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1. Introduction  

The extensive use of insecticides in modern agriculture has raised serious public concern 
regarding the environment and food safety, and considerable efforts have been devoted to 
the development of highly sensitive detection methods (Bachmann et al., 2000; Istamboulie 
et al., 2007). Biosensors have been described for many years (Andreescu and Marty, 2006a) 
as good candidates to replace or complement conventional analytical methods, as they can 
provide real-time qualitative information about the composition of a sample with minimum 
treatment. In recent years, biosensors have played an important role in the determination of 
pesticides, because the compounds used in its composition have anticholinergic properties 
and therefore strongly inhibit cholinesterase enzymes. Evaluation of cholinesterase activity 
is the crucial factor in the construction of biosensors,  however, in the case of multi-
component samples (more common in reality) is absolutely essential include appropriate 
data processing tools to find relationships between the biosensor responses and the 
measured data. In most cases, it is necessary a first data pretreatment step in order to 
explore and validate these obtained information (Ehrentreich, 2002). 
Many applications related with the use of biosensor responses entail data interpretation 
problem related to: (1) noisy records due to temperature changes; (2) data acquisition noise 
present in records, (3) presence of interference signals in the biosensor response mainly 
contaminated by signals coming for the electrochemical equipment i.e. potentiostats, 
magnetic stirrings and thermostats (Cai and Harrington, 1998; Zanchettin and Ludermir, 
2007): (4) according with the inhibition method the responses can be slow which implies 
signals with information in low frequencies and a large number of samples per essay 
(Arduini et al., 2010). 
In this way, different data processing strategies have been proposed in order to achieve 
better interpretation models and discard irrelevant content coming from original data. 
During the last decade, Wavelet Transform (WT) has been widely employed in signal 
processing analysis were denoising and compression is an important step in the data mining 
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process. WT has been proved to be fast and reliable than traditional methods such as Fourier 
Transform (FT) and Savitzky-Golay (SG) (Alsberg et al., 1997; Cai and Harrington, 1998; 
Gorry, 1990).  
Wavelet transform is a well localized in both the time and frequency domain. Therefore it 
may decompose a signal retaining the information of both domains. Unlike the more 
traditional filtering methodologies, wavelet transforms have the ability to preserve the 
temporal locality of sharp transitions within time domain signals (Alsberg et al., 1997). This 
property makes WT useful to represent different features of the signal, especially non-
linearities or discontinuities. 
Since 90´s decade, WT has attracted interest in fields of chemistry for signal processing.  
Analytical techniques such as chromatography, infrared spectroscopy, mass spectrometry, 
nuclear magnetic resonance spectroscopy, ultraviolet-visible spectroscopy and 
electroanalysis, have also been benefited from the properties of wavelet processing for data 
processing tasks mainly related to compression, noise removal, base-line correction, zero 
crossing, regression and multi-resolution of overlapping signals (Leung et al., 1998a; Leung 
et al., 1998b; Nie et al., 2001). 
The viability of the use of wavelet analysis in electrochemical applications has been reported 
since two decade ago. Bos and Hoogendam proposed the use of WT to minimized the effect 
of noise and base-line drift to determine peak intensities in flow-injection analysis (Bos and 
Hoogendam, 1992). In that work, obtained results indicate that wavelet analysis applied to 
peak shapes (with appropriate signal-to-noise ratio), may improve the detection limit 
obtained with traditional signal processing methods in which the peak heights and peak 
areas are determined. In this sense, Morlet wavelet function was utilized to transform the 
FIA signal into a two dimensional time-frequency form. 
One of the first reports related to the analysis of electrochemical signals was presented by 
Zou and Mo (1997), they employed wavelet multi-frequency channel decomposition 
(WMCD) in records coming from linear scan voltametry, in order to extract useful 
information from voltamograms with high levels of noise. Selecting optimal wavelet basis 
and frequency scales the absolute values of the peak have relative errors less than 2% (Zou 
and Mo, 1997). Other interesting work developed by Aballe et al. (1999), used wavelet 
transform to analyse the electrochemical noise and its fluctuations in order to establish 
either the rate or the mechanism of a corrosion process (Aballe et al., 1999). This kind of 
analysis allowed obtaining complementary information about these parameters where other 
techniques do not work properly.   
Since the wavelet analysis is carried out by a digital system, we assumed that the analysis is 
in time-discrete and depends of discrete parameters, such as rate of acquire analogical 
signal, numbers of operations per second and resolution of the data. These parameters are 
not taken into account when the wavelet transforms are performed by personal computer 
and specialized mathematician software, but when the implementations are oriented 
towards specific applications or/and the necessity to work with out a computer (digital 
robust system) hardware implementation emerges as an interesting alternative. 
With the advancement of the microelectronics, new trends are oriented to develop wavelet 
transforms implemented in portable systems with high accuracy, low-cost, short-time 
response and easy programmed to be a suitable option in electrochemistry calibrations 
(Alonso et al., 2010). 
In the last decade, different works of implementations of discrete wavelet transforms 
(DWTs) based on Digital Signal Processors (DSPs), Field Programmable Gate-Array (FPGA) 
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and CMOS technology were reported such as an alternative of implementation of wavelet 
transforms into dedicated systems. The first dedicated devices used to compute the DWT 
were the DSPs, which have high process-computing power, high speed and normally the 
manufactures proved full support. DSPs provide some special hardware units, such as 
Multiply-Acumulate (MAC) to improve the performance of discrete wavelet transform 
Nevertheless, these devices use to be expensive, not compatible with other hardware and 
with the possibility to use only one processing core; so tasks must be programmed 
sequentially. 
One of the first authors to report the use of these devices were Bahoura et al. (Bahoura M. et 

al.,1997), they develop an algorithm based on wavelet transform suitable for real time 

implementation. This algorithm was implemented in a SPROC-1400 device with a 50 MHz 

frequency clock and was used to detect ECG arrhythmia characteristics (Bahoura et al., 

1997). An application related to DWT and the JPEG2000 image compression standard was 

described by Gnavi et al. (2002). The authors developed wavelet engines on a DSP platform, 

based on the so-called lifting scheme. Using this approach, authors presented a performance 

comparison between traditional convolution and lifting scheme, proving that the later were 

faster and computationally less demanding (Gnavi et al., 2002). After this work, Jichang et al 

(2003), described an algorithm to be implementable in DSP TMS3320C3X using the 

instruction parallel multiply-accumulate with circular addressing programmed in assemble 

language program (Jichang et al., 2003). 

All the works mentioned have been implemented successfully integer discrete wavelet 

transforms but do not develop algorithms that compute the floating point DWT, when 

floating point representation of DWT coefficients is required. In this sense, although it is 

possible to implement floating-point operations on DSP fixed point architectures, the main 

disadvantage of this approach is related to the time-consuming transfer data to and from 

memory (Smith, 1997). 

In order to provide flexibility for the DWT implementation based on wavelet filter length 

and decomposition structure, implementations based on FPGA were proposed. The first 

recorded work, describing a real-time application of discrete wavelet transform for audio 

and video compression is reported by Motra et al. (2004). In this work, the reported 

architecture was programmed in Verilog-HDI in a FPGA and supports higher hardware 

utilization and the latter scheme speed up the clock rate of DWT (Motra et al., 2004). 

Another similar work is presented by Zhang and Hu. Here the authors proposed a DWT 

algorithm based on pyramidal structural data coding and it was programmed in VHDL 

language (Zhang and Hu, 2004). Latest  work related to this topic is presented by Knowles 

who reported approach of simple modular and recursive hardware implementation of DWT 

using  basic units: input delay,  filter, register bank, and control unit. The implementation 

based on VLSI performs both high- and low- pass filter with just one set of multipliers 

(Knowles, 2008). 

This brief overview of works illustrates the recent trends of DWT implementation, carried 

out by different research groups. On the one hand, DSP implementations have been widely 

used because of its easy way to programming and its high precision computing. 

Nevertheless, disadvantages such as non standardized compiler languages and high 

hardware costs have promoted in recent years the use of FPGA devices.On the other hand, 

FPGA implementations have advantages to allow preserving parallel architecture using 

programmable gates on a single chip, and the source code can be modified by the user with 
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relative simplicity. A well known disadvantage of these systems, is the need to coupled with 

other periphericals, becoming difficult to construct a cheap specific system (Shahbahrami et 

al., 2010).  

Recently, the development of low-cost programmable devices has created a new family of 

microcontrollers with high simplicity and flexibility of programming and wide hardware 

compatibility. These devices called dsPIC® (from Microchip®) combines the best features of 

both microcontrollers and DSPs in a single core. These new features combined with high 

process speed promise to be the key to new implementation strategies of the DWT on a 

dedicated device.   

In this chapter, we will attempt to describe the nature of discrete wavelet transform to build 

our implementation model in any low-cost dsPIC chip for denoising and compression 

biosensor responses. The knowledge needed to reach our main goal will be summarized 

along different sections to give the reader comprehensive and specialized information of the 

practical use of implemented discrete wavelet transform such as data pre-treatment tool. 

2. Fundamentals of Wavelet Transform 

In the 80’s decade, Morlet et al. (Morlet et al., 1982) described the concept wavelets which 

used to decomposition signals without the necessity of windowed them as Gabor suggested 

before (Gabor, 1946). In wavelet treatment all basis functions ψs,t(x) can be derived from a 

mother  wavelet Ψ(x) (eq. (1) through the following translation and dilation process. 

 ,
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Where s and t, are respectively, the scale and translation parameter expressed in real 

numbers R. 1/√|2| is an energy normalization factor for all sub wavelets functions. The 

basic idea of WT is to represent any arbitrary function f(x) as a superposition of wavelets. 

The continuous wavelet transform is given by eq. (2). 
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With s > 0 and t having arbitrary values. 
In figure 1, a variety of mother wavelets are shown. The more common wavelets are; Haar 

wavelet, Mexican Hat, Morlet, Daubechies. The main idea of wavelet transform is the 

overlapping of a wavelet mother over any signal see figure 2(b). 

2.1 Discrete Wavelet Transform 

Croisier et al.  (Croisier et al., 1976) created a technique to analyze digital signals by the 

decomposition of them.  In the same year Crochiere et al. (Crochiere et al., 1977) reported a 

similar work to code audio signals. This technique was named sub-band coding. Vetterli 

and Le Gall, improved the analysis of sub-bands decreasing the redundant data from 

pyramidal algorithm (Vetterli and Le Gall, 1989). 

Mallat presented a multi-resolution representation for analyzing images. The decomposition 

was defined as an orthogonal multi-resolution representation called wavelet representation. 
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It was computed by a pyramidal algorithm which was based on convolutions with quadrate 

mirror filters. The analysis was applied to image compression, and texture discrimination 

(Mallat, 1989). 

 

 

Fig. 1. Mother wavelets and positioning, scale concepts. (a) Different wavelets Mexican Hat, 
Harr, Morlet and Daubechies. (b) Positioning of a wavelet trough time. (c) Scale of a 
wavelet.  

According with (Tim, 1991) the discrete wavelet transform is an orthogonal function which 
can be applied to an infinite group of data. Functionally, it is like the discrete Fourier 
Transform, which is based on a orthogonal function to apply the transformation. A signal 
passed twice through the transformation which is unchanged, and the input signal is 
assumed to be a set of discrete-time samples. Both transforms are convolutions. 
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Whereas the transform function of DFT is a sinusoid. The wavelet basis is a set of functions 
which are defined by a recursive function. 
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Eq. (3) is orthogonal to its translations and to its dilations; the range of the summation is 

determined by the specified number of nonzero coefficients N. The number of nonzero 

coefficients is arbitrary, and will be referred to as the order of the wavelet. The value of the 

coefficients is, not arbitrary and it is determined by specific constraints of normalization and 

orthogonality. These parameters are; area under the wavelet curve, normalization. 
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Which means the above sum is zero for all coefficients no equal to zero, and the sum squares 

of all coefficients is two. Another important equation which can be derivated from the above 

conditions is: 
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One way to solve eq. (3) is to construct a matrix of coefficients values. This is a square NxN 

matriz where N is the number of nonzero coefficients. The matrix always has the eigenvalue 

equal to 1, and its corresponding (normalized) eigenvector contains, as its components, the 

value of the φ function at integer values of x. 

This class of wavelet functions is constrained, by definition, to be zero outside of a small 

interval. This is what makes the wavelet transform able to operate on a finite set of 

data.(Addison, 2002) The wavelet functions which are normally used to perform transforms 

consist of sets of a well-chosen coefficients resulting in a function with a discernible shape. 

Two of these functions are Harr and Daubechies wavelets see figure 1(a). 

2.2 Discrete Wavelet Transform DWT algorithm 

The Mallat algorithm also know as pyramid algorithm (Mallat, 1989) is a computational 

efficient method of implementing the wavelet transform, and is used as a basis for hardware 

implementations (Motra et al., 2004; Zhang and Hu, 2004; Zhilu et al., 2002). 

The pyramid algorithm operates on a finite set of input data, where N is not necessary to be 
a power of two as we will explain in section 2.2.1. The value of the number of input points 
will be named as the input block size. The data are passed trough two convolutions functions; 
each creates an output stream that is half the length of the original input. These convolutions 
functions are filters; one half of the output is produced by the low-pass filter function eq.(7). 
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      0 2low pass
n

y k x n h k n    (7) 

And the other half is produced by the high-pass filter function eq. (8). 

      1 2high pass
n

y k x n h k n    (8) 

Where N is the input block size, h0or1 is the wavelet function with well-chosen coefficients 
(filters) x(n) is the input function and ylow-pass, yhigh-pass are respectively the low-pass and the 
high-pass outputs. In many situations, the low-pass output contains most of the information 
content of the original input signal. In general, higher-order wavelets (those with more non-
zero coefficients) tend to put more information into the low-pass output and less into the 
high-pass output. If the average amplitude of the high output is low enough, then the high 
output may be discarded without greatly affecting the quality of the reconstructed signal. 
The high output is named also as detail output and the low output is know as 
approximation output, with this is logical to work with the approximation of the signal than 
with the details of the signal (Addison, 2002; Tim, 1991). A scheme of this decomposition is 
presented in figure 2. 
 

 

Fig. 2. Decomposition of a signal by the pass of the signal trough two filters. 

Since most of information is in the low- pass output, it is easy imaging to continue 
transforming we have to rename the output as input and pass it trough h0 and h1, again to 
get two new sets of data, each one quarter of the size of the original block size, if again less 
information is contained in output filter, we can discarded and take just low-pass output. 
Each step of retransforming the low-pass output is called dilation (Tim, 1991), and the 

maximum of dilations can be performed will result in a single low-pass value and a single 

high-pass value. 

The algorithm developed allows the implementation of a DWT and it is described as 

follows: we suppose that have an input sequence of 10 samples of size, with the values of 

low-pass coefficients we compute the eq (7). The calculation for the first value of the low-

www.intechopen.com



 
Discrete Wavelet Transforms - Biomedical Applications 

 

142 

pass output in a first level is carried out by the matching the coefficients in the initial input 

sequence sample, after the low-pass coefficients are positioned two index positions and 

matching again with the input sequence, applying the eq. (7) again we will have the second 

value of the low-pass output for the first level. We repeat this until match the last sample of 

the input sequence with the first coefficient of the low-pass filter. At the end we will have a 

half input signal expressed by low-pass output, we need to do the same with high-pass 

coefficients to get the high-pass output. As we have described before, we can keep just the 

low-pass signal which has the most representative information of the total signal. For more 

decomposition levels we have to rename the low-pass output as input signal and repeat the 

complete algorithm. A scheme of this algorithm is presented in figure 3. It is important 

notice that before matching the coefficients and the input signal we have to add some values 

(number of coefficients -1) at the beginning and at the end of the sequence to avoid the 

bound effects. 
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Fig. 3. Low-pass coefficients passing through an input data for a first dilation (first 
decomposition level) (Addison, 2002). 

We can establish that successive dilations represent lower and lower frequency information 
by halves. It also clears that high rates of compression may require large block sizes of the 
input, so that more dilations can  be made, and so that lower frequencies can be represented 
in the decomposition. 
It must be notice that in some applications a pre compression level test can be done to 
establish the best rate of compression-reconstructions level for a specific application 
(Moreno-Baron et al., 2006). 
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2.2.1 Boundary effects 

The boundary effect is present when DWT is applying to a set of discrete data, and takes 
place when the wavelet function is positioning at the beginning and/or end of the stream 
data. When the convolution is in process with the first sample of the input data and no 
samples have been defined to avoid boundary effects, the result of the convolution are 
unpredictable due to the operation can be performed with data which are not in memory 
space giving as a result either an over load of memory or the modification of the output 
signal. In this sense, if there is more than one decomposition level, the reconstruction will be 
inaccuracy. 
There are many ways to avoid the boundary effects, these approximations include: (a) make 

the convolution equal to zero at the beginning and the end of the transformation, this solves 

the problem of the load memory errors but makes an inaccuracy transform. (b) another way 

to avoid the boundary effect is adding to the input data N-1 samples, where N is the number 

of coefficients of wavelet function, with non zero values. The main disadvantage is in the 

implementation of DWT the value of these non zeros coefficients must be calculated a priori 

according with the noise of the signals. This technique is no able for signals with different 

noise rates. (c) the most usual technique to avoid the boundary effect is by the reflection of 

the last samples of the input data, due to the added samples are from the same signal the 

accuracy of the reconstruction signal is not compromised. The reflection scheme can be seen 

in figure4. 

 

 

Fig. 4. Reflection of a signal to avoid the boundary effect. 

2.3 Implementing the wavelet transform in a digital system 

The implementation of digital wavelet transform involves some tasks which must be carried 

out before implementation. (1) Identify if the application needs; filtering, decomposition 

and/or reconstruction due to some applications do not need all the previous features of a 

wavelet transform, more features applied involve more hardware resources, memory, 

speed, large number of variable etc. (2) set the decomposition level needed to satisfied pre-

treatment conditions, this can be done by a previous test of decomposition-reconstruction 

analysis. (3) Chose the type and number of filter coefficients. This can be done by the 

simplicity of implementation and/or by the order of filtering. 
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As we describe previously, in many chemical applications the signals from biosensors have 
high frequency noise, and imply a large number of samples, for this, we can use the wavelet 
transform to denoise and compress biosensor signals. 
The design of the implementation of the Discrete Wavelet Transform (DWT) can be carried 
out as follows. 
1. Compute and simulate the filter coefficients, one option can be Matlab® from 

Mathworks® software which includes toolbox with the most known wavelets and some 
practical algorithms to compute them. To denoise and compress, it is necessary 
calculate the coefficients for low-pass filter, the number of coefficients is correlated with 
the value of noise, this value should be measured before by an analysis of rate signal-
noise. The level of the decomposition should be set by the previous compress-
reconstruction analysis. 

2. Confirms the function of the filter and level of decomposition with one real signal by 
simulation software. 

3. Chose the language programming to write the code of DWT that can be after 
implemented in a programmable device, one of the best options is C code which can 
work with the IEEE754 format and it is supported by several dedicated devices. 

4. Define fixed memory for the constants values of wavelet coefficients, level of 
decomposition and reserve data memory for two arrays, the first one has the same size 
of input data plus 2*length filter coefficients, second one has half size of input data plus 
2*length filter coefficients (temporal array). 

5. Develop a normalization function due the some application are based on concentrations 
of compounds which means the value of the data are represented in scientific format, 
for computation tasks is recommended rescale values from 0 to 1 see eq. (8). 

 N= (Data-minimum)/(maximum-minimum) (8) 

6. Reflect the input sequence at the beginning and at the end of the input array. 
7. Compute the convolution based on figure 3 and storage the result in the temporal array. 
8. Rename the temporal array as input data and the input data as temporal array. 
9. Repeat step 6 and compute the convolution again and storage the result in the temporal 

array. 
10. Repeat steps 6,7,8, 9 until reach the level of compression set. 

2.3.1 DsPIC30F6014 microcontroller 
The dsPIC® microcontrollers are 16-bit Digital Signal Controllers (DSC) from Microchip®. 
They preserve the compatibility from classical PIC microcontrollers. They have some special 
characteristics such as 144 Kbytes of program memory; a large size of memory which makes 
possible implemented mathematical tools. The dsPICs can execute more than 30 millions 
instruction per second (30 MIPS) one of the fastest microcontroller from Microchip®. dsPICs 
have an optimized C compiler and 8-K of random access memory (RAM) and 4-K of  read 
only memory (ROM). 

3. Denoising and compression of biosensor based on screen-printed 
electrodes response using DWT  

During years, the large interest in inhibition biosensors has been focused on the kind of 
responses and the quantitative relationships obtained using immobilized enzyme. A variety 
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of linear, non-linear, logarithmic responds between inhibition percentage and either 
inhibition concentration or incubation time were reported (Evtugyn et al., 1999; Fennouh et 
al., 1997; Hart et al., 1997).  Concerning biosensors based on acetylcholinesterase inhibition, 
a theoretical model was reported based on diffusion limited inhibitor transport, taking into 
account the heterogeneous nature of enzyme inhibition that results from immobilization at 
the transducer surface (Zhang et al., 2001) : 

3.1 Biosensor preparation 

The biosensor was constructed as follows: Screen-printed three-electrode system with 
Cobalt-phthalocyanine-modified carbon as working electrode, graphite as counter electrode 
and Ag/AgCl as a reference electrode were fabricated using a DEK248 screen-printing 
system (Weymounth, UK). The biosensor based on the genetically-modified enzyme (B394) 
was mixed with polymer polyvinyl alcohol (PVA) in a rate of percentage of 30/70 (v/v). The 
enzyme was immobilized directly on the working electrode surface by entrapment in PVA-
AWP polymer. For this purpose, the homogeneous mixture of B394, and PVA-AWP 
polymer was prepared and 3µL were carefully applied on the graphite working electrode 
surface. The final enzyme amount deposited on each electrode was 1mIU. The electrodes 
were exposed 5 h under a neon lamp (15 W) at 4°C to carry out photopolymerization and 
were ready to use after drying for 48 h (Andreescu and Marty, 2006b; Andreescu et al., 2002; 
Cortina et al., 2008; Silva Nunes et al., 2004; Valdés-Ramírez et al., 2009). 

3.2 Procedures 

The mechanism of inhibition of AChE by organophosphate compounds is well known, it 
can be summarized by the following reactions (Charpentier et al., 2000): 
 

kd   k2 
E + PX ↔  E*PX  → EP + X 

 
with E = Enzyme, PX = Organophosphate insecticide, X = Leaving group.  
The inhibitor phosphorylates the active-site, and the inhibition can be considered as 
irreversible in the first 30 min. This scheme can be simplified with the bimolecular rate 
constant ki = k2/Kd. However, the immobilization of the enzyme on the electrode surface 
does not allow the calculation by direct equations of all the constant rates involved in an 
enzyme-catalyzed reaction (Walsh et al., 2010).  
The reactions that take place in an acetylcholinesterase-based sensor are described in scheme 
1 (Silva Nunes et al., 2004).  

                                                                   AChE 

Acetytiocholine   → Thiocholine + CH3COOH 

Thiocholine + 2Co-PC(ox) → Thiocholine-oxidized form + 2Co-PC(red) 

Co-PC(red) → Co-PC(ox) +2e- 

The flow of electrons is proportional to the rate of acetylthiocholine hydrolysis, which 
decreases upon phosphorylation by OP of a serine present in the enzyme active site. As can 
be noticed in the previous scheme, the mediator Co-PC transforms the ionic current into 
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flow of electrons, the main advantage of Co-PC allows the oxidation-reduction using low 
voltages, (100mV) and giving a more stable and higher signal compared with other 
mediators (Shaidarova et al., 2004). The use of Cobalt-phthalocyanine involves higher 
current signals but also high levels of noise. 
Inhibition protocol is described as follows: the biosensor is vertically inserted into an 

analytical cell containing phosphate buffer (10mL) under constant magnetic stirring at 

constant temperature (30°C). ATChCl solution (final concentration in the cell 1 mM) is 

added in the cell and the signal obtained at steady-state current was recorded. This step is 

repeated to ensure the stability of the biosensor. Inhibition is measured after addition at the 

steady-state step a known concentration of pesticide solution, as described in fig. 5. 

 

 

Fig. 5. Protocol of measurement of enzyme inhibition, typical response 

From figure 5 we can see that to detect the pesticide, the part of the signal which has the 

analytical information is the signal generated by the addition of pesticide (the slope) to 

analyze y(t) we have to wait until the previous process (addition of substrate and steady-

state) are completed. When the concentration of pesticides is very low, the time need to 

reach a slope can take several minutes, and to approximate the slope data to the model eq. 

(10) due to the noise and size of the signal sometime is not an easy tasks 

 y(t)= - mit+b (10) 

The analog signal is acquired by the Analog/Digital converter peripheral of the 

dsPIC30F6014 microcontroller which computes the DWT and sends the digital data to a PC 

by RS232 interface to storage the inhibition curves. The protocol of the acquisition is shown 

in figure 6(a). 

The DWT was implemented by Daubechies (Db) coefficients which were used such as banks 

of filters. Daubechies filters are recommended for discrete applications (Addison, 2002; Tim, 

1991). The calculus of the Db coefficients and the level of decomposition were computed a 

priori in Matlab®. 
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Fig. 6. Protocol of (a) Acquisition signals and (b) Computation of the DWT by 
dsPIC30F6014®.  

4. Obtained results 

The recorded signals correspond to inhibitions carried out as follows: the activity of 
biosensors is tested two times to prove the stability, after,  when the activity has reached the 
plateau for second time, a known concentration of pesticide is added into the electrochemical 
cell (batch) and a decreasing of activity  is observed(slope due to inhibition). The slope of 
inhibition is correlated with the concentration of pesticide. This process was repeated three 
times to ensure the reproducibility of the measurement. Three pesticides were used, 
Chlorpyruphos oxon (CPO), Chlorfenvinphos (CFV) and Azynphos methyl-oxon (AZMO) 
which are in the list of  priority substances in the field of water policy of European 
community (Decision, 2001). 
A total of 105 voltamograms (with 800 samples each one) were digitalized sequentially (with 
acquisition rate of 1Hz), sending to PC via rs232 interface and storaged in the dsPIC 
memory (see Figure 7). The input vector was reflected in both sides to avoid the boundary 
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effects, then, the vector was filtered by the Db filter, this was the first decomposition level, 
and the low-pass output was named as input vector for the next decomposition level. The 
algorithm repeats the above mentioned process until gets the decomposition level after the 
compressed signal is also sent it to a PC via rs232-interface.  
 

 

Fig. 7. The matrix of the voltammograms captured by the ADC of dsPIC30F6014. 

A priori test was made to optimize the level of the composition and the order of wavelet 
used in the implementation, the test consisted in the use of different orders of Daubechies 
and different levels of compression to determine the ratio of similarity of the signal 
constructed from low-pass outputs. The Daubechies 4 and a 4th level (see figure 8) of 
compression were used to fixed parameters in the hardware implementation. 
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Fig. 8. Ratios of reconstructed signals using different orders of Daubechies wavelets and 
different levels of decompositions.  
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Daubechies coefficients were computed in Matlab® and saved in the dsPIC mamory as 
constant vector. The values of Daubichies coefficients are shown in table 1. 
 

index 
k 

Daubechies 
coefficients 

0 0.32580343 

1 1.010954572 

2 0.89220014 

3 -0.03957503 

4 -0.26450717 

5 0.0436163 

6 0.0465036 

7 -0.01498699 

Table 1. Coefficients Daubechies used as filter low-pass. 

The time needed to compute the DWT by the dsPIC6014 was 68.87ms. The total time is the 
time to acquire a complete signal (1 sample/second) plus the time to perform the DWT. 
 

 

Fig. 9. The matrix of the voltammograms compressed by the dsPIC30F6010. 

The analysis of the slopes was made in Matlab® by the function polyfit to determine the 
slope and interception point eq (10). 
The values of the slopes (mi) were correlated with the concentration of three different 
pesticides to determine the inhibition calibration curve for CPO, CFV and AZMO 
insecticides. 
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Fig. 10. Single Detections of CPO, CFV and AZMO insecticides by the Biosensor B394. 

The response of the biosensor toward each pesticide was different as it is dependent on the 
sensitivity of the enzyme to the inhibitor. The limit of detection (LOD) was defined 
according to (Armbruster et al., 1994): considering the standard deviation of the slope σ 
observed in absence of inhibitor, the LOD corresponds to the lowest pesticide concentration 
inducing a slope increase equivalent to 3σ. In the same manner, the limit of quantification 
(LOQ) was defined as the pesticide concentration inducing a response equal to 10σ. In this 
case, the response considered for calculating the LOD was 3x10-4 nA/sec. The values of 
LOD and LOQ obtained for the used bio-sensor are summarized in table 2. 
 

B394 

Pesticide Correlation 
coefficient 

LOD (M) LOQ (M) 

CPO 0.9722 1.664x10-10 1.9256x10-10 

CFV 0.9765 6.81x10-10 8.02x10-10 

AZMO 0.9281 3.3464x10-10 3.7749x10-10 

Table 2. Limit of detection and limit of quantification for CPO, CFV and AZMO using the 
three different biosensors.  

5. Conclusions 

In this wok a novel processing tool based on DWT is presented. DWT was implemented in a 
low-cost dedicated system able to analyse voltammeric signals.. The main advantages of this 
implementation are related to the simplicity that can be modified characteristics such as the 
compaction level and the choice of wavelet coefficients for specific applications. The 
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algorithm described in this work, can be implemented in any digital system with out 
disadvantages of fixing the size of input data to power of two, the resolution of the data was 
solved by the supporting of the dsPIC® programming language which supports IEEE754 
format. 
A complete case study of signal treatment in electrochemical analysis has been shown in 
detail. Based on its results, it is possible to observe that the implementation of DWT was 
achieved successfully employing as a pre-treatment tool to denoise and compress 
voltamograms. The use of genetically modified enzyme allow to achieve  low detections 
limits and performing inhibitions in short time without incubation stage. In this sense, the 
proposed methodology is well suited for in-situ applications. 
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