics sources have been evaluated, the generated noise has to be propagated
in the surrounding region with linearized propagation models. The main focus of the present
chapter is the description of a computational method for noise propagation in turbomachinery
applications. In the next Section a linearized model is presented. Section 3 describes the
numerical algorithm based on a Discontinuous Galerkin approximation on unstructured
grids, and in Section 4 several applications are presented.

2. Governing equations

In principle the propagation of acoustic waves could be directly studied using the equations of
the fluid motion, i.e. the Navier Stokes equations. However, it is possible to introduce some
approximations in the Navier Stokes equations in order to obtain equations more suitable
for aeroacoustics. At frequencies of most practical interest, viscous effects are negligible in
the acoustic field because the pressure represents a far greater stress field than the viscous
stresses. Moreover, these disturbances are always small, also for very loudly acoustic waves.
The threshold of pain, i.e. the maximum Sound Pressure Level (SPL) which a human can
endure for a very short period of time without the risk of permanent ear damage, is equal to
140 dB, which corresponds to pressure fluctuations of amplitude equal to

A =
√

2pref10(SPL/20) ≈ 90 Pa , (1)

where pref is the reference pressure corresponding to the threshold of hearing at 1 kHz for a
typical human hear. For sound propagating in gases it is equal to pref = 2 × 10−5 Pa. The
atmospheric pressure of the standard air is equal to p0 = 101325 Pa, which is 103 greater
than the pressure variation associated with an acoustic wave at the threshold of pain, i.e.,
p′/p0 = O

(

10−3), where the superscript (.)′ denotes acoustic quantities and the subscript
(.)0 denotes mean flow quantities. The corresponding density fluctuations of a progressive
plane wave are

ρ′

ρ0
=

p′

ρ0c2
0

, (2)

also of the order of 10−3, because in air ρ0c2
0/p0 = γ = cp/cv = 1.4 with c0 being the speed of

sound. These estimates demonstrate that the flow perturbations involved in acoustic waves
are very small compared to the mean-flow quantities: the acoustic field can be considered as
a small perturbation of the mean flow field. Therefore it is possible to linearize the equations
of motion. Considering acoustic waves as a perturbation of the mean flow field, defining

p′ = p − p0, ρ′ = ρ − ρ0, v′ = v − v0 , (3)
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and assuming small perturbations, it is possible to obtain the equations for the propagation of
the sound waves, i.e., the Linearized Euler Equations (LEE). For a two-dimensional problem
and a steady mean flow field, LEE are formulated as

∂u

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+H = S , (4)

where u = [ρ′, u′, v′, p′]T is the acoustic perturbation vector, Fx and Fy are the fluxes along
x and y directions respectively, H contains the mean flow derivatives and S represents the
acoustic sources. The fluxes, Fx and Fy, and the term H have the following expressions

Fx =

⎛

⎜

⎜

⎝

ρ′u0 + ρ0u′

u0ρ0u′ + p′

u0ρ0v′

u0 p′ + γp0u′

⎞

⎟

⎟

⎠

, Fy =

⎛

⎜

⎜

⎝

ρ′v0 + ρ0v′

v0ρ0u′

v0ρ0v′ + p′

v0 p′ + γp0v′

⎞

⎟

⎟

⎠

,

H =

⎛

⎜

⎜

⎜

⎜

⎝

0
(ρ0u′ + ρ′u0)

∂u0
∂x + (ρ0v′ + ρ′v0)

∂u0
∂y

(ρ0u′ + ρ′u0)
∂v0
∂x + (ρ0v′ + ρ′v0)

∂v0
∂y

(γ − 1)
(

p′ ∂u0
∂x + p′ ∂v0

∂y − u′ ∂p0
∂x − v′ ∂p0

∂y

)

⎞

⎟

⎟

⎟

⎟

⎠

. (5)

It is evident from Eqs.(5) that, in order to solve the LEE, the mean flow field must be known
in advance.
For turbomachinery tonal noise propagation it is better to express the LEE in a cylindrical
coordinate system. Given the Cartesian coordinate system (x, y, z), the cylindrical system
(r, z, θ) is defined as

⎧

⎨

⎩

x = r cos θ
y = r sin θ
z = z .

(6)

With respect to this reference frame, the LEE for a three-dimensional problem read

∂u

∂t
+

∂FAX
z

∂z
+

∂FAX
r

∂r
+

∂FAX
θ

∂θ
+HAX = SAX , (7)

where u = [ρ′, u,′ v′, w′, p′]T is the acoustic perturbation vector expressed in the cylindrical
coordinate system, i.e. u′, v′, and w′ are the velocity components in (z, r, θ) directions
respectively. FAX

z , FAX
r , FAX

θ are the fluxes along z, r, and θ directions respectively, HAX

contains the terms due to the cylindrical reference frame and to the mean flow derivatives
and SAX represents the acoustic sources. In Section 4.3 it will be shown that a generic
turbomachinery tonal wave can be expanded in a sum of complex duct modes, having the
form f̂ (z, r, t) · exp (Imθ) where m is an integer number which identifies the azimuthal mode
and I the imaginary unit. Therefore, using the dependence of the acoustic field on θ, the
problem can be reduced, from a three-dimensional problem, to a two-dimensional one in (r, z).
For a single duct-mode the LEE become

∂û

∂t
+

∂F̂AX
z

∂z
+

∂F̂AX
r

∂r
+ ImF̂AX

θ + ĤAX = ŜAX , (8)
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where the superscript ˆ(.) reminds that the variable comes from a mode expansion. Assuming
that the mean flow is axial-symmetric, i.e. the azimuthal component of the mean flow velocity
is zero, w0 = 0, the fluxes, F̂AX

z , F̂AX
r , and F̂AX

θ have the following expressions

F̂AX
z =

⎛

⎜

⎜

⎜

⎜

⎝

ρ̂′u0 + ρ0û′

u0ρ0û′ + p̂′

u0ρ0v̂′

u0ρ0ŵ′

u0 p̂′ + γp0û′

⎞

⎟

⎟

⎟

⎟

⎠

, F̂AX
r =

⎛

⎜

⎜

⎜

⎜

⎝

ρ̂′v0 + ρ0v̂′

v0ρ0û′

v0ρ0v̂′ + p̂′

v0ρ0ŵ′

v0 p′ + γp0v̂′

⎞

⎟

⎟

⎟

⎟

⎠

, F̂AX
θ =

1
r

⎛

⎜

⎜

⎜

⎜

⎝

ρ0ŵ′

0
0
p̂′

γp0ŵ′

⎞

⎟

⎟

⎟

⎟

⎠

, (9)

whereas the term ĤAX is given by

ĤAX =
1
r

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−ρ̂′v0
−û′v0

−v̂′v0 − p̂′

ρ0

0
(γ − 1) p̂′v0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
(ρ0û′ + ρ̂′u0)

∂u0
∂z + (ρ0v̂′ + ρ̂′v0)

∂u0
∂r

(ρ0û′ + ρ̂′u0)
∂v0
∂z + (ρ0v̂′ + ρ̂′v0)

∂v0
∂r

−ŵ′ ∂u0
∂z − ŵ′ ∂v0

∂r

(γ − 1)
(

p̂′ ∂u0
∂z + p̂′ ∂v0

∂z − û′ ∂p0
∂r − v̂′ ∂p0

∂r

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

2.1 Frequency domain approach

The linearized Euler equations, beside acoustic waves, support also instability waves that,
for a mean flow with shear-layers, are the well-known Kelvin-Helmholtz instabilities. In
the complete physical problem this instabilities are limited and modified by non-linear
and viscous effects. Indeed, in the linearized Euler equations, these two effects are
not present. Therefore when solving LEE in presence of a shear-layer type mean flow,
Kelvin-Helmholtz instabilities can grow indefinitely as they propagate down-stream from
the point of introduction and the acoustic solution may be obscured by the non-physical
instabilities [Agarwal et al. (2004); Özyörük (2009)]. By using a Fourier decomposition of
the acoustics sources and solving the linearized Euler equations in the frequency domain one
can, in principle, avoid the unbounded growth of the shear-layer type instability, since the
acoustic and instability modes correspond to different values of complex frequency [Rao &
Morris (2006)]. However, this could be accomplished in practice only if the discretized form
of the equations is solved using a direct solver. The use of iterative techniques to solve the
resulting global matrix has been discussed by Agarwal et al. (2004). It is proved that the use of
any iterative technique to solve the global matrix is equivalent to a pseudo-time marching
method, and hence, produces an instability wave solution. Therefore, the solution of the
global matrix needs to be sought by using direct methods such as Gaussian elimination or
LU decomposition techniques.

2.2 GTS-like approximation

In order to reduce computational time and memory requirements, the pressure gradients in
the momentum equations are neglected. A similar approximation, termed Gradient Terms
Suppression (GTS), is often used to overcome instability problems that prevent convergence
of time domain algorithms for the LEE [Tester et al. (2008); Zhang et al. (2003)]. While
the original GTS approximation suppresses all mean-flow gradients, which are likely to be
small in the considered subsonic flows, in the present case, being interested in reducing
the computational time, only the density mean-flow gradients in momentum equations are
neglected. This allows to decouple the continuity equation and to solve only momentum
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and energy equations. For an axial-symmetric problem the number of total unknowns is thus
reduced by a factor T = 5/4, whereas the non-zero terms in the coefficient matrix of the linear
system associated with the discretized form of Eqs. (8) is reduced by a factor T 2. Indeed, a
smaller linear system can be solved faster, and, more important, its resolution requires less
memory.

2.3 Boundary conditions

When a problem is solved numerically, the governing equations must be solved only within
the domain, whereas on its borders appropriate conditions, called boundary conditions, must
be imposed. In many situations the boundary conditions associated with the continuous
problem do not completely supply the discrete problem, and numerical boundary conditions
must be added.

Rigid Walls

If walls are assumed impermeable and acoustically rigid, no flow passes through the
boundary and acoustic waves are totally reflected. Assuming that the mean flow satisfies
the slip flow boundary condition, an analogous slip flow condition must be imposed on the
velocity fluctuations

u′ ·n = 0 , (11)

where u′ is the acoustic velocity and n is the normal vector to the wall. To apply this condition,
Eq. (11) is used to express one of the velocity components in terms of the others.

Axial symmetry

When dealing with axial-symmetric problems, the equations could be solved only for r ≥ 0
if an appropriate boundary condition is applied on the symmetry axis. Along that boundary,
the acoustic velocity should be aligned with the r = 0 axis, this can be achieved applying a
wall type boundary condition.

Far-field boundary

One of the major issues in CAA is to truncate the far-field domain preserving a physically
meaning solution. This leads to the necessity to have accurate and robust non-reflecting
far-field boundary conditions. A large number of families of non-reflecting boundary
conditions has been derived in literature. The most widely used for the Euler equations
are the characteristics-based boundary conditions [Giles (1990); Thompson (1990)]. These
methods are derived applying the one-dimensional characteristic-variable splitting in the
boundary-normal direction. This technique is usually efficient and robust. The main
drawback is that reflections are prevented only for waves that are traveling in the
boundary-normal direction. Not negligible reflections can be seen for waves that hit the
boundary with other angles. Another class of non-reflecting boundary conditions is based
on the asymptotic solutions of the wave equation [Bayliss & Turkel (1980); Tam & Webb
(1993)]. In this case, the governing equations are replaced in the far field by an analytic
solution obtained imposing an asymptotic behavior to the system. These conditions can
be very accurate. Unfortunately, the asymptotic solution can be achieved only in a limited
number of cases, reducing the applicability of this model to test cases.
Another family of non-reflective boundary conditions is composed by the buffer zone
technique [Bodony (2006); Hu (2004)]. In this case, an extra zone is added to damp the
reflected waves. The damping can be introduced as a low-pass filter, grid stretching or
accelerating the mean flow to supersonic speed. The main drawback of these techniques is
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represented by the increase of the computational cost, as the thickness of the buffer zone could
be important to achieve a good level of accuracy.
More recently, the Perfectly Matched Layer (PML) technique has been developed as a new
class of non-reflective boundary conditions. The basic idea of the PML approach is to modify
the governing equations in order to absorb the out-going waves in the buffer region. The
advantage of this technique is that the absorbing layer is theoretically capable to damp waves
of any direction and frequency, resulting in thinner layers with respect to other buffer zone
approaches, with benefits on the efficiency and the accuracy of the solution. Originally
proposed by Berenger (1994) for the solution of the Maxwell equations, the PML technique
was extended to CAA applying the split physical variable formulation to the linearized
Euler equations with uniform mean flow [Hu (1996)]. It was shown that the PML absorbing
zone is theoretically reflectionless to the acoustic, vorticity and entropy waves. Nonetheless,
numerical instability arises in this formulation, and in Tam et al. (1998) the presence of
instability waves is demonstrated. In Hu (2001), it was shown that the instability of the split
formulation is due to an inconsistency of the phase and group velocities of the acoustic waves
in presence of a mean flow, and a stable PML formulation for the linearized Euler equation
was proposed, based on an unsplit physical variable formulation.
The PML technique can be seen as a change of variable in the frequency domain, for example,
considering the vertical layer, this change of variable can be written as

x −→ x +
i

ω

∫ x

x0

σxdx , (12)

where σx > 0 is the absorption coefficient and x0 is the location of the PML/LEE interface.
To avoid instabilities, a proper space-time transformation must be used before applying the
PML change of variable, so that in the transformed coordinates all linear waves supported
by the LEE have consistent phase and group velocities. Assuming that the mean flow in the
absorbing layer is uniform and parallel to the x axis, the proper space-time transform involves
a transformation in time of the form [Hu (2001)]

t = t +
M0

c0
(

1 − M2
0

) x , (13)

where M0 = u0/c0.
A stable PML formulation for the two-dimensional LEE can be obtained applying the
space-time transformation Eq. (13) to Eqs.(8) and then using the PML change of variable
Eq. (12) in the transformed coordinates. Expressing the formulation in the original (x, y)
coordinates the PML formulation becomes

∂F PML
x

∂x
+

∂F PML
y

∂y
+HPML = 0 . (14)

The terms F PML
x , F PML

y , and HPML of Eq. (14) are defined as follow

F PML
x = αyF̃x ; F PML

y = αxF̃y ; HPML =

(

αxαyH̃ + αxσy
M0

c0
(

1 − M2
0

) F̃x

)

, (15)

where αx =
(

1 + σx
iω

)

, αy =
(

1 +
σy

iω

)

and F̃x, F̃y, and H̃ are the terms of Eq. (5) under the

assumption that the mean flow is uniform and parallel to the x axis. The damping constants
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σx and σy have the following expressions

σx = σmax

(

1 − M2
0

)

∣

∣

∣

∣

x − xl

Dx

∣

∣

∣

∣

β

, σy = σmax

∣

∣

∣

∣

y − yl

Dy

∣

∣

∣

∣

β

, (16)

where Dx and Dy are the widths of the absorbing layers in the x and y directions respectively
and xl and yl are the positions of the interfaces between the PML region and the physical
domain. The maximum value of the damping σmax is usually taken as 2c0/∆x and the
coefficient β is set to 2 [Hu (2001)]. At the end of the PML domain, no special boundary
conditions are needed except those that are necessary to maintain the numerical stability of
the scheme. For this reason at the external boundary of the absorbing layer wall boundary
conditions are applied.
Applying the same PML formulation to the LEE written for the turbomachinery duct modes,
the following system is obtained

∂F PML
z

∂z
+

∂F PML
r

∂r
+ ImF PML

θ +HPML = 0 . (17)

The terms F PML
z , F PML

r , F PML
θ , and HPML of Eq. (17) are defined as follow

F PML
z = αrF̃

AX
z , F PML

r = αzF̃
AX
r , F PML

θ = αzαrF̃
AX
θ , (18)

HPML =

(

αzαrH̃
AX + αzσr

M0

c0
(

1 − M2
0

) F̃AX
z

)

, (19)

where αz and αr are defined as in the two-dimensional case and F̃z, F̃r, F̃θ , and H̃ are the
terms of Eq. (9) and Eq. (10) under the assumption that the mean flow is uniform and parallel
to the z axis.

Acoustic inlet

The PML formulation is also used to impose incoming waves at acoustic inlet boundaries. On
those boundaries incoming waves should be specified, but at the same time outgoing waves
should leave the computational domain without reflections. This can be achieved applying
the PML equations to the reflected wave, ure [Özyörük (2009)], which can be expressed as the
total acoustic field, u, minus the incoming prescribed acoustic wave, uin

ure = u−uin . (20)

Considering the two-dimensional problem and substituting Eq. (20) into Eq. (14) the equation
for the inlet PML domain reads

∂

∂x

(

F PML
x (u−uin)

)

+
∂

∂y

(

F PML
y (u−uin)

)

+HPML (u−uin) = 0 . (21)

Since the linearized Euler flux functions are linear, Eq. (21) becomes

∂

∂x

(

F PML
x (u)

)

+
∂

∂y

(

F PML
y (u)

)

+HPML (u) =

=
∂

∂x

(

F PML
x (uin)

)

+
∂

∂y

(

F PML
y (uin)

)

+HPML (uin) . (22)

The same procedure can be used for the acoustic inlet boundaries of the axial-symmetric LEE.
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3. Numerical methods

The numerical solution of the LEE requires highly accurate and efficient algorithms able
to mimic the non-dispersive and non-diffusive nature of the acoustic waves propagating
over long distances. One of the most popular numerical scheme in CAA is the Dispersion
Relation Preserving (DRP) algorithm originally proposed by Tam & Webb (1993). The DRP
scheme is designed for Cartesian or highly regular curvilinear coordinates. However, in
many practical applications, complex geometries must be considered and unstructured grids
may be necessary. One of the most promising numerical scheme able to fulfill all the above
requirements is the Discontinuous Galerkin method (DGM or DG method).
The DGM was firstly proposed in the early seventies by Reed and Hill in the frame of the
neutron transport [Reed & Hill (1973)]. Since then, the method has found its use in many
different computational models. In the last years, in the context of CFD, DGM has gained
an increasing popularity because of its superior properties with respect to more traditional
schemes in terms of accuracy and intrinsic stability [Cockburn et al. (2000)].
The DG method displays many interesting properties. It is compact: regardless of the order
of the element, data are only exchanged between neighboring elements. It is well suited for
complex geometries because the expected dispersion and dissipation properties are retained
also on unstructured grids. Furthermore in the framework of DGM it is straightforward
to implement the boundary conditions, since only the flux needs to be specified at the
boundary. The main disadvantage of the DGM is its computational cost. Because of the
discontinuous character, there are extra degrees of freedom at cell boundaries in comparison to
the continuous finite elements, demanding more computational resources. This drawback can
be partially reduced with a static condensation technique and with a parallel implementation
of the algorithm, operations which are made easier by the compactness of the scheme
[Bernacki et al. (2006)].

3.1 Discontinuous Galerkin formulation

The DGM will be initially presented for the scalar problem of finding the solution u of the
hyperbolic conservation equation

∂u

∂t
+∇ ·F (u) + Hu − S = 0 , (23)

where F (u) is the flux vector, H is the source term and S is the forcing term. Defining a test
function vector space, W, the weak form of the problem (23) over the domain Ω consists in
finding u ∈ W such that

∫

Ω
w

(

∂u

∂t
+∇ ·F (u) + Hu − S

)

dΩ = 0 ∀w ∈ W . (24)

The discontinuous Galerkin formulation is based on the idea of discretizing the domain Ω

into a set of E non-overlapping elements Ωe. Introducing the notations

∫

Ω′
(.)

de f
=

E

∑
e=1

∫

Ωe

(.) dΩ ,
∫

∂Ω′
(.)

de f
=

E

∑
e=1

∫

∂Ωe

(.) dΣ , (25)

the weak form can be rewritten as
∫

Ω′
w

(

∂u

∂t
+∇ ·F (u) + Hu − S

)

= 0 ∀w ∈ W . (26)
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To obtain an expression which explicitly contains the flux at the element interfaces, the
divergence term in Eq. (26) is integrated by parts

∫

Ω′

[

w

(

∂u

∂t
+ Hu − S

)

−∇w ·F (u)

]

+
∫

∂Ω′
wF (u) ·n = 0 , (27)

where n is the outward-pointing normal versor referred to each element edge. For interfaces
on the domain borders, the normal flux vector is evaluated using appropriate boundary
conditions. In the general case a boundary condition defines the normal flux as F (u) · n =
F BC (u) +GBC. On internal interfaces, F (u) ·n is evaluated from the values of u. In order for
the formulation to be consistent, the normal flux vector evaluated on right side of an internal
interface must be equal to minus the normal flux vector evaluated on the left side of the same
interface. Since one of the key feature of the DGM is the discontinuity of the solution among
the elements, the consistency is not automatically guaranteed by the formulation. Therefore
the normal flux F (u) ·n is replaced by a numerical flux F R (u) which is uniquely defined no
matter of the side on which it is evaluated (see section 3.2). For ease of notation it is convenient
to introduce the following definition

F (u) ·n de f
= F ∂ (u) +G∂ , (28)

where F ∂ +G∂ is equal to F BC +GBC for interfaces on the domain borders and is equal to
to F R for internal ones. Furthermore, assuming that the flux vector is a linear function of the
unknown, yields

F (u) = Au , F (u) ·n = F ∂ (u) +G∂ = A∂u +G∂ , (29)

where A and A∂ are two matrices representing the Jacobian of the physical flux and the
Jacobian of the numerical flux respectively. Using Eq. (28) and Eqs. (29), the weak formulation
reads

∫

Ω′

[

w

(

∂u

∂t
+ Hu − S

)

−∇w · (Au)

]

+
∫

∂Ω′
w
(

A∂u +G∂
)

= 0 . (30)

Given Eq. (30), the discontinuous Galerkin approximation is obtained considering a finite
element space, Wh, to approximate W. On each element, a set of points called nodes or degrees
of freedom is identified. The number and the position of the nodes depend on the type of
approximation used. The set of nodes is chosen to be the same on each element, in this way, on
element’s borders, there is a direct correspondence among the nodes defined on neighboring
elements. The nodes are numbered globally using the index jglob = 1, 2, . . . , nglob with nglob
being the global number of degrees of freedom. Beside the global numbering, there is a local
numbering. On each element the nodes are identified using the index jeloc = 1, 2, . . . , ne

loc
where ne

loc is the number of degrees of freedom of the e-th element. The correspondence
between local node numbers and global node numbers can be expressed through a matrix
called connectivity matrix

jglob = Ce, je
loc

. (31)

The nodes of the discretization are used to define the finite element space Wh: the vector space
Wh is generated by the Lagrangian polynomials defined on the nodes of the discretization. The
variable u ∈ W is therefore approximated in the Wh space with an interpolation of its nodal
values

u ≈ uh =
nglob

∑
j=1

uj (t)Φj (x, y) , (32)
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where uj (t) is the value of u in the j-th global node
(

xj, yj

)

at the time t and Φj is the

Lagrangian polynomial defined on the j-th global node with the property

Φi

(

xj, yj

)

= δij i, j = 1, 2, . . . , nglob . (33)

Although in this work Lagrangian interpolation functions are used, other types of
interpolation are possible. Considering the vector space Wh, the discrete weak form of
problem (23) consists in finding uh ∈ Wh such that

∫

Ω′

[

wh

(

∂u

∂t
+ Hu − S

)

− (∇wh ·A) u

]

+
∫

∂Ω′
wh

(

A∂u −G∂
)

= 0 ∀wh ∈ Wh . (34)

Substituting Eq. (32) into the discrete weak form (34) leads to

nglob

∑
j=1

[(

∫

Ω′
whΦj

)

∂uj

∂t
+

(

∫

Ω′
HwhΦj

)

uj −
(

∫

Ω′
(∇wh ·A)Φj

)

uj

]

+

+
nglob

∑
j=1

(

∫

∂Ω′
whA

∂Φj

)

uj =
∫

Ω′
whS −

∫

∂Ω′
whG

∂ ∀wh ∈ Wh . (35)

This equation must hold for every admissible choice of weight functions wh, therefore it is
sufficient to test it for the nglob linearly independent functions of a base of Wh. In this way it
is possible to obtain nglob independent algebraic equations to solve for the nglob unknowns
uj. The vector space Wh is defined as the space formed by the Lagrangian polynomials
Φi, therefore the functions Φi form a base for Wh. The i-th algebraic equation is obtained
substituting wh = Φi into Eq. (35)

nglob

∑
j=1

[(

∫

Ω′
ΦiΦj

)

∂uj

∂t
+

(

∫

Ω′
HΦiΦj

)

uj −
(

∫

Ω′
(∇Φi ·A)Φj

)

uj

]

+

+
nglob

∑
j=1

[

∫

∂Ω′
ΦiA

∂Φj

]

uj =
∫

Ω′
ΦiS −

∫

∂Ω′
ΦiG

∂ . (36)

Taking the Fourier transform of Eq. (36), the weak formulation associated with the l-th mode
can be written as

nglob

∑
j=1

[(

∫

Ω′
ΦiΦj

)

Iω(l) +

(

∫

Ω′
HΦiΦj

)

−
(

∫

Ω′
(∇Φi ·A)Φj

)]

û
(l)
j +

+
nglob

∑
j=1

[

∫

∂Ω′
ΦiA

∂Φj

]

û
(l)
j =

∫

Ω′
ΦiŜ

(l) −
∫

∂Ω′
ΦiG

∂ , (37)

where ˆ(.)
(l)
j is the l-th component of the Fourier transform of (.), ω(l) is the angular frequency

of the l-th Fourier mode and I is the imaginary unit. Equation (37) represents the weak-form
discontinuous Galerkin model for a scalar hyperbolic problem in the frequency domain. It
can also be written in matrix notation as

Ku(l) = f (l) , (38)
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where

K
(l)
ij =

∫

Ω′

[(

Iω(l) + H
)

ΦiΦj − (∇Φi ·A)Φj

]

+
∫

∂Ω′
ΦiA

∂Φj , (39)

f
(l)
i =

∫

Ω′
ΦiŜ

(l) −
∫

∂Ω′
ΦiG

∂ . (40)

Solving this linear system it is possible to obtain the nodal values of the l-th Fourier mode,
u(l).
The same formulation can be applied to the vectorial problem of finding the solution u of the
system of equations

∂u

∂t
+∇ ·F (u) +Hu−S = 0 , (41)

where u is a vector of nvars unknowns, F (u) is the flux tensor, H is the source term, and S

is the forcing term. For the vector problem the weak formulation consists in finding u ∈ W

such that
∫

Ω′

[

wT

(

∂u

∂t
+Hu−S

)

−∇wT ·F (u)

]

+
∫

∂Ω′
wTF (u) ·n = 0 ∀w ∈ W . (42)

Assuming a linear flux function, i.e., F (u) = Au and F (u) · n = A
∂
u + G

∂
, the

Discontinuous Galerkin approximation in the frequency domain leads to the following linear
system

Ku(l) = f
(l)

, (43)

where u(l) contains the vectorial nodal values of the l-th Fourier mode and the system is
defined as

K
(l)
ij =

∫

Ω′

[

Φ
T
i

(

Iω(l)I +H
)

Φj −
(

∇Φ
T
i ·A

)

Φj

]

+
∫

∂Ω′
Φ

T
i A

∂
Φj , (44)

f
(l)
i =

∫

Ω′
Φ

T
i Ŝ

(l) −
∫

∂Ω′
Φ

T
i G

∂
, (45)

with I being the identity matrix.

3.2 Interface flux

The flux through an interface has to be uniquely computed, but, due to the discontinuous
function approximation, flux terms are not uniquely defined at element interfaces. Therefore,
to evaluate the flux at element interfaces, a technique traditionally used in finite volume
schemes is borrowed by the discontinuous Galerkin formulation: the flux function F (u) · n
of the vector weak form, Eq. (42), is replaced by a numerical flux function, called Riemann
flux, F R (u). Arbitrarily designating one element of the interface to be on the left , l, and the
other to be on the right, r, the numerical flux depends only on the internal interface state, ul ,
on the neighboring element interface state, ur, and on the direction n normal to the interface,
i.e. F R (u) = F R (ur,ul ,n). In order to guarantee the formal consistency of the scheme, F R

is required to satisfy the relations

F R (ur,ul) = F (u) ·n , F R (ur,ul) = −F R (ul ,ur) , (46)
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which are the consistency and the conservative conditions respectively. In the present work,
the Riemann flux F R is approximated by the Osher flux. This approach is based on the
diagonalization of the Jacobian matrix [Toro (1999)]. Assuming a linear dependence of the
flux function on the unknown u, the flux along the interface normal direction can be written
as

F (u) ·n =
(

Au
)

·n = Anu , (47)

where An = A ·n. The numerical method is applied to a hyperbolic system, i.e., LEE, which
has a diagonalizable Jacobian matrix An, that is

An = KΛK−1 , (48)

where K is the non-singular matrix whose columns are the right eigenvectors of An

K =
[

K1;K1; . . . ;Knvars ;
]

, (49)

and Λ is the diagonal matrix formed by the eigenvalues λi

Λ =

⎛

⎜

⎝

λ1 . . . 0
...

. . .
...

0 . . . λm

⎞

⎟

⎠
. (50)

Given the diagonalization of An it is convenient to introduce the diagonal matrix formed by
the absolute eigenvalues, |Λ|, and the corresponding absolute flux matrix

|An| = K |Λ|K−1 . (51)

Using the Osher approach the numerical flux F R can be written as

F R (ur,ul) =
1
2

[

F (ur) +F (ul)
]

− 1
2

∫

ur

ul

|An| du . (52)

Assuming that the Jacobian matrix does not depend upon the unknown and using the
hypothesis of linear fluxes, Eq. (47), the numerical flux becomes

F R (ur,ul) =
1
2

(

A− |An|
)

ur +
1
2

(

A+ |An|
)

ul = ARu . (53)

3.3 Numerical integration

Integrals of Eq. (39) and Eq. (40) can be evaluated numerically for every element of the mesh
using Gauss quadrature formulae. However, it is not convenient to evaluate the integrals
directly on the generic element: it is easier to transform (or map) every element of the
finite element mesh, Ωe, into a reference element, Ω̂, called master element and perform
the numerical integration on this master element. The transformation between Ωe and Ω̂

is accomplished by a coordinate transformation from the physical coordinates (x, y) to the
reference coordinates (ξ, η)

x =
m

∑
i=1

xiΨ
e
i (ξ, η) ; y =

m

∑
i=1

yiΨ
e
i (ξ, η) , (54)
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where m is the number of parameters used to identify the transformation, (xi, yi) are the
global coordinates of the points of the element used in the transformation and Ψe

i denote
the interpolation functions used in the transformation. It is important to point out that the
functions Ψe

i used for the approximation of the geometry differ from the functions Φe
i used

for the interpolation of the dependent variables. In this work linear interpolation functions
Ψe

i are used: on each element the number of parameters used to identify the transformation is
equal to the number of vertexes, n = nvertex, and the (xi, yi) points used in the transformation
are the vertexes of the element.
Once integrands are expressed on the master element Ω̂, numerical integration is performed
using Gauss quadrature formulae, in the form

∫

Ω̂
F (ξ, η) dΩ̂ ≈

M

∑
i=1

F (ξi, ηi)Wi , (55)

where M denotes the number of quadrature points, (ξi, ηi) are the Gauss points and Wi

denotes the corresponding Gauss weights.

3.4 Interpolation functions

The basis {Φi} are also evaluated over the master elements: they are the Lagrangian
polynomials defined on the node set Tp = {xi; i = 1, . . . , N}, where N is the number of
nodes in the node set. For rectangular elements the basis are obtained as the tensor product
of the corresponding one-dimensional Lagrangian polynomials defined on the Gauss-Lobatto
nodes. Given the one-dimensional polynomials φl (ξ) with l = 1, . . . , Nξ and φr (η) with
r = 1, . . . , Nη , the two-dimensional ones are defined as

Φi (ξ, η) = φl (ξ) · φr (η) , i = 1, . . . , Nξ Nη . (56)

For triangular elements the Lagrangian polynomials are constructed on a set of nodes which
is defined in such a way that the internal-node positions are the solutions of a steady state,
minimum energy electrostatics problem, whereas the nodes along the edges are specified as
one-dimensional Gauss-Lobatto quadrature points [Hesthaven (1998)].

3.5 Static condensation

One of the main disadvantages of using the DGM for solving LEE in frequency domain is the
requirement of a huge amount of memory. The method leads to a linear system of equations
which, as explained above, has to be solved with a direct solver, thus requiring a great amount
of memory. To partially overcome this problem, a static condensation method can be applied.
Static condensation allows to assemble and solve a system matrix which contains only the
degrees of freedom associated with the element boundary nodes [Karniadakis & Sherwin
(2005)]. Distinguishing between the boundary and interior components of the vectors ue and
f e using ue

b, ue
i and f e

b , f e
i respectively, that is

u =

[

ub

ui

]

, f =

[

fb

fi

]

, (57)

the DGM linear system (38) can be written as
[

Kb Kc1
Kc2 Ki

] [

ub

ui

]

=

[

fb

fi

]

. (58)
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In this decomposition the block Kb corresponds to the global assembly of the elemental
boundary-boundary basis interaction, Kc1 and Kc2 correspond to the global assembly of the
elemental boundary-interior coupling and Ki corresponds to the interior-interior coupling.
The static condensation of internal degrees of freedom consists in performing a block
elimination by a pre-multiplication of the system by the matrix

[

I −Kc1K
−1
i

0 I

]

, (59)

leading to
[

Kb −Kc1K
−1
i Kc2 0

Kc2 Ki

] [

ub

ui

]

=

[

fb −Kc1K
−1
i fi

fi

]

. (60)

The elemental boundary unknowns can therefore be evaluated solving the linear system
(

Kb −Kc1K
−1
i Kc2

)

ub = fb −Kc1K
−1
i fi . (61)

From equation (61) it is evident that, using the static condensation, it is possible to assembly
and solve a system that contains only the degrees of freedom associated to the boundary

nodes. The therm
(

Kb −Kc1K
−1
i Kc2

)

is the Schur complement of the full system matrix

and can be globally assembled starting from the Schur complements of the elemental matrix
(

Kb −Kc1K
−1
i Kc2

)

= AT
b

[

Ke
b −Ke

c1 [K
e
i ]
−1

Ke
c2

]

Ab = AT
b MeAb , (62)

where the superscript (.)e denotes elemental matrices and Me is a block diagonal matrix which
has been formed by the local matrices Me with e = 1, . . . , E. Ab is the matrix that performs the
scattering from the global boundary degrees of freedom to the boundary degrees of freedom,
that is

[

u1
b u2

b . . . uI
b

]T
= Abub , (63)

where ue
b contains the components of ue

b in element e. Similarly, AT
b is the matrix which

performs the assembly process from local to global degrees of freedom.
Once the linear system of Eq. (61) is solved and the elemental boundary solution is known the
solution for the interior elemental nodes is given by the second row of Eq. (60), i.e.,

ui = K−1
i (fi −Kc2ub) . (64)

Since Eq. (60) involves matrix-vector product of known quantities, it can be evaluated locally
within every element, leading to

ue
i = [Ke

i ]
−1 (f e

i −Ke
c2u

e
b) . (65)

3.5.1 Linear system solver

The discrete problem leads to a complex matrix system where the complex Fourier coefficients
of the acoustic fluctuations are the unknowns. As stated in Section 2.1, this system must be
solved with a direct method in order to avoid the Kelvin-Helmholtz instabilities. For this
purpose the MUMPS (MUltifrontal Massively Parallel Solver) package Amestoy et al. (2006)
will be adopted. MUMPS uses a direct method based on a multifrontal approach which
performs a direct factorization K = LU or K = LDLt depending on the symmetry of the
matrix. In the multifrontal method the factorization of a sparse matrix is achieved through the
partial factorization of many, smaller dense matrices (called frontal matrices).
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4. Applications

4.1 Multi-geometry scattering problem

A typical test-case to assess the ability of an aeroacustical code to resolve complex
geometries is the two-dimensional scattering of sound generated by a spatially distributed
monopole source from two rigid circular cylinders, as defined in the Fourth Computational
Aeroacoustics (CAA) Workshop on Benchmark Problems [Scott & Sherer (2004)]. The
scattering problem is presented here in terms of non-dimensional quantities. Assuming a
mean flow at rest, variables can be non-dimensionalized using the mean flow pressure p0,
density ρ0, and speed of sound c0. To generate a time-harmonic monopole, only the source
term in the energy equation has to be different from zero, i.e. S = [0, 0, 0, Se]. The forcing term
Se is a Gaussian function and can be written in a source-centered coordinate system as

Se = ǫ · exp

[

−ln(2) ·
(

x2
S + y2

S

b2

)]

sin (ωt) , (66)

where ω = 8π, b = 0.2, ǫ = 0.4. The cylinders have unequal diameters (D1 = 1.0, D2 = 0.5),
with the source located on the x−axis and equidistant from the center of each cylinder. In
the (xS, yS)-coordinate system centered on the source, the locations of the cylinders are given
by L1 = (−4, 0), and L2 = (4, 0). Considering the symmetry of the problem, only the y ≥ 0
half-domain can be considered if an appropriate symmetry boundary condition is applied
on the x−axis. To obtain such a symmetry boundary condition it is sufficient to consider
the x−axis as an acoustically rigid wall. The physical domain extends for x ∈ [−10, 10],
y ∈ [0, 10] and is surrounded by a PML region with a thickness equal to 0.75. The domain is
discretized with an unstructured grid, figure (1), of about 27, 000 elements (both triangles and
quadrangles) and on each element Lagrangian basis of degree p = 4 are used.

Fig. 1. Mesh of the internal (red) and PML (blue) domains

Fig. 2. RMS of the fluctuating pressure field
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Fig. 3. RMS of the fluctuating pressure along the x axis
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Fig. 4. RMS of the fluctuating pressure on the surface of the cylinders: ◦ numerical,
— analytical; (a) left cylinder; (b) right cylinder

Figure (2) shows the computed mean-square fluctuating-pressure field over the entire
resolved portion of the computational domain, including the PML. In figures (3) and (4), the
RMS of the fluctuating pressure is plotted along the center line and on the surface of the
cylinders. Figure (4) shows a very good agreement between the numerical and the analytical
solution [Scott & Sherer (2004)]. Computational time is about 5 minutes using 4 cores of a dual
Intel Xeon quad-core computer and the calculation requires 5Gb of RAM.

4.2 Sound propagation around a high-lift airfoil

To assess the ability of the present method to simulate realistic geometries, the scattering of
a monopole source from an high-lift airfoil is considered here . The airfoil is a three element
airfoil based on the RA16SC1 profile, with the slat and flap deflected by 30 deg and 20 deg,
respectively. The chord in fully retracted configuration is 0.480m. Mean flow is at rest with
a speed of sound equal to c0 = 340.17 m/s and a density equal to ρ0 = 1.225 Kg/m3. The
computational domain extends for (x, y) ∈ [−0.85 m; 0.85 m] and it is surrounded by vertical
and horizontal PML layers with a thickness of 0.1 m. This domain is discretized with an
unstructured grid with about 28, 000 elements refined in proximity of slat and flap, as shown
in figure (5).
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Fig. 5. High-lift airfoil scattering: mesh of the internal (red) and PML (blue) domains

A monopole source is placed near the trailing edge of the slat. As for the multi-geometry
scattering problem of section 4.1, there is only the source for the energy equation, Se. The
expression of Se is given by Eq. (66) with ω = 2π f , f = 5000 Hz, ǫ = 2 Pa, b = 0.01 m and
(xS, yS) = (0.02 m, 0.02 m). Different computations are performed varying the interpolation
polynomial order: starting from p = 3 up to p = 6. The solution obtained using polynomials
of degree equal to 6 is taken as the reference solution. In figure (6) it is shown the root
mean square (RMS) of the instantaneous pressure distribution for the reference solution.
Computational time using 6th order polynomials is less then 10 minutes using 4 cores of a
dual Intel Xeon quad-core computer and the calculation requires about 6.5Gb of RAM. To
compare the solutions obtained using different polynomial orders, RMS pressure values are
extracted on a circle with radius of 0.7m centered in (0, 0), see figure (7(a)). In figure (7(b)) it
can be shown that as the interpolation polynomial order increases the directivity converges to
the reference solution.

4.3 Turbomachinery noise

A turbomachine produces two type of noise: a broad-band noise, associated with vortex
shedding, wake turbulence and blade vibrations, and a tonal noise, related to steady
aerodynamic blade loading and to blade thickness effects. Indeed, this last kind of noise is
generated because the rotor blade rotation and the aerodynamic interaction of rotor blades
with stationary vane wakes generates a periodic pressure field. This field is the source of
a narrow banded spectrum type acoustic field, known as spinning mode tones. For a duct
having a constant and geometrically simple cross section, spinning mode tones can be studied
analytically with the duct mode theory, see appendix (6). However, when the duct has a
non-constant or non-simple cross section, like in the case of realistic engine geometries, no
exact solution can be found and the problem must be solved numerically.
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Fig. 6. RMS of the instantaneous pressure field near the profile using interpolation
polynomials of degree p = 6, Pa
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Fig. 7. Directivity of instantaneous pressure RMS values for interpolation polynomial of
order p = 3, 4, 5, 6: (a) directivity on the whole circle; (b) close-up for θ ∈ [30, 50]

While recent research programs brought to significant progress in reducing both the
turbomachinery noise generation and the radiation of noise from the intake, there is still a
lack of knowledge about the exhaust noise radiation problem and the need to develop accurate
models for its prediction. This problem represents a challenge for CAA, due to the fact that
radiated sound propagates through the shear layers separating core, bypass and free-stream
fields.

4.3.1 Circular duct propagation and radiation

In order to validate the propagation model, an idealized case for the propagation of sound
waves inside the exhaust nozzle is studied. This idealized problem studies the propagation
of a sound wave inside a semi-infinite circular cylinder and the subsequent radiation of the
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wave outside the pipe. This idealized problem is the acoustic diffraction by a sound wave
propagating out of a rigid semi-infinite cylindrical duct (figure 8(a)). The radius of the cylinder
is equal to r1 = 1.212 m and the duct wall has no thickness with acoustically rigid inner and
outer surfaces. Inside the duct there is a uniform axial mean flow of density ρ2, Mach M2 and
speed of sound c2. In the outer region the flow is also uniform and axial, with density ρ1, Mach
M1 and speed of sound c1. There is no shear layer between the two flows, instead they are
separated by a vortex sheet. For this problem, termed “Munt problem”, the analytical solution
has been found by Munt (1977) and it has been subsequently generalized for annular ducts
and lined walls [Demir & Rienstra (2006); Gabard & Astley (2006); Rienstra (1984)]. Since the
analytical solution is available only for points at great distance from the cylinder exit, it is not
possible to compare directly the solution of LEE obtained using the DGM with the analytical
one. Instead LEE are solved only in a small computational domain, the near-field domain,
and then the far-field solution is evaluated for the near-field one using the three-dimensional
integral formulation of the wave equation proposed by Ffowcs Williams and Hawkings [Iob
et al. (2010)]. The far-field results are then compared with the analytical solution. The LEE
computational domain extends for z ∈ [−2.5 m; 5.5 m] and for r ∈ [0.0 m; 3.9 m] and is
surrounded by vertical and horizontal PML layers with a thickness of 0.7 m. This domain
is discretized using a uniform structured grid with about 5, 000 rectangular elements with
p = 3. The discretization and the boundary conditions for the near-field domain are shown in
figure 8(b).
The first case considered is the “no-flow“ condition: the mean flow is assumed to be at rest
both inside and outside of the duct, with a speed of sound equal to c1 = c2 = 340.17 m/s
and a density equal to ρ1 = ρ2 = 1.225 Kg/m3. In figure (9(a)) the instantaneous near-field
pressure field for a plain wave, mode (0, 1), at a frequency of 956 Hz is reported, whereas
figure (9(b)) displays the corresponding Sound Pressure Level (SPL) directivity pattern in the
far-field. The directivity is evaluated on an arc having the center defined at the center of the
duct exit section and radius equal to r = 46 m. It can be seen that the agreement between the
numerical and the analytical solutions is very good.
To study the effect of the mean flow, another flow condition is analyzed: in this condition there
is a mean flow velocity inside the duct, with Mach number equal to 0.447, whereas outside the
duct the fluid is at rest. In figure 10(a) and 10(b), instantaneous pressure field and directivity

(a) (b)

Fig. 8. Circular duct; (a) geometry; (b) domain discretization and boundary conditions
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Fig. 9. Circular duct, M1 = 0.0, M2 = 0.0, mode (0, 1), f = 956 Hz; (a) near-field solution:
real part of Fourier pressure coefficient, Pa; (b) far-field solution: SPL directivity
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Fig. 10. Circular duct, M1 = 0.0, M2 = 0.447, mode (9, 1), f = 866 Hz; (a) near-field solution:
real part of Fourier pressure coefficient, Pa; (b) far-field solution: SPL directivity

for the mode (9, 1), frequency 866 Hz are presented. Also in this case there is a good agreement
with the analytical solution.
Computational times for all the conditions is about 2 minutes on an AMD Athlon 64 X2 Dual
Core Processor and calculations require less than 1Gb of RAM.

4.3.2 Engine exhaust propagation and radiation

To study a more realistic test case, the propagation of duct modes inside a turbofan engine
exhaust is considered. Numerical simulations on this geometry are carried out for two flow
conditions. In the first condition, termed condition A, the mean flow is at rest with a speed
of sound equal to c∞ = 340.17 m/s and a total density equal to ρt ∞ = 1.225 Kg/m3. In the
second one, condition B, the external flow is at rest, c∞ = 340.17 m/s and ρ∞ = 1.225 Kg/m3,
whereas there is a mean velocity both inside the by-pass duct and inside the core duct. Flow
properties at duct’s inlet are the following: cfan = 353.15 m/s, ρt fan = 1.327 Kg/m3, and
Mfan = 0.35 for the by-pass duct and cturb = 508.75 m/s, ρt turb = 0.598 Kg/m3, and Mturb =
0.29 for the core duct.
Like for the ”Munt“ problem, LEE are solved only in the near-field domain, and then the
far-field solution is evaluated using the Ffowcs Williams and Hawkings formulation. The
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Fig. 11. Engine exhaust, domain discretization and boundary conditions
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Fig. 12. Engine exhaust, flow condition A, mode (4, 1), f = 7981.25 Hz; (a) near-field
solution: real part of Fourier pressure coefficient, Pa; (b) far-field solution: SPL directivity

near-field domain is discretized with an unstructured grid of 3, 800 elements and, in the
external region, it extends for z ∈ [−0.44 m; 0.95 m] and for r ∈ [0.0 m; 0.7 m] and is
surrounded by vertical and horizontal PML domains with a thickness of 0.08 m (see figure 11).
For all the presented cases the incoming wave enters from the by-pass duct and consists in
the duct mode (4, 1) at a frequency of 7981.25 Hz, which corresponds to a dimensionless
frequency of krfan = 16.22 where rfan = 0.11 m is the radius of the by-pass duct at the exit
plane. Elements are discretized with interpolation polynomials of degree p = 3, therefore
the discretization has about 60000 nodes. Near-field instantaneous pressure perturbations for
the flow condition A are shown in figure 13(a), whereas the corresponding SPL directivity
pattern is shown in figure 13(b).The far-field directivity is evaluated on an arc of radius r =
12 m having the center placed at the center of the by-pass duct exit section. Same results are
presented for the flow condition B in figure 13(a) and figure 13(b). It can be shown that the
presence of the flow field, in particular the presence of the shear layers between core flow,
by-pass flow and external region, deflects the sound waves in the upward direction. When
the flow is at rest the maximum far-field SPL level is located at a directivity angle of 21◦,
whereas this maximum moves at an angle of 55◦ when there is a mean flow inside the by-pass
and the core duct.
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Fig. 13. Engine exhaust, flow condition B, mode (4, 1), f = 7981.25 Hz; (a) near-field
solution: real part of Fourier pressure coefficient, Pa; (b) far-field solution: SPL directivity

5. Conclusions

A numerical model based on the solution of the LEE in the frequency domain with a
discontinuous Galerkin method has proved to be a valuable tool for the analysis of the
propagation of sound waves. With the LEE it is possible to study acoustic wave propagation
in the presence of rotational mean flows. The frequency domain approach suppress the
Kelvin-Helmholtz instability waves which pollute LEE solutions in time-domain calculations.
The static condensation technique greatly reduces the memory requirements of the DGM and
make feasible the frequency domain approach. Moreover each single calculation, limited to
a single frequency, is well suited to the exhaust noise radiation problem where the incoming
wave can be treated as a superposition of the elementary duct modes. The model is well suited
for design and optimization processes. The model has been successfully validated with the
analytical solution of the Munt problem. In the case of realistic configurations, the numerical
results reproduce the main expected features.

6. Appendix

A. Duct mode theory

According to the duct mode theory the acoustic field inside a duct may be expressed by means
of a series expansion in a particular family of solutions, called duct modes. Duct modes are
interesting mathematically because they form a complete basis by which any solution can
be represented. Nonetheless, modes are also interesting from a more physical point of view
because they are solutions in their own right, not just mathematical building blocks. The
simple structure of the modes can be therefore useful to understand the usually complicated
behavior of the total field.
Consider an infinite duct with an arbitrary cross section with inside a uniform mean flow
with Mach number equal to M0 and speed of sound equal to c0. The duct is aligned with the
z-axis and its cross section, A, is on the (x, y)-plane (figure 14). Assuming a harmonic time
dependency, the acoustic field can be written as

p′ (x, t) ≡ p̂ (x) eIωt, v′ (x, t) ≡ v̂ (x) eIωt , (67)
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where ω is the angular frequency and the Fourier modes p̂ and v̂ satisfy continuity and
momentum equations

(

I ω

c0
+ M0

∂

∂z

)

p̂ + c2
0ρ0∇ · v̂ = 0 (68a)

(

I ω

c0
+ M0

∂

∂z

)

v̂ +
1

ρ0c0
∇ p̂ = 0 . (68b)

The assumption of time-harmonic dependence is not so restrictive. If the acoustic field is not
harmonic, the linearity of sound waves allows to build up the acoustic field as a sum of time
harmonic components via a Fourier analysis. Duct walls are considered acoustically rigid, i.e.
they completely reflects the acoustic waves

∂ p̂

∂n
= 0 for x ∈ ∂A , (69)

where n is the normal to the wall pointing into the surface. From Eqs. (68) it is possible to
obtain the convected Helmholtz equation for a uniform mean flow. In cylindrical coordinates
this equation reads

(

I ω

c0
+M0 · ∇

)2

p̂ −
(

∂2

∂z2 +
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)

p̂ = 0 , (70)

where M0 = [M0, 0, 0]. The solution of Eq. (70) may be given by

p̂ (r, θ, z) =
∞

∑
n=0

[

p̂+n (r, θ, z) + p̂−n (r, θ, z)
]

=
∞

∑
n=0

[

C+
n ψn (r, θ) e−Ik+n z + C−

n ψn (r, θ) e−Ik−n z
]

, (71)

where the function ψn (r, θ) e−Ik±n z defines the shape of the n-th so-called duct mode, with a
+ for right-running modes and a − for left running ones. Each mode is characterized by an
amplitude C±

n and by an axial wave number k±n . The functions ψn are the eigenfunctions of
the Laplace operator reduced to the cross section A, i.e., solutions of

−
[

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

]

ψ = α2ψ for (r, θ) ∈ A

∂ψ

∂n
= 0 for (r, θ) ∈ ∂A , (72)

Fig. 14. Infinite duct with arbitrary cross section A
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where α2 is the corresponding eigenvalue. If the duct cross section is annular and the
boundary condition is uniform everywhere, the solution of the eigenvalue problem is
relatively simple and may be obtained by separation of variables. Considering an annular
duct with inner radius equal to h and outer radius equal to a, the eigensolutions consist of
combinations of exponential and Bessel functions. In cylindrical coordinates this yields

ψn (r, θ) = Umμ (r) eImθ , (73)

where m = 0, ±1, ±2, . . . is the azimuthal index of the mode and μ = 1, 2, . . . is the radial
one. Positive values of m correspond with clockwise rotating modes and negative m with
counter-clockwise rotating modes. The radial function Umμ is obtained from

U′′
mμ +

1
r

U′
mμ +

(

α2
mμ − m2

r2

)

Umμ = 0 , (74)

where U′′
mμ and U′

mμ are, respectively, the second and the first order derivative of Umμ (r).
Solving Eq (74), the radial shape of the modes can be evaluated as

Umμ (r) = Jm
(

αmμr
)

− J′m
(

αmμa
)

Y′
m

(

αmμa
)Ym

(

αmμr
)

, (75)

where Jm and Ym denote the Bessel functions of the first and second kind of order m, whereas
J′m and Y′

m are their derivatives. Eigenvalues αmμ = αn are evaluated via boundary conditions,
imposing that U′

mμ (a) = U′
mμ (h) = 0, the value of αmμ corresponds to the μ-th zero of the

equation
J′m

(

αmμa
)

Y′
m

(

αmμh
)

− J′m
(

αmμh
)

Y′
m

(

αmμa
)

= 0 . (76)

Although technically speaking {α2
mμ} are the eigenvalues of minus the cross-sectional Laplace

operator, it is common practice to refer to α2
mμ as the radial eigenvalue or radial modal wave

number, to m as the circumferential eigenvalue or circumferential wave number, and to k±n =
k±mμ as the corresponding axial eigenvalue or axial wave number. The radial and axial wave
numbers satisfy

α2
mμ =

(

ω/c0 − M0kmμ
)2 − k2

mμ , (77)

k±mμ =
−ωM0/c0 ±

√

ω2/c2
0 −

(

1 − M2
0

)

α2
mμ

1 − M2
0

. (78)

For an annular duct mode the general solution may therefore be written as

p̂ (z, r, θ) =
∞

∑
m=−∞

∞

∑
μ=1

(

C+
mμe−Ik+mμz + C−

mμe−Ik−mμz
)

Umμ (r) eImθ , (79)

where C±
mμ is the amplitude of the mode, Umμ

(

r, αmμ
)

is given by Eq. (75), the radial wave
number αmμ is the μ-th zero of Eq. (76) and the axial wave number k±mμ is given by Eq. (78).
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A.1 Cut-off frequency

The z-axis pressure dependence of a duct mode takes two completely different forms
depending on whether the driving frequency is below or above a critical value. The reason
of this radical change in transmission properties as the driving frequency is gradually swept
through this critical value is due to the fact that the nature of the z-variation of the pressure
field in a duct behaves, see Eq. (71), like the term e−ikmμz. When kmμ is purely imaginary,
the amplitude of the pressure fluctuations are subjected to an exponential decay (because
Im

(

kmμ
)

< 0). Usually the rate of decay is large enough to reduce the pressure intensity to a
negligible value in a short distance compared to the duct radius. When kmμ is real, true wave
motion propagates in the duct. From the definition of kmμ, Eq. (78), it is easy to see that kmμ

is purely imaginary if
(

1 − M2
0

)

α2
mμ > ω2/c2

0. The frequency fc which tells apart this two
different behaviors is called cut-off frequency

fc =
αmμc0

√

1 − M2
0

2π
. (80)

Cut-off frequency depends on the geometry of the duct, on the mode of the incident wave and
also on the mean flow properties. For any ω there are always a (finite) μ = μ0 and m = m0
beyond which

(

1 − M2
0

)

α2
mμ > ω2/c2

0, so that kmμ is purely imaginary, and the mode decays
exponentially in z. Therefore there is always a finite number of modes with real kmμ. Since
they are the only modes that propagate, they are called cut-on. The remaining infinite number
of modes, with imaginary kmμ, are evanescent and therefore called cut-off.
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