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1. Introduction 

Heartbeat sound analysis by auscultation is still insufficient to diagnose some heart diseases. 

It does not enable the analyst to obtain both qualitative and quantitative characteristics of 

the phonocardiogram signals [1],[2]. Abnormal heartbeat sounds may contain, in addition to 

the first and second sounds, S1 and S2, murmurs and aberrations caused by different 

pathological conditions of the cardiovascular system [2]. Moreover, in studying the physical 

characteristics of heart sounds and human hearing, it is seen that the human ear is poorly 

suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart sounds are 

limited. 

The sound emitted by a human heart during a single cardiac cycle consist of  two dominant 

events, known as the first heart sound S1 and the second heart sound S2 (Figure1), S1 relates 

to the closing of the mitral and tricuspid valves whilst S2 is generated by the halting of the 

aortic and pulmonary valves leaflets [1].  S1 corresponds in timing to the QRS complex in 

ECG (Electrocardiogram) and S2 follows the systolic pause in the normal cardiac cycle. 

Heartbeat sound analysis by auscultation only is still insufficient to diagnose some heart 

diseases. It does not enable the analyst to obtain both qualitative and quantitative 

characteristics of S1 and S2 of the phonocardiogram [1-2]. Moreover, in studying the 

physical characteristics of heart sounds and human hearing, it is seen that the human ear is 

poorly suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart 

sounds are limited. In this paper we are interested  in the study of the physical 

characteristics of the second heart sound S2 which consist of two major components in the 

spectrum of the signal . One of these components A2 is due to the closure of the aortic valve 

and the other P2 is due to the closure of the pulmonary valve. 

The aortic component is loudest than the pulmonic component. It is discernible at all the 

auscultation sites.It is best heard at the right base, with the diaphragm of the chest piece 

firmly pressed, whereas the pulmonic on a may only be audible at the left base, with the 

diaphragm of the chest piece firmly pressed. 

The aortic component has higher frequency contents and generally precedes the pulmonary 

component because in normal heart activity the aortic valve closes before the pulmonary 

valve. The difference of time occurrence between these valves activities is known in medical 
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community [4 - 6] as split. However in many diseases [1] this order of time occurrence may 

be reverse and its delay varies.  

 

 

 

Fig. 1. Correlation between the phonocardiogram signal (PCG) and the electrocardiogram 
signal (ECG) 

The characteristics of the PCG signal and other features such as heart sounds S1 and S2 

location; the number of components for each sound; their frequency content; their time 

interval; all can be measured more accurately by digital signal processing techniques. 

The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency 

contents of the heart sounds. However, FFT analysis remains of limited values if the 

stationary assumption of the signal is violated. Since heart sounds exhibit marked changes 

with time and frequency, they are therefore classified as non - stationary signals. To 

understand the exact feature of such signals, it is thus important, to study  their  time – 

frequency characteristics. 

In this paper the wavelet transform is used to analyse both the normal  and abnormal heart 

sound in both time and frequency domains. This  technique has been  shown to have a very 

good time resolution for high-frequency components. In fact the time resolution increases as 

the frequency increases and the  frequency resolution increases as the frequency decreases 

[4],[5]. 

Furthermore, the wavelet transform has demonstrated the ability to analyse the heart  sound 

more accurately than other techniques STFT or Wigner distribution [6] in some pathological 

cases. 

In fact the spectrogram (STFT) cannot  track very sensitive sudden changes in the time 

direction. To deal with these time changes properly it is necessary to keep the length of the 

time window as short as possible. This however, will reduce the frequency resolution in the 
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time-frequency plane. Hence, there is a trade-off between time and frequency resolutions 

[6]. 

However the Wigner distribution (WD) and the corresponding WVD (Wigner Ville 
Distribution) have shown good performances  in the analysis of non-stationary signals. This 
comes from the ability of the WD to separate signals  in both time and frequency directions. 
One advantage of the WD over the STFT is that it does not suffer from the time-frequency 
trade-off problem. On the other hand, the WD has a disadvantage since it shows  cross-
terms in its response. These cross-terms are due to the nonlinear behaviour of the WD, and 
bear no physical meaning. One way to remove these cross-terms is by smoothing the time-
frequency plane, but this will be at the expense of decreased resolution in both time and 
frequency [7].  
The WD  was  applied to  heart sound signal it shows no succes in displaying or separating 
the signal components in both the time and frequency direction [6], although it  provides 
high time-and frequency- resolution  in simple monocomponent signal analysis[8]. 
To overcome these difficulties with the STFT and the WD an alternative way to analyse the 
non-stationary signals is the wavelet transform (WT). It expand the signal some basis 
functions. The basis functions can be constructed by dilation, contractions and shifts of a 
unique function called the “wavelet prototype” or “wavelet mother”. The WT act as 
“mathematical microscope” in which we can observe different parts of the signal by just 
adjusting the focus. 
The wavelet Transform is  a technique in the domain of time-frequency distributions.  The 
main idea of this method is the representation of an arbitrary signal as a superposition of  
basic signals, “atoms”, located in time and frequency. These atoms may be derived by 
means of a special operation on a single parent atom. Parent atoms and derivation operation 
are usually chosen such as to enable the construction of an orthonormal system [9]. 
The study of the decomposition of the signal  in " atoms "  was first carried  out by Gabor  
however, it was quickly abandoned be cause of :  
1. the no simultaneous Representation in time and frequency  
2. grid made up of rectangular cells is not a  flexible device 
3. the mathematical theory of the phenomenon is badly structured. 
The representation time-scale of WT based on a dyadic paving appears more flexible. It a 
mathematical structure governed by a formula of exact inversion [10] making possible the 
existence of orthonormal basis. This makes  the wavelet to be a simultaneous function of 
time and frequency. 
In this paper the continuous wavelet transform (CWT) is applied to analyse pathological 
PCG signals. The CWT is more appropriate than the discrete wavelet transform (DWT) , 
since we are  interested  in the analysis of non-stationary signals and not signal coding 
where DWT is found to be more useful 

2. Theoretical background 

2.1 Fourier Transform (FT) 

In 1882, Joseph Fourier discovered that any periodic function could be represented as an 
infinite sum of periodic complex exponential functions [10]. The inclusive property of only 
periodic functions was later extended to any discrete time function. The Fourier transform 
(FT) [as regular Fourier Transform] converts a signal expressed in the time domain to a 
signal expressed in the frequency domain. The FT is widely used and usually implemented 
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in the form of FFT algorithm (fast Fourier transform). The mathematical definition of the FT 
is given below. 

 2( ) ( ) j ftX f x t dte    (1) 

Where t and f are respectively the time and frequency parameters. The time domain signal 

( )x t  is multiplied by a complex exponential at a frequency f and integrate over all time. In 

other words, any discrete time signal may be represented by a sum of sines and cosines, 

which are shifted and are multiplied by a coefficient that changes their amplitude. ( )X f are 

the Fourier coefficients which are large when a signal contains a frequency component 

around the frequency f .  

The peaks in a plot of the FT of a signal correspond to dominant frequency components of 
the signal. Fourier analysis is simply not effective when used on non stationary signals 
because it does not provide frequency content information localized in time. Most real 
world signals exhibit non stationary characteristics (such as heart sound signals). Thus, 
Fourier analysis is not adequate. 

2.2 Short-time Fourier Transform (STFT) 

The STFT is obtained by calculating the Fourier transform of a sliding windowed version of 
the time signal s(t). The location of the sliding window adds a time dimension and one gets 
a time-varying frequency analysis.  
The mathematical representation of STFT is : 

 2( , ) ( ) ( ) j ftS t f s w t de   






   (2) 

Where ( )w t  it is the sliding window applied to the signal ( )s t , f  is the frequency and t is 

the time.  
The length of the window is chosen so that to maintain signal stationary in order to calculate 

the Fourier transform. To reduce the effect of leakage (the effect of having finite duration), 

each sub-record is then multiplied by an appropriate window and then the Fourier 

transform is applied to each sub-record. As long as each sub-record does not contain rapid 

changes the spectrogram will give an excellent idea of how the spectral composition of the 

signal has changed during the whole time record. However, there exist many physical 

signals  whose spectral content is so rapidly changing that finding an appropriate short-time 

window is problematic, since there may not  be any time interval for which the signal is 

stationary. To deal with these time changes properly it is necessary to keep the length of the 

time window as short as possible. This, however, will reduce the frequency resolution in the 

time-frequency plane. Hence, there is a trade-off between time and frequency resolutions. 

2.3 Wgner Distribution function (WD) 

In contrast to the STFT, which is resolution limited either in time or in frequency (dictated 
by the window function), and suffers from smearing and side lobe leakage, the WD offers 
excellent resolution in both the frequency and time domains. The WD of two signals, x(t), 
y(t), is defined via, 
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 ( , ) ( ) * ( )
2 2

j
W t x t y t de

  






    (3)  

The auto WD is obtained when x(t) = y(t)=s(t), it is a bilinear function of the signal s(t). the 
WD, and can also be expressed as 

 ( , ) ( ) * ( )
2 2

j
S t s t s t de

  






    (4) 

Where t and   are respectively, the time and frequency variables, and * denotes the 

complex conjugate. 
The WD had shown good applications in the analysis of non-stationary signal [7]. This 

comes from the ability of this method to separate signals in both time and frequency 

directions. The WD has a disadvantage that it is limited by the appearance of cross-terms. 

These cross-terms are due to the nonlinear behaviour of the WD, and bear no physical 

meaning. One way to remove these cross-terms is by smoothing the time-frequency plane 

[7], but this will be at the expense of decreased resolution in both time and frequency. 

2.4 Continuous Wavelet Transform (CWT) 

The continuous wavelet transform was developed as  a method to obtain simultaneous, high 

resolution time and frequency information about a signal. The term ‘wavelet’ was first 

mentioned in 1909 in a thesis by Alfred Haar [M.Misiti.Y.Misiti.G.Oppenheim.J.-

M.Poggi.Wavelet Toolbox:For use with MATLAB.The Math Works Inc.1996], although the 

progress in the field  of wavelet has been relatively slow until the 1980’s when scientist and 

engineers from different fields realized they were working on the same concept and began 

collaborating .         

The CWT rather than the STFT  uses a variable sized window region .Because  the wavelet 

may be dilated or compressed, different features of the signal are extracted. While a narrow 

wavelet extracts high frequency components, a stretched wavelet picks up on the lower 

frequency components of the signal. 

The CWT is computed by correlating the signal s(t) with families of time-frequency atoms 

g(t), it produce  a set of coefficients C(a,b) given by :      

 
1

( , ) ( ) * ( )
t b

C a b s t g dt
aa






   (5) 

 ( ) ( ) jbwa G aw S w dwe





   (6) 

Where  

 b is the time location  

 a is called  scale factor and it is  inversely  proportional  to the frequency (a > 0)  

 *dénotes a complexe conjugate. 

 g(t) is the analysing wavelet . 

 S(w) and G(w) are, respectively, the Fourier transforms of s(t) and g(t). 
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The analyzing wavelet function g(t) should satisfy some properties. The most important 
ones are continuity, integrability, square integrability, progressivity and it has no d.c 
component. Moreover, the wavelet g(t) has to be concentrated in both time and frequency as 
much as possible. It is well known that the smallest time-bandwidth product is achieved by 
the Gaussian function [3].  Hence the most suitable analyzing wavelet for time-frequency 
analysis is the complex exponential modulated Gaussian function of the form : 

 g(t) = exp(-
2

2
t  +j wo t) (7) 

If we choose the analyzing wavelet that has the following Fourier transform (FT): 

 G( w ) = Aexp[-
2

( )w wo /2] +  (8) 

When  is a small correction term, theoretically necessary to satisfy the admissibility 
conditions of wavelets; ow  is chosen large enough so that the correction term is negligible 

and can be ignored. 
This is known as the Gabor wavelet. It was shown [5] that   wo = 5.33, which is enough to 

make the correction term negligible and gives an optimal time-bandwidth product. 
In a continuous wavelet transform, the wavelet corresponding to the scale and the time 
location b is   given by  

 
,a b

g (t) = 1/ a  g( t b
a
 )  (9) 

Where g(t) is the wavelet “prototype” or mother which can be thought of as a band pass 

function. The factor 
1/2

/ /a


is used to ensure   energy preservation [5]. 

2.5 Discrete Wavelet Transform (DWT) 

Wavelet series (WS) coefficients are sampled CWT coefficients. Time remains continuous 
but time-scale parameters (b,a) are sampled on a so-called “dyadic” grid in the time-scale 
plane (b,a) [11]. A common definition is : 

 jkC =CWTs(t); a = 2 j , b = k 2 j    with j,k Z (10) 

The wavelets are in this case : 

 jk(t) = /22 j   ( 2 j t - k) (11) 

The discrete wavelet transform (DWT) has been recognized as a natural wavelet transform 
for discrete-time signals. Both the time and time-scale parameters are discrete. 
The discretization process partially depends upon the algorithm chosen to perform the 

transformation. 

The ,C j k  could be well approximated by digital filter banks. By using Mallat’s [12] 

remarkable fast pyramid algorithms which involve use of low-pass and high-pass filters. 
The Mallat algorithm is in fact a classical scheme known in the signal processing community 
as two-channel subband coder. The wavelet analysis permits to decompose the 
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phonocardiogram signal in filter banks. The signal to be analyzed is decomposed in 
approximation an in detail while using two filter h and g.  The h filter is a low - pass filter 

with a band pass [0,/2], it  generates  the approximation signal "A". 

The g filter is a high – pass filter of band pass [0, ], it generates the detail signal "D". The 

filtered signals are under-sampled (decimation)  according to the rule of Nyquist. This leads 

to a considerable reduction in computing time. Every approximation is decomposed all over 

again in approximation and detail. In this case the signal is decomposed into several 

frequency bands instead of two bands. The number of  bands depends on decomposition 

level. 

Figure2 shows the discrete wavelet decomposition on three levels, as well as the note 

associated filter bank for each level. We note that the width of the filter banks band-pass is 

veritable according to the decomposition level. The wavelet analysis permits to decompose 

the phonocardiogram signal in filter banks. The signal to be analyzed is decomposed in 

approximation an in detail while using two filter h and g.  The h filter is a low - pass filter 

with a band pass [0,/2], it  generates  the approximation signal "A". 

 

 

Fig. 2. a) Exemple of the discrete wavelet decompostion for three levels; b) Filter banks of 
the decomposition of each level 
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Fig. 3. a) Exemple of the packet  wavelet decompostion for three levels; b) Filter banks of the 
decomposition of each level 

2.6 Wavelet Packet Transform (WPT) 

Wavelet packet analysis is an extension of the discrete wavelet transform (DWT) and it turns 

out that the DWT is only one of the much possible decomposition that could be performed 
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on the signal. Instead of just decomposing the low frequency component, it is therefore 

possible to subdivide the whole time-frequency plane into different time-frequency pieces as 

can be seen from. The advantage of wavelet packet analysis is that it is possible to combine 

the different levels of decomposition in order to achieve the optimum time-frequency 

representation of the original [13]. 

To obtain a uniform filter bank we will use the wavelet packet analysis which is a 
generalization of the discrete wavelet transform analysis. The decomposition is also made of 
the details signal "D". Figure3 shows the wavelet packet decomposition on three levels as 
well as the filter banks associated for each uniform level. 

3. Results and discussion 

3.1 Fast Fourier Transform application 

An FFT algorithm is first applied to the PCG signal given in Figure1.  The frequency 
spectrum illustrated in Figure4a  shows that the normal PCG signal has a frequency content  
varying from around 40Hz up to 200Hz. The FFT can be applied to the first part of this 
signal to analyse the frequency content of S1 as shown in Figure 4b and then to the second 
half to analyse the frequency content of S2 as shown in Figure4c. A 512 points FFT is applied 
to S1 and S2. At this stage the sound S1 or S2 cannot be separated.  
In fact; the application of the FFT on heart sounds S1 and S2 after their separation or 
identification show that the basic frequency components are obviously detected  by the 
Fourier transform .  
The spectrum of S1 has reasonable values in the range 10-180Hz. The spectrum is distinctly 
resolved in  time into two majors components (M1 and T1) while the most of  the energy of 
these sounds appears to be concentrated.  
The two components A2 (due to the closure of the aortic valve) and   P2 due to the closure of 
the pulmonary valve) of the second sound S2 are obvious in Figure4c.  The spectrum of the 
sound S2 has reasonable values in the range 50-250Hz. The spectrum for this sound is 
distinctly resolved in time into two majors components  (A2  and P2) as shown in Figure4c. 
However  the  FFT analysis of S2 cannot tell neither which of A2 and P2 precedes the other, 
nor the value of the time delay  known as the  “split” which separate them. For a normal 
heart activity usually A2 precedes P2 and the value of the split is lower than 30ms. This time 
delay between A2 and P2 is very important to detect some pathological cases. The sound S2 
seem to have higher frequency content than that of S1 as shown in Figure4b and Figure4c. 
The FFT is applied also to analyse fourth PCG signals one normal and three different  
marked  pathological cases  (the aortic-insufficiency, the aortic-stenosis and the mitral-
stenosis). These are illustrated in Figure5 along with the normal PCG signal. The basic 
frequency content is obviously different from that of the normal PCG signal. It is clearly 
shown that there is great  loss of frequency component  in  each of the pathological case with 
respect to normal case.   In addition except the aortic- insufficiency case where we  note the 
apparition of frequency component  higher than  200Hz , the other cases (mitral-stenosis and 
aortic-stenosis) present a frequency spectrum limited to 200Hz. 
The aortic-insufficiency and the aortic-stenosis are two pathological cases resulting from a 
severe organic attack, which generally involves a disappearance of the aortic component A2 
of the sound  S2. This shown in their corresponding PCG frequency responses illustrated in 
Figure5, where we notice a lack  in frequency contents in the range under 100Hz  compared 
to the normal case, where there is much more frequency component in this range.  On the 
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other hand the mitral-stenosi is rather a severe attack of the mitral valves thus involving a 
presystolic  reinforcement as well as a bursting of the sound  S1. 
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c) 

Fig. 4. Frequency spectrum for the normal cardiac sounds and the sounds S1 and S2  
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Fig. 5. Normal and abnormals cardiacs sounds and their frequency spectrum  respectively 
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As the frequency extent of the sound S1 is less important than that of the sound S2, the 
spectral response of the PCG signal related to  this pathological case is not  much affected 
comparad to that of the normal case as was the case in the  aortic -insufficiency and aortic-
stenosis  
In conclusion, and by applying the spectral analysis to different PCG signals, we can 
affirm which of the sounds S1 or S2 is directly concerned by the pathology, and more 
precisely which component of these sounds is affected. 
With regard to normal PCG the basic frequency components are obviously detected by the 
FFT but not the time delay between these components. In fact as it was shown for example 
in Figure4c, the components A2 and P2 of the second sound S2 are obvious. However the 
FFT analysis of S2 cannot tell what is the value of the time delay between A2 and P2.  It is 
thus essential to look for a transform which will describe a kind of “time-varying” spectrum.  

3.2 Short-time Fourier Transform application 

The normal phonocardiogram signal (Figure 6a) and the coarctation of the aorta (Figure 6a) 
are analyzed in this section. The coarctation of the aorta has been deliberately chosen here to 
evaluate the performance of the STFT analysis for it is very similar to the normal case. 
Figures 6a illustrate thus such a signal where we can notice that the temporal representation 
is almost similar to that of normal case given in Figure 6a. 
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Fig. 6. The STFT application of the normal PCG (N); a) the normal PCG signal (N); b) the 
spectrogram of the normal signal ( N) 

Figure 6b and Figure 7b provide respectively the STFT application of the normal and the CA 
case. From these Figures we can see the difference of the time-frequency features between 

a) 

b) 
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them. For the two cases (N and CA), the second sound (S2) is shown to have higher 
frequency content than of the first sound (S1) [14,15]. This expected since the amount of 
blood present in the cardiac chambers is smaller [16]. 
We consider here two examples of the phonocardiogram signals with murmur: the 

pulmonary stenosis (PS :Figure 8a) with a systolic murmur and the aortic regurgitation (AR : 

Figure 9a)  with a diastolic murmur. 

Figure 8b and Figure 9b shows respectively the STFT application of the PS and AR signals. 

We can notice that the frequency extent of the diastolic murmur of the AR case is highly 

(About 600Hz) than the systolic murmur of the PS case (about 400 Hz).  
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Fig. 7. The STFT application of the Coarctation of the aorta (CA); a) the Coarctation of the 
aorta signal (CA); b) the spectrogram of the signal CA 

In this section we presents the experimental results of the short-time frequency transform 

application of the three followings groups of the PCG signals used. 

- Group 1 : normal (N) or similar morphological signal (CA) ; 
- Group 2 : opening snap (OS) and ejection click (EC); 
- Group 3: PCG signal with width murmur (PS and AR).  
Figure 10 provides a better representation of the results obtained concerning the frequency 

contents of the sounds and murmurs analysed.    If under the normal conditions  (N) or in 

the presence of similar signals (CA) the frequency content of the sound S2  is more 

significant than that of the sound S1.  

We noted that the light murmurs (OS, EC.) can influence the time-frequency content of the 

principal sounds S1 and S2 and have a frequency extent more significant than them. 

a) 

b) 
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Fig. 8. The STFT application of the pulmonary stenosis; a) The pulmonary stenosis signal 
(PS); b) The spectrogram of the signal PS 
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Fig. 9. The STFT application of the aortic of the regurgitation; a)The aortic of the 
regurgitation signal  (AR); b)The spectrogram of the signal AR 
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Finally in fact the width murmurs (PS and AR cases) present a frequency extent very 

significant.  Discrimination between the systolic and diastolic murmurs can be made starting 

from this frequency extent, diastolic murmurs thus having a frequency extent more 

significant than the systolic murmurs. In more these murmurs seem not too much not to 

affect the time-frequency content of the sounds S1 and S2 

 

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

F
re

q
u

e
n

c
y

 e
x

te
n

t

S1 

S2 

 EC

OS 

 PS

AR 

PCG signals

 w ith murmur 

PCG signals

 w ith click 

First and second

heart sounds 

 

Fig. 10. Frequency extent of the three groups of the PCG signals 

3.3 Wigner Distribution application 

Figure11 shows the WD application of the cardiac sound of the normal case (11a), the 

coarctation of the aorta (11b) and the innocent murmur (11c). One can notice here that the 

two principal components (A2 and P2) start to appear in the presence cross-terms.  The WD 

results may be improved by increasing the sampling rate of original signal,, but it still 

suffers from the cross-terms problem because of the nonlinearity of the WD. 

However the Wigner distribution (WD) have shown good performances in the analysis of 

non-stationary signals. This comes from the ability of the WD to separate signals in both 

time and frequency directions. One advantage of the WD over the STFT is that it does not 

suffer from the time-frequency trade-off problem. On the other hand, the WD has a 

disadvantage since it shows  cross-terms in its response. These cross-terms are due to the nonlinear 

behaviour of the WD, and bear no physical meaning. One way to remove these cross-terms is by 

smoothing the time-frequency plane, but this will be at the expense of decreased resolution 

in both time and frequency 
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Fig. 11. The wigner distribution of the second cardiac sound S2 : a) the normal case , b) the 
coarctation of the aorta case (CA), c) the innocent murmur case (IM) 
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3.4 Continuous Wavelet Transform application 

An algorithm under MATLAB environnement  of the  Continuous Wavelet Transform is 
developed then applied to analyse the different PCG signals. First the normal PCG is studied 
as illustrated by Figure12.a. The two heart sounds are clearly shown in dark color. They are 
spaced with 2500  samples  corresponding to 0.312 secondes.  The continuous wavelet 
transforms of S1 and S2 are also displayed separately in Figure12.b and Figure12.c 
respectively. The sound S2 is shown to have higher frequency content than that of the S1. This 
is expected since the amount of blood present in the cardiac chambers is smaller [1],[16].   On   
Figure 12b we can see that S1 is clearly resolved in two major component (M1 and T1). On the 
figure 10c the sound S2 is resolved also   into two major's components (A2 and P2). The time 
delay between A2 and P2 can be easily measured with the use of the wavelet coefficients ( 
Figure12c). This delay is measured to be 13ms. It is smaller than the 30ms [17] as foreseen in 
the normal conditions of the PCG signal. Pathological conditions could cause this time 
difference to narrow or widen. Moreover, the order of occurrence of A2 and P2 may be 
reversed. The wavelet transform allows measurement and determination of this time 
difference, and thus allows a diagnosis process regarding this important parameter to be 
produced. Table I resumes the differences observed between the components A2 and P2. 
 

 Localisation of  the 
Delay “d” 

(ms) 

Minimal 
frequency 
(in scale) 

Maximal 
frequency 
(in scale) 

Frequency 
Extent 

 

A2 13 19 124 105 

P2 13 18 116 98 

Table I. Temporal and frequential measurements related to the componentsA2 and P2. 

It can be concluded for the normal PCG that : 
1. The component A2 precedes in time the component P2. 
2. The component A2 have higher frequency content than P2. 
3. The amplitude of A2 is more important than that of P2. 
These parameters, particularly the frequency, make it possible to see a difference between 
A2 and P2. 
Moreover the ability of the wavelet transform in heart disease diagnosis can be studied by 
applying the CWT algorithm on different  marked cases. The result of this application are 
illustrated in Figure13b (aortic-insufficiency), Figure13c (aortic-stenosis) Figure13d (mitral-
stenosis). The coefficients of the CWT allow us to  clearly discern the frequency  range of 
each signal. It also shows the major components according to the temporary variation ; the 
maximal amplitude is characterised by a darker color than those of the small amplitudes. 

3.5 Discrete Wavelet Transform application 

The multiresolution analysis based on the discrete wavelet transform (DWT) is a powerful 
tool in and filtering, separating and identification of the internal components and murmurs 
of the various analyzed signals (Figure14).  
Figure15a shows the application of the discrete wavelet transform of one cycle of the normal 
PCG. Levels d1 and d2 represent the high frequency variations of the base line of PCG signal. 
Levels d3 and d4 emphasize clearly the side of high frequency content of the sound  S2 
compared to S1The component A2 (the most predominant in sound S2) appears better on 
levels d5 and d6. Level d7 represents the two principal components of the sound S1 (M1, T1). 
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Fig. 12. Continuous wavelet transform analysis (CWT) for the normal cardiac sounds S1 and 
S2 
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Fig. 13. Continuous wavelet analysis (CWT) for the normal PCG and abnormal PCG. 
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b)

c)
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The same analysis by using the discrete wavelet transform concerning the coarctation of the 

aorta and the mitral stenosis is also applied (Figures16b and Figure16c). Figure 13b, in level 

d7, provide a well representation of the third component "C" added a the two majors 

components of the sound S2 (A2 and P2). 
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Fig. 14. PCG signals used  a) normùal (N), b) the coarctation of the aorta (CA); c) the mitral 
stenosis (MS), d) the aortic regurgitation (AR), e) the diastolic ruble (DR) , f)  the aortic 
insufficiency (AI)- 

3.6 Packet wavelet transform application  

The used of the wavelet packet transform is exactly the same as those developed in the 

discrete wavelet transform. The only difference is that wavelet packets offer a more complex 

and flexible analysis, because in wavelet packet analysis, the details as well as the 

approximations are split (Figure3). Single wavelet packet decomposition gives a lot of bases 

from which you can look for the best representation with respect to a design objective. The 

wavelet packet method is thus a generalization of wavelet decomposition that offers a richer 

range of possibilities for signal analysis. In wavelet analysis, a signal is split into an 

approximation and a detail. The approximation is then itself split into a second-level 

approximation and detail, and the process is repeated. 
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The wavelet packet transform analysis in this paper give important features of the extent 

frequency of the heart sounds (S1 or S2) and cardiac murmur. These features can be help 

clinician in their diagnosis or recognizing pathological conditions concerning the recording 

PCG signals. 

Figure 16 provide a time frequency (TF) representation of one cardiac cycle of the heart 

sounds concerning the normal PCG signal (Figure 16a), the coarctation of the aorta case 

(Figure 16b) and the mitral stenosis case (Figure 16c). These figures shown the frequency 

range of each component or murmur of the PCG signal studied. Thus we can observe the 

component "C" added of the two majors component for the sound S2 (A2 and P2). The same 

result have been find in the section 3.5 (Figure 14b.detail d7) 

Figure 17 has the advantage of presenting at the same time the frequency extent of the 

various components of the cardiac sound like their frequency site one compared to the 

other. We can shown clearly that the Diastolic ruble (DR) case have high frequency content 

that the aortic insufficiency case (AI) or the aortic regurgitation case (AR). 
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Fig. 15. Discrete wavelet transform  (DWT) analysis for: a) the normal PCG, b) the 
Coarctation of the aorta, c) the mitral stenosis 
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c) 

Fig. 16. Wavelet packet transform (WPT) analysis for: a) the normal PCG, b) the coarctation 
of the aorta , c) the mitral stenosis 
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Diastolic Rumble
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c) 

Fig. 17. Wavelet packet Transform (WPT) analysis for: a) the aortic Insufficiency (Ai), b) the 
aortic regurgitation (AR), c) the Diastolic Rumble (DR) 
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4. Conclusion 

The cardiac (heartbeat sound) cycle of phonocardiogram (PCG) is characterized by 

transients and fast   changes in frequency as time progresses. It was shown that basic 

frequency content of PCG signal can be easily provided using FFT technique. However, time 

duration and transient variation cannot be resolved; the CWT wavelet transform therefore i 

is a suitable technique to analyse such a signal. It was also shown that the coefficients of the 

continuous wavelet transform give a graphic representation that provides a quantitative 

analysis simultaneously in time and frequency. It is therefore very helpful in extracting 

clinically useful information. 

The measurement of the time difference between the A2 and P2 components in the sound 

S2, the number of major components of the sounds S1 and S2 and the frequency range and 

duration for all these components and sounds can be accurately achieved for the CWT   

simultaneously as was clearly illustrated.  

It is found that the wavelets transform is capable of detecting the four major components of 

the first sound S1 and the two components (the aortic valve component A2 and the 

pulmonary valve component P2) of the second sound S2 of a normal PCG signal. These 

components are not accurately detectable using the STFT or WD.  However the standard 

FFT can display the frequencies of the components A2 and P2 but cannot display the time 

delay between them. 

The application of the STFT in the analysis of the PCG signals made it possible to obtain  

appreciable information on  the  time-frequency content of the sounds  S1, S2  and of the  

added murmurs (OS,EC or width murmurs).  

If under the normal conditions  (N) or in the presence of similar signals (CA) the frequency 

content of the sound S2  is more significant than that of the sound S1. We noted that the 

light murmurs (OS, EC.) can influence the time-frequency content of the principal sounds S1 

and S2 and have a frequency extent more significant than them. 

Finally in fact the width murmurs (PS and AR cases) present a frequency extent very 

significant.  Discrimination between the systolic and diastolic murmurs can be made starting 

from this frequency extent, diastolic murmurs thus having a frequency extent more 

significant than the systolic murmurs. In more these murmurs seem not too much not to 

affect the time-frequency content of the sounds S1 and S2. 

The two version of analysis of the wavelet transform (DWT and PWT) make it possible to 

gather time-frequency information concerning the characteristics of the cardiac sounds. 

It is shown that the FFFT, the STFT, the WD and the WT techniques provides more 

information of the PCG signals with murmurs that will help physicians to obtain qualitative 

and quantitative measurements of the time and the time-frequency PCG signal 

characteristics and consequently aid to diagnosis. 
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nose analysis and optical fibre sensor analyses. Finally, Part IV describes DWT algorithms for tools in

identification and diagnostics: identification based on hand geometry, identification of species groupings, object

detection and tracking, DWT signatures and diagnostics for assessment of ICU agitation-sedation controllers

and DWT based diagnostics of power transformers.The chapters of the present book consist of both tutorial

and highly advanced material. Therefore, the book is intended to be a reference text for graduate students

and researchers to obtain state-of-the-art knowledge on specific applications.
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