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1. Introduction 

Medications used to treat and prevent seizures (antiepileptic medications, AEMs) have been 
commonly managed by therapeutic drug monitoring (TDM) to optimize efficacy and avoid 
toxicity (Neels et al., 2004; Patsalos et al., 2008). TDM has been applied mostly to the first-
generation AEMs that have been used clinically in the United States and Europe for several 
decades, namely carbamazepine, ethosuximide, phenobarbital, phenytoin, primidone, and 
valproic acid.  First-generation AEMs generally have significant inter-individual variability 
in their pharmacokinetics (absorption, distribution, metabolism, and excretion) and low 
therapeutic indices.  Two randomized, controlled studies of AEM TDM showed that 
practitioners often apply information from TDM incorrectly (Fröscher et al., 1981; Januzzi et 
al., 2000). Consequently, improved education of medical practitioners on TDM is important 
for the future. 
In the last twenty-five years, 14 new AEMs have entered the market in the United States 
and/or Europe (LaRoche & Helmers, 2004a,b; Patsalos, 1999). These drugs are sometimes 
characterized as second- or third-generation AEMs and include the following drugs: 
eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, 
oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and 
zonisamide. Eslicarbazepine acetate, lacosamide, rufinamide, and stiripentol have not yet been 
approved in the United States.  In contrast to the first-generation AEMs, the newer agents 
generally (although not always) have wider therapeutic ranges and less adverse effects. This 
chapter focuses on TDM of AEMs in treatment of epilepsy, emphasizing whether the 
pharmacokinetics and clinical profile of the drug make TDM useful. AEMs are sometimes 
used to treat disorders other than epilepsy such as trigeminal neuralgia, fibromyalgia, and 
migraine headaches (Johannessen Landmark, 2008; LaRoche & Helmers, 2004a). 
There are several main challenges in TDM of AEMs (Patsalos et al., 2008). First, there are no 
simple diagnostic or laboratory tests for seizure disorders.  The electroencephalogram (EEG) 
is useful for diagnosis of seizure disorders but is too labor-intensive for long-term patient 
observation. Second, seizures often occur unpredictably, sometimes with long periods of 
time between episodes. Lastly, the toxicity of AEMs can resemble neurologic disease, 
sometimes leading to inappropriate escalations of medication therapy even when the dose is 
actually too high. 
One of the most basic assumptions of TDM is that the concentration of drug being measured 
correlates with the concentration at the target site of action (e.g., brain tissue). TDM of AEMs 
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is usually performed on plasma or serum, or occasionally on some other body fluid such as 
saliva. TDM is difficult to apply when there are factors (e.g., irreversibility of action, drug 
tolerance) that lessen the correlation between clinical effect and serum/plasma 
concentration.  AEMs with active metabolites also present a special challenge for TDM. For 
drugs with active metabolites (e.g., oxcarbazepine, primidone), TDM can include 
measurement of the concentrations of both parent drug and its metabolite(s) or just of the 
metabolite(s). 
TDM of AEMs in saliva has not yet been widely applied (Liu & Delgado, 1999), but has been 
studied for ten drugs: carbamazepine (Ruiz et al., 2010; Tennison et al., 2004), gabapentin 
(Benetello et al., 1997; Berry et al., 2003), lamotrigine (Incecayir et al., 2007; Malone et al., 
2006; Ryan et al., 2003), levetiracetam (Grim et al., 2003; Guo et al., 2007; Mecarelli et al., 
2007), oxcarbazepine (Cardot et al., 1995), phenobarbital (Tennison et al., 2004), phenytoin 
(Tennison et al., 2004), topiramate (Miles et al., 2003), valproic acid (al Za'abi et al., 2003), 
and zonisamide (Kumagai et al., 1993). Of these ten drugs, gabapentin and valproic acid are 
clearly unsuited for salivary concentration analysis.  Gabapentin shows low concentration in 
saliva versus plasma (salivary concentrations are only ~5-10% that of serum or plasma) and 
valproic acid has poor correlation between serum and salivary concentrations.  Monitoring 
of salivary concentrations of AEMs has clear appeal in some patient populations, especially 
in the pediatric and geriatric populations.  One study showed that salivary samples can be 
collected by the patient and mailed to a clinical laboratory without loss of sample integrity 
(Jones et al., 2005).  

2. Application of TDM to AEMs 

The most common reason to employ TDM for AEM therapy is that the drug shows 
unpredictable and/or variable pharmacokinetics, often related to differences in drug 
metabolism (Bialer, 2005; Perucca, 2006). Variability in pharmacokinetics may also occur due 
to alterations in drug absorption or distribution.  Metabolism of AEMs may vary due to 
impaired organ function (typically kidney or liver), genetic factors, or drug-drug interactions.  
Many of the AEMs are metabolized by hepatic enzymes including cytochrome P450 (CYP) 
enzymes such as CYP3A4 and CYP2C9.  A number of drugs are known to increase (induce) 
the expression of hepatic drug-metabolizing enzymes. Well-known inducers include 
carbamazepine, phenobarbital, phenytoin, rifampin (tuberculosis drug) and St. John’s wort 
(herbal antidepressant) (Komoroski et al., 2004; Skolnick et al., 1976; Van Buren et al., 1984).  In 
patients taking AEMs, the co-ingestion of liver enzyme inducers can lead to inappropriately 
low serum/plasma concentrations of the AEM if dose adjustments are not made. Some drugs 
may inhibit metabolism of AEMs, often by acting as antagonists of CYP enzyme activity, 
potentially leading to excessively high concentrations of drug unless the dose is reduced 
appropriately.  Valproic acid inhibits multiple liver enzymes and has been well-documented to 
cause drug-drug interactions with other AEMs, which often requires careful TDM when 
valproic acid is used in multi-drug regimens to treat epilepsy (Neels et al., 2004). AEMs may 
be used in patients with some degree of renal impairment which can affect AEM 
pharmacokinetics by decreased clearance, or by removal of drug during dialysis procedures.  
In general, AEMs with low degrees of plasma protein binding are cleared more effectively by 
dialysis than AEMs that are highly protein bound (Lacerda et al., 2006). 
Special considerations apply to TDM of AEMs that are highly (> 90%) bound to serum 
proteins.  For these AEMs, monitoring of unbound (free) concentrations may be clinically 
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useful (Dasgupta, 2007). Serum protein concentrations of drug can vary due to factors 
such as drug interactions, liver disease, pregnancy and old age. Co-administered 
medications (e.g., valproic acid) or endogenous substances can displace drugs from serum 
protein binding sites, increasing free drug concentrations. Uremia, typically secondary to 
renal failure, can also displace AEMs from serum protein binding sites. Free drug 
concentrations can be measured by preparing an ultrafiltrate of plasma (e.g., by 
centrifugation through a membrane) and then analyzing the concentration of drug. The 
main technical challenge is that free drug concentrations may be substantially lower than 
total drug concentrations in drugs that are highly bound to plasma proteins. Therefore, 
analytical methods to measure free drug concentrations need to have lower limits of 
quantitation than methods to measure total drug concentrations. Analytical methods used 
to measure total drug concentrations may have insufficient analytical sensitivity for free 
drug analysis (Dasgupta, 2007). A further practical challenge is that the ultrafiltration 
process needed for free drug analysis is not easily automated and adds processing time 
and effort to the clinical laboratory analysis. 
The last common reason for TDM of AEMs is to assess compliance (adherence) to therapy 
such as in a patient who shows a lack of clinical response or the loss of efficacy in a therapy 
that was previously effective (Patsalos et al., 2008). Epilepsy therapy can occur over long 
periods of time even in the absence of seizures. Similar to other medications that may be 
taken chronically (e.g., anti-depressants, anti-hypertensives), patients may skip doses or 
stop taking the medication due to side effects, medication expense, or other factors. 

3. Reference ranges for AEMs 

Reference ranges for AEMs are challenging to establish. Ideally, TDM would guide 
physicians towards serum/plasma concentrations that optimally control seizures while 
avoiding or minimizing adverse effects. The ‘reference range’ of an AEM can be defined by 
a lower limit below which therapeutic effect is unlikely and an upper limit above which 
toxicity is likely (Patsalos et al., 2008). Reference ranges may vary with different types of 
seizures, or when AEMs are used for other purposes such as treatment of bipolar disorder 
or chronic pain.  A special challenge occurs with defining reference ranges for the newer 
generation AEMs, which were generally studied in clinical trials as adjunctive therapy and 
not as monotherapy. Perucca has advocated the concept of ‘individual therapeutic 
concentrations’ (Perucca, 2000) wherein a patient is treated until good seizure control is 
achieved.  The serum/plasma concentration at which good seizure control occurs serves as 
the patient’s individual therapeutic concentration that can be used as the target 
concentration to maintain during chronic therapy. TDM for AEMs is especially important 
when there are factors that can alter AEM pharmacokinetics, e.g., pregnancy, impaired 
kidney or liver function, or concomitant therapy with hepatic enzyme-inducing or –
inhibiting drugs. 
With the background and theory on TDM above, each of the AEMs will be discussed in 
turn with regard to TDM. Table 1 summarizes the pharmacokinetic properties of the 
AEMs, while Table 2 presents a summary of the justifications of TDM for the AEMs.  
References for reference ranges used in Table 1 are as follows: carbamazepine, 
clonazepam, phenobarbital, phenytoin, primodone, valproic acid (Hardman et al., 1996), 
felbamate (Faught et al., 1993; Sachdeo et al., 1992), gabapentin (Lindberger et al., 2003), 
lacosamide (Kellinghaus, 2009), lamotrigine (Bartoli et al., 1997), levetiracetam (Leppik et 
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al., 2002), oxcarbazepine (10-hydroxycarbazepine metabolite) (Friis et al., 1993), 
pregabalin (Patsalos et al., 2008), stiripentol (Farwell et al., 1993), tiagabine (Uthman et al., 
1998), topiramate (Johannessen et al., 2003), vigabatrin (Patsalos, 1999), and zonisamide 
(Glauser & Pippenger, 2000; Mimaki, 1998). 

4. TDM of the first generation AEMs 

The first generation AEMs are commonly managed by TDM, in large part due to complex 

and variable pharmacokinetics. In general, the first generation agents have narrow 

therapeutic indices, with high plasma concentrations frequently associated with central 

nervous system (CNS) and other adverse effects. Several of the first generation AEMs, 

especially phenytoin, have high degrees of binding to plasma proteins; consequently, free 

drug concentrations in plasma can be clinically useful in some patients (Dasgupta, 2007).  

Three of the first generation AEMs (carbamazepine, phenobarbital, and phenytoin) are 

strong inducers of liver drug-metabolizing enzymes, particularly of CYP3A4.  CYP3A4 has 

very wide substrate specificity including for cyclosporine, tacrolimus, and theophylline, as 

well as endogenous compounds such as estradiol and vitamin D (Luo et al., 2004). The 

accelerated metabolism of ethinyl estradiol that can occur during therapy with CYP3A4 

inducers can lead to ineffectiveness of estrogen-containing oral contraceptives and 

unintended pregnancy (Crawford, 2002). Chronic therapy with carbamazepine, 

phenobarbital, and phenytoin is also well-known to have the potential risk of osteomalacia 

secondary to vitamin D deficiency (Zhou et al., 2006). 

4.1 Carbamazepine 

Carbamazepine has complicated pharmacokinetics that favors use of TDM (Neels et al., 

2004; Warner et al., 1998). Carbamazepine is generally well-absorbed following oral 

administration; however, absorption may be delayed considerably by large doses. The 

metabolism of carbamazepine is quite complex, with the main metabolite being 

carbmazepine 10,11-epoxide, a compound that shows similar anticonvulsant activity to 

carbamazepine.  In chronic therapy, concentrations of the epoxide metabolite may reach 

plasma concentrations 50% that of the parent drug.  As described above, carbamazepine is a 

strong inducer of liver drug-metabolizing enzymes, including the CYP3A4 enzyme that 

metabolizes carbamazepine itself. Thus, carbamazepine represents an example of a drug 

that shows ‘autoinduction’, namely that the metabolism of carbamazepine increases as the 

drug is used chronically (Pitlick & Levy, 1977). Auto-induction is usually complete by 2-3 

weeks, although it can take longer in some individuals. 

Like other first generation AEMs, neurological side effects are common with high doses of 

carbamazepine, particularly when the plasma concentration exceeds 9 mg/L.  

Carbamazepine can also produce rare idiosyncratic adverse effects including severe 

dermatologic reactions such as Steven-Johnson Syndrome or toxic epidermal necrolysis.  

There is an association with severe skin reactions during carbamazepine therapy with the 

human leukocyte antigen (HLA) allele HLA-B*1502 which is common in patients with South 

Asian ancestry, particularly India (Alfirevic et al., 2006; Lonjou et al., 2006).  

Pharmacogenetic testing for this allele may be useful in patients of South Asian descent who 

are being considered for therapy with carbamazepine. 
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Drug 
Oral 

bioavailability

Serum 
protein 
binding

Time to 
peak conc. 

(hrs) 

Serum half-
life (hrs) 

Reference 
range in serum 

(mg/L) 

Carbamazepine >70 75 4-8 10-20 4-10 

Clonazepam >95 85 1-2 20-26 0.005-0.07 

Eslicarbazepine 
acetate 

≥80 30 1-4 20-24 Not established 

Ethosuximide >90 0 2-4 30-50 40-100 

Felbamate >90 25 2-6 16-22a 30-60 

Gabapentin <60 0 2-3 5-9 2-20 

Lacosamide ≥95 15 0.5-4 12-13 5-10 

Lamotrigine ≥95 55 1-3 15-35 a, b 3-14 

Levetiracetam ≥95 0 1 6-8 12-46 

Oxcarbazepine 90 40 3-6 8-15 a 3-35 

Phenobarbital >95 50 4-12 90-110 10-25 

Phenytoin 90 >95 4-12 6-24 10-20 

Primidone >90 20 2-4 10-20 8-12 

Pregabalin ≥90 0 1-2 5-7 2.8-8.3 

Rufinamide 85 30 5-6 8-12 a Not established 

Stiripentol ≥90 99 1-2 Variable 4-22 

Tiagabine ≥90 96 1-2 5-9 a 0.02-0.2 

Topiramate ≥80 15 2-4 20-30 5-20 

Valproic acid >95 >90 1-4 11-17 30-100 

Vigabatrin ≥60 0 1-2 5-8 0.8-36 

Zonisamide ≥65 50 2-5 50-70 a 10-40 

a Serum half-life significant decreased with concomitant therapy with liver enzyme inducers (rifampin, 
carbamazepine, phenobarbital, phenytoin, St. John’s wort) 
b Serum half-life significantly increased with concomitant therapy with valproic acid. 

Table 1. Pharmacokinetic Parameters and Reference Ranges for the AEMs 

TDM is frequently used in carbamazepine therapy due to the challenging pharmacokinetics.  

Monitoring of carbamazepine is usually achieved by a variety of marketed immunoassays 

that have high specificity for the parent drug and limited cross-reactivity with the 

metabolites (Warner et al., 1998).  TDM sometimes also includes monitoring of the epoxide 

metabolite, which can contribute a substantial amount of the therapeutic effect. One 

challenge of monitoring the epoxide metabolite is that commercial immunoassays specific 

for this metabolite are not available, and thus a technology such as high-performance liquid 

chromatography (HPLC) is generally needed, which usually means the analysis is 

performed at reference laboratories. 

4.2 Clonazepam 

Clonazepam is a benzodiazepine used in treatment of epilepsy, as well as in a variety of 

other conditions such as anxiety or panic disorders, restless legs syndrome, and mania (Riss 

et al., 2008). Other benzodiazepines such as diazepam and lorazepam are used commonly 

for acute management of seizures but not as often for long-term management.  In general, 
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benzodiazepines are limited by tolerance during chronic therapy. Clonazepam is extensively 

metabolized, with less than 1% of the administered dose recovered as parent drug. The main 

metabolite is 7-aminoclonazepam, which is therapeutically inactive. 

TDM has a relatively limited role in clonazepam therapy (Warner et al., 1998). Plasma 

concentrations do not correlate all that tightly with therapeutic effect, with a wide range of 

concentations (5 to 70 ng/mL) associated with effective management of seizures.  Higher 

plasma concentrations are associated with increased frequency of CNS side effects such as 

drowsiness or lethargy.  Other than to establish an individual therapeutic concentration or 

to assess compliance with therapy or evaluate possible toxic effects, monitoring of 

clonazepam is generally of limited value. 

4.3 Ethosuximide 

Ethosuximide has excellent bioavailability and is not bound to any appreciable degree to 

plasma proteins (Brodie & Dichter, 1997; Perucca, 1996).  Approximately 25% of the ingested 

drug is excreted unchanged.  The remainder of the excretion is mostly to a hydroxyethyl 

metabolite, which is inactive with respect to anticonvulsant effect. Ethosuximide has a fairly 

wide therapeutic range with effective antiseizure activity commonly occurring with plasma 

concentrations of 40-100 mg/L. CNS and gastrointestinal side effects are more common with 

plasma concentrations exceeding 100 mg/L. TDM is commonly applied to ethosuximide 

therapy, although not as commonly as first generation AEMs such as carbamazepine, 

phenobarbital, and phenytoin that have more challenging pharmacokinetics (Warner et al., 

1998). 

4.4 Phenobarbital and primidone 

Phenobarbital and primidone are structurally related compounds used in the management 

of epilepsy (Brodie & Dichter, 1997; Perucca, 1996).  Primidone is converted to phenobarbital 

and phenylethylmalonamide (PEMA) by metabolism, with both metabolites contributing 

significant anticonvulsant activity.  Phenobarbital and primidone show excellent absorption 

following oral dosing, although absorption of phenobarbital can be slow, especially with 

high doses.  One of the striking pharmacokinetic features of phenobarbital is a long half-life, 

up to 100 hrs or more in adults and somewhat shorter (~80 hrs) in neonates.   

TDM is commonly use for both phenobarbital and primidone (Warner et al., 1998).  Plasma 

concentrations of 10-35 mg/L are generally recommended for phenobarbital management of 

seizures. Above 35 mg/L, CNS-related adverse effects are more frequent. TDM of 

primidone is complicated to interpret due to the formation of two active metabolites 

(phenobarbital and PEMA).  Monitoring of primidone therapy often involves measurement 

of both primidone and phenobarbital plasma concentrations, both of which can be done 

with commercial immunoassays. 

4.5 Phenytoin 

Phenytoin is likely the AEM for which TDM is applied most frequently (Warner et al., 1998).  

Phenytoin has very challenging pharmacokinetic properties. While absorption of the drug 

following ingestion is high, time to peak concentrations are variable (3-12 hrs) depending on 

dosage and intake relative to meals.  Phenytoin is extensively bound to plasma proteins, and 

clinically significant increased free fractions are observed in neonates, patients with 
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hypoalbuminemia, and in patients with uremia due to renal failure (Dasgupta, 2007).  

Phenytoin has complex metabolism, with saturation of hepatic enzymes at therapeutic 

plasma concentrations, leading to zero-order (saturation) elimination kinetics.  Two of the 

enzymes that catalyze the metabolism of phenytoin, CYP2C9 and CYP2C19, show 

pharmacogenetic variation, with individuals with lower catalytic acvitity (poor 

metabolizers) at risk for developing supra-therapeutic concentrations (Ninomiya et al., 

2000). Phenytoin’s unusual pharmacokinetic profile makes maintaining patients at 

therapeutic plasma concentrations  a tricky and time-consuming goal that depends on 

recurrent TDM.  Unfortunately, TDM cannot currently predict some of the annoying and 

occasionally serious adverse effects of phenytoin such as dermatologic reactions, hirsutism, 

and gingival overgrowth (Perucca, 1996). The latter two reactions occur unpredictably with 

chronic phenytoin therapy. 

4.6 Valproic acid 

Valproic acid has overall excellent bioavailability, although absorption can be delayed 

considerably with higher doses or when the drug is ingested with meals (Brodie & Dichter, 

1997; Perucca, 1996). Valproic acid is approximately 90% bound to plasma proteins.  

Although measurement of free valproic acid concentrations in plasma is usually not needed 

for TDM, patients with hypoalbuminemia are at higher risk of having supra-therapeutic free 

concentrations. Valproic acid is extensively metabolized, with some of the metabolites 

having some anticonvulsant activity.  Valproic acid is an inhibitor of multiple CYP enzymes 

and as such can cause drug-drug interactions, including with other AEMs such as 

carbamazepine, felbamate, lamotrigine, phenobarbital, phenytoin, and stiripentol (Besag & 

Berry, 2006). Valproic acid can cause hepatitis (with elevations of enzymes such as alanine 

aminotransferase), in some cases manifesting as fulminant liver failure.  Consequently, 

many physicians periodically monitor hepatic enzymes and also instruct patients to seek 

medical attention with any signs or symptoms of liver damage such as abdominal pain or 

jaundice. 

Valproic acid has a therapeutic range of 30-100 mg/L. CNS side effects are more common 

when plasma concentrations exceed 100 mg/L although some patients may have plasma 

concentrations of 150 mg/L or higher without adverse effects. Given the wide range of 

plasma concentrations associated with successful therapy, TDM can be especially valuable 

in valproic acid therapy in establishing an individual therapeutic concentration (Warner et 

al., 1998). 

5. TDM of the new generation AEMs 

5.1 Eslicarbazepine 

Eslicarbazepine acetate [(S)-licarbazepine acetate] is a pro-drug that is rapidly and nearly 

completely metabolized to eslicarbazepine by liver esterases (Falcao et al., 2007; Maia et al., 

2005). TDM focuses on eslicarbazepine and not on the minor metabolites oxcarbazepine 

(also used as an AEM) and (R)-licarbazepine.  Unlike carbamazepine, eslicarbazepine does 

not exhibit auto-induction in metabolism, has low (~30%) binding to serum proteins, and 

overall has a low potential for drug-drug interactions (Almeida et al., 2010; Bialer et al., 

2009). Eslicarbazepine has an elimination half-life of 20-24 hr during chronic administration 

www.intechopen.com



 
Novel Treatment of Epilepsy 

 

140 

(Almeida et al., 2005). Mild to moderation hepatic failure has minimal impact on the 

pharmacokinetics of eslicarbazepine (Almeida et al., 2008).  The main route of elimination of 

eslicarbazepine and other minor metabolites of eslicarbazepine acetate is via the kidneys, 

with moderate or severe renal failure significantly reducing the clearance of eslicarbazepine.  

Hemodialysis effectively removes eslicarbazepine and other metabolites of eslicarbazepine 

acetate (Maia et al., 2008). 

Overall, TDM has a minor role in the therapeutic use of eslicarbazepine given the relatively 
predictable pharmacokinetics of the drug. TDM for eslicarbazepine may be useful in 
patients with renal failure. An enantioselective high-performance liquid chromatography-
ultraviolet (HPLC-UV) method has been developed for the specific monitoring of 
eslicarbazepine and its metabolites (Alves et al., 2007). 

5.2 Felbamate 

Felbamate is approved in the United States for the treatment of partial seizures in adults and 

for Lennox-Gastaut Syndrome, a type of childhood epilepsy that is often refractory to AEM 

therapy (Bourgeois, 1997; Pellock et al., 2006). The use of felbamate has been limited due to 

the risks of aplastic anemia and severe liver failure, which led to revised labeling and 

restricted use of felbamate (Pellock et al., 2006). It is suspected that one or more metabolites 

of felbamate mediate the rare but serious adverse effects (Shumaker et al., 1990).  

Approximately 50% of the parent drug is metabolized by the liver to inactive metabolites 

(Shumaker et al., 1990; Thompson et al., 1999). Inducers of hepatic metabolism increase the 

metabolism of felbamate (Sachdeo et al., 1993; Wagner et al., 1991), while valproic acid 

inhibits the metabolism (Ward et al., 1991). 

A clear reference range has not been established for felbamate, but seizure control usually 

occurs with serum/plasma concentrations of 30-60 mg/L (Faught et al., 1993; Sachdeo et al., 

1992). Children clear felbamate approximately 20-65% faster than adults (Perucca, 2006).  

TDM may be helpful in felbamate therapy given the variable metabolism across individuals.  

Close monitoring of liver function and blood counts are advised during felbamate therapy, 

with the goal to discontinue therapy if any signs of bone marrow or liver damage appear.  

5.3 Gabapentin 

Gabapentin was originally approved in the United States for the treatment in epilepsy but is 

currently used more often for the management of chronic pain (LaRoche & Helmers, 2004b; 

McLean, 1995). Gabapentin is rapidly absorbed by the L-amino acid transport system 

(Vollmer et al., 1988), and a study published in 1998 showed possible saturability of this 

system, with a decrease in bioavailability at doses of 4,800 mg/day of gabapentin as 

compared to lower doses (Gidal et al., 1998). However, a later study showed linear 

absorption up to 4,800 mg/day (Berry et al., 2003). Gabapentin does not distribute much 

into saliva, precluding the utility of salivary gabapentin concentrations for TDM (Berry et 

al., 2003). Gabapentin is not metabolized to any appreciable degree and has low binding to 

serum proteins (Vollmer et al., 1988). The bulk of excretion is via the kidneys, with the half-

life increasing in patients with renal failure. Hemodialysis effectively clears gabapentin 

(Hung et al., 2008; Wong et al., 1995). 

Gabapentin does not have a clear reference range (Armijo et al., 2004), although effective 

control of seizures generally requires concentrations of 2 mg/L or higher (Sivenius et al., 
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1991). An approximate reference range of 2-20 mg/L for management of seizure disorders 

has been proposed (Lindberger et al., 2003). TDM is not usually necessary for gabapentin 

therapy other than to adjust dosing in patients with impaired kidney function or to assess 

adherance to therapy (Patsalos et al., 2008) 

5.4 Lacosamide 

Lacosamide is a novel functionalized amino acid that enhances inactivation of voltage-
gated sodium channels (Curia et al., 2009; Perucca et al., 2008b). Lacosamide was 
approved in Europe in 2008 for partial-onset seizures in patients 16 years and older 
(Chung et al., 2010). Lacosamide has high bioavailability (~100%) and serum protein 
binding (Ben-Menachem et al., 2007; Luszczki, 2009). Approximately 60% of the parent 
drug is metabolized, mainly by CYP2C19 to an inactive metabolite. The remaining 40% is 
excreted unchanged by the kidneys. The low plasma protein binding of lacosamide 
suggests that the drug should be cleared effectively by dialysis, although data on this has 
not yet been published (Lacerda et al., 2006). The half-life of lacosamide is approximately 
12 hours. Drug-drug interactions involving lacosamide appear to be uncommon (Beydoun 
et al., 2009; Johannessen Landmark & Patsalos, 2010). The predictable pharmacokinetics of 
lacosamide, along with lack of clinically significant drug-drug interactions, suggests a 
limited role for TDM in managing lacosamide pharmacotherapy. Consequently, TDM of 
lacosamide has limited benefit except in patients with severe liver and/or kidney failure, 
or to assess compliance with therapy (Cross & Curran, 2009; Thomas et al., 2006). 

5.5 Lamotrigine 

Lamotrigine has been approved by the United States Food and Drug Administration (FDA) 

for treatment of partial seizures and bipolar disorder (Neels et al., 2004; Patsalos et al., 2008).  

The major adverse effect of lamotrigine is dermatologic reaction, including severe Stevens-

Johnson and toxic epidermal necrolysis syndromes (Knowles et al., 1999). Harm from skin 

reactions have been reduced by the clinical practice of cautiously escalating dose and 

promptly ceasing therapy if potential skin reactions appear. One of the major advantages of 

lamotrigine is a solid safety record in pregnancy, which contrasts with the teratogenic effects 

of first-generation AEMs such as carbamazepine, phenytoin, and valproic acid (Sabers & 

Tomson, 2009; Tomson & Battino, 2007). 

Lamotrigine is quickly and completely absorbed from the gastrointestinal tract and is only 
~50% bound to serum proteins. Lamotrigine distributes into saliva, and salivary lamotrigine 
concentrations correlate well with those in serum, allowing for saliva to serve as an 
alternative sample for TDM (Ryan et al., 2003; Tsiropoulos et al., 2000). Lamotrigine is 
extensively metabolized, principally by glucuronidation to form an inactive metabolite 
(Hussein & Posner, 1997; Rambeck & Wolf, 1993). Similar to carbamazepine, lamotrigine 
shows the phenomenon of autoinduction during chronic therapy.  Autoinduction is usually 
complete within two weeks, with a ~20% reduction in steady-state serum/plasma 
concentrations if the dose is not increased (Hussein & Posner, 1997). Classic liver enzyme 
inducers significantly increase the metabolism of lamotrigine, reducing the serum half-life 
from 15-35 hr to approximatley 8-20 hr (Hussein & Posner, 1997; Rambeck & Wolf, 1993).  
Ethinyl estradiol-containing oral contraceptives also significantly increase the clearance of 
lamotrigine (Reimers et al., 2007; Sabers et al., 2001; Sabers et al., 2003). Valproic acid inhibits 
the metabolism of lamotrigine and can increase the serum half-life to up to 60 hr (Biton, 
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2006; Ramsay et al., 1991). Severe renal failure increases the serum half-life to ~50 hr in 
patients.  Hemodialysis effectively clears lamotrigine (Fillastre et al., 1993). The clearance of 
lamotrigine is higher in children (Bartoli et al., 1997; Perucca, 2006) and much higher 
(~300%) in pregnancy (Perucca, 2006). A reference range of 3-14 mg/L has been advocated 
for refractory epilepsy therapy (Morris et al., 1998). The risk of toxicity increases 
significantly when serum/plasma concentrations exceed 15 mg/L (Besag et al., 1998; Morris 
et al., 1998). 
TDM of lamotrigine is useful for several main reasons. First, the drug shows significant 

interindividual variation in liver metabolism, which can be affected by concomitant 

medications. Second, the clearance of lamotrigine varies across development and 

particularly increases during pregnancy (Pennell et al., 2008). Lastly, there is a fairly clear 

concentration (> 15 mg/L) above which adverse effects become more frequent (Bartoli et al., 

1997; Biton, 2006; Rambeck & Wolf, 1993).   

5.6 Levetiracetam 

Levetiracetam is a novel anticonvulsant structurally unrelated to other AEMs (Klitgaard, 

2001; Leppik, 2001). Following oral administration, levetiracetam is rapidly and nearly 

completely absorbed, with the rate of oral absorption slowed by co-ingestion with food (Fay 

et al., 2005; Patsalos, 2000). Levetiracetam distribute extensively into saliva, with salivary 

concentrations usually being slightly higher than serum concentrations in patients receiving 

chronic therapy (Lins et al., 2007). Salivary and serum levetiracetam concentrations correlate 

well with one another, making saliva an alternative sample to perform TDM (Grim et al., 

2003; Mecarelli et al., 2007). 

Levetiracetam shows low binding to serum proteins and has linear pharmacokinetics.  

Nearly 100% of the absorbed drug is ultimately excreted by the kidneys (Patsalos, 2004), 

with approximately two-thirds as the parent drug and one-thirds as a metabolite that is 

formed by hydrolysis in the blood (Patsalos et al., 2006). There is very little, if any, 

metabolism of levetiracetam by the liver and, consequently low probability of significant 

drug-drug interactions (Johannessen Landmark and Patsalos, 2010). Given the low plasma 

protein binding, levetiracetam is likely efficiently cleared by hemodialysis (Lacerda et al., 

2006).  The serum half-life of levetiracetam is shorter in adult (6-8 hr) compared to neonates 

(16-18 hr) (Patsalos et al., 2008). Clearance of levetiracetam increases significantly in 

pregnancy, with an approximately 60% decrease in serum concentrations (Tomson and 

Battino, 2007). 

A reference range of 12-46 mg/L has been proposed based on a study of 470 patients in a 

specialty epilepsy clinic (Leppik et al., 2002). Other than to assess compliance or investigate 

potential toxicity, the main value of TDM for levetiracetam is in adjusting dosage for renal 

insufficiency (Patsalos, 2000, 2004; Patsalos et al., 2008; Radtke, 2001).  In collecting samples 

for drug monitoring, serum or plasma should be separated from whole blood rapidly, as in 

vitro hydrolysis of levetiracetam can occur in the blood tube and thus lead to artifactually 

low concentrations (Patsalos et al., 2006). 

5.7 Oxcarbazepine 

Oxcarbazepine has a chemical structure related to carbamazepine but causes less 
induction of liver enzymes. Oxcarbazepine is rapidly and completely absorbed and 
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metabolized to its monohydroxy derivative 10-hydroxycarbazepine (Larkin et al., 1991; 
Lloyd et al., 1994; May et al., 2003). 10-Hydroxycarbazepine is further metabolized, 
primarily by glucuronidation.  The clearance of 10-hydroxycarbazepine is reduced in 
renal insufficiency (Rouan et al., 1994) and in the elderly (Perucca, 2006). The clearance of 
10-hydroxycarbazepine is increased in pregnancy (Christensen et al., 2006; Mazzucchelli 
et al., 2006) and in patients taking liver enzyme-inducing drugs (May et al., 2003).  
Children require higher doses of oxcarbazepine per body weight than adults (Battino et 
al., 1995). 10-Hydroxycarbazepine and oxcarbazepine have similar potencies for 
anticonvulsant activity; however, 10-hydroxycarbazepine generally accumulates to higher 
concentrations in serum and thus accounts for the majority of the antiseizure activity 
(Lloyd et al., 1994). 
Consequently, TDM for oxcarbazepine generally focuses on measurement of serum/plasma 

concentrations of the monohydroxy metabolite (Patsalos et al., 2008). Although 10-

hydroxycarbazepine distributes into saliva, there are dose-dependent variations in the 

correlation between 10-hydroxycarbazepine saliva and serum concentrations that limit the 

utility of saliva as an alternative specimen for TDM of oxcarbazepine (Cardot et al., 1995; 

Kristensen et al., 1983; Miles et al., 2004). In clinical research studies, a wide range of 10-

hydroxycarbazepine serum concentrations (3-35 mg/L) were observed to be clinically 

effective in seizure treatment (Friis et al., 1993), with toxic side effects being more common 

at serum/plasma concentrations of 35 mg/L or higher (Striano et al., 2006). TDM for 

oxcarbazepine is justified when changes are expected that might alter 10-

hydroxycarbazepine clearance including pregnancy, concomitant use of liver enzyme-

inducing drugs, or renal insufficiency. 

5.8 Pregabalin 

Pregabalin was originally designed to be a more potent analog of gabapentin (Selak, 2001) 

and shares many clinical similarities to gabapentin, including widespread use to manage 

conditions other than epilepsy such as neuropathic pain and fibromyalgia (Acharya et al., 

2005; LaRoche & Helmers, 2004a). Pregabalin has very advantageous pharmacokinetics 

including high bioavailability, low binding to plasma proteins, minimal metabolism, and no 

significant drug-drug interactions (Busch et al., 1998). The majority of the absorbed dose 

(~98%) is excreted unchanged in the urine. Clearance of pregabalin approximates 

glomerular filtration rate (Corrigan et al., 2001), and dosing of pregabalin may need 

adjustment in patients with impaired renal function (Randinitis et al., 2003). Pregabalin is 

effectively cleared by hemodialysis (Yoo et al., 2009).  An approximate reference range of 

2.8-8.3 mg/L has been proposed for the use of pregabalin in managing seizures (Patsalos et 

al., 2008). The favorable pharmacokinetics of pregabalin generally obviates the need for 

TDM, other than to adjust dosing during renal failure or to assess compliance.  If monitoring 

is performed, the short half-life of pregabalin (4.6-5.8 hr) (Bockbrader et al., 2000) 

necessitates that care must be taken in the timing of blood draws for TDM. 

5.9 Rufinamide 

Rufinamide is a novel anticonvulsant approved for use in Europe in January 2007 and in the 

United States in December 2008 for Lennox-Gastaut syndrome (Hakimian et al., 2007; 

Heaney & Walker, 2007; Wheless & Vazquez, 2010; Wisniewski, 2010). Rufinamide is well-
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absorbed (80-90%) following oral administration (Perucca et al., 2008a). The peak exposure 

to rufinamide may increase significantly when taken with food as compared to an empty 

stomach. Consequently, patients are often counseled to take rufinamide in the same 

temporal relation to meals. Rufinamide is extensively metabolized, primarily by 

carboxyesterases, with only trace amounts of the parent drug excreted in feces or urine.  The 

primary metabolite is inactive and mainly excreted by the kidneys. 

Hepatic enzyme inducers such as carbamazepine and rifampin increase the excretion of 
rufinamide (Perucca et al., 2008a). Impaired renal function has minimal effect on clearance 
of rufinamde; however, increased doses of rufinamide are often needed in patients receiving 
hemodialysis due to removal of the drug by the dialysis procedure. Although reference 
ranges for rufinamide have not been well-defined yet, serum/plasma concentrations 
generally correlate with seizure control, allowing for determination of an individual 
therapeutic concentration that can be monitored over the course of chronic therapy 
(Luszczki, 2009; Perucca et al., 2008a; Wheless & Vazquez, 2010)  TDM for rufinamide can be 
especially helpful in patients receiving hemodialysis or who are also taking liver enzyme 
inducers. 

5.10 Stiripentol 

Stiripentol is an AEM that was originally approved in Europe in 2001 but is currently 

infrequently used. Stiripentol is rapidly absorbed following oral administration but has 

overall low bioavailability, in large part due to extensive first-pass metabolism by the liver.  

The hepatic metabolism of stiripentol is very complex, with at least 5 different metabolic 

pathways generating over a dozen metabolites. The dosing of stiripentol is further 

complicated by zero-order (saturation) elimination kinetics, with a marked decrease in 

clearance with increased dosage (Levy et al., 1983). Stiripentol is also highly (>99%) protein 

bound and prone to drug interactions that can alter the free fraction (Lacerda et al., 2006). A 

well-defined reference range for stiripentol has not been established, although one study 

showed that serum concentrations of 4-22 mg/L correlate with control of absence seizures in 

children (Farwell et al., 1993). 

The complex pharmacokinetics of stiripentol (extensive hepatic metabolism, high binding to 

plasma protein, and saturation kinetics) resemble that of phenytoin (Luszczki, 2009). 

Measurement of the free drug fraction of stiripentol may be clinically useful; however, 

methods to measure free fractions have not yet been reported.  When used in combination 

AEM therapies, stiripentol may cause drug-drug interactions by inhibiting the metabolism 

of carbamazepine, clobazam, phenobarbital, phenytoin, and valproic (Levy et al., 1984; Tran 

et al., 1997; Tran et al., 1996). 

5.11 Tiagabine 

Tiagabine is currently approved in the United States and Europe but is used infrequently 

due to a propensity to cause non-convulsive status epilepticus (Eckardt & Steinhoff, 1998; 

Kellinghaus et al., 2002; Schapel & Chadwick, 1996). Tiagabine is rapidly absorbed with 

high bioavailability but, unlike many of the other newer AEMs, is highly bound to 

proteins (> 96%) (Gustavson & Mengel, 1995). Co-therapy with valproic acid can increase 

the free concentrations of tiagabine by displacing tiagabine from serum protein binding 

sites (Patsalos et al., 2002). The hepatic metabolism of tiagabine is complex and extensive 
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with less than 1% of the absorbed parent drug excreted unchanged (Gustavson & Mengel, 

1995). The metabolism of tiagabine can be altered by concomitant therapy with liver 

enzyme inhibitors or inducers.  The serum half-life is typically 5-9 hr for patients on 

tiagabine monotherapy.  The half-life is reduced to 2-4 hr in patients receiving enzyme 

inducers (So et al., 1995). The serum half-life increases to 12-16 h in severe liver failure 

(Lau et al., 1997). Children have higher clearance than adults (Gustavson et al., 1997).  

Renal dysfunction does not significantly impact the pharmacokinetics of tiagabine (Cato 

et al., 1998). 

The inter-individual variation in hepatic metabolism makes tiagabine a candidate for 

TDM.  Further, the extensive binding of tiagabine to plasma proteins further suggests that 

measurement of free drug concentrations may be clinically useful (Dasgupta, 2007).  

However, a clear relationship between tiagabine serum/plasma concentration and 

therapeutic efficacy has not yet been established, with a broad reference range of 20-200 

ng/mL proposed (Patsalos et al., 2008; Uthman et al., 1998). For measurement of free drug 

concentrations, analytical sensitivity is an issue, with some assays having insufficiently 

low limits of sensitivity to measure clinically relevant free drug concentrations (Williams 

et al., 2003). Consequently, such analysis is only performed at specialized reference 

laboratories. 

5.12 Topiramate 

Topiramate has approval for treatment of epilepsy of children and adults, and also for the 

treatment of migraine headaches (LaRoche & Helmers, 2004a). Topiramate has high 

bioavailability (~80%) and low binding to serum proteins (Easterling et al., 1988).  Salivary 

topiramate concentrations correlate well with those in serum (with salivary concentrations 

being roughly 0.9 that in serum), which makes saliva an alternative specimen type for TDM 

(Jones et al., 2005; Miles et al., 2003). Approximately 50% of the absorbed dose is 

metabolized by the liver.  Hepatic enzyme inducers can decrease the serum half-life of 

topiramate from 20-30 hr to approximately 12 hr (Britzi et al., 2005; Sachdeo et al., 1996).  

Children generally eliminate topiramate faster than adults (Perucca, 2006; Rosenfeld et al., 

1999). A reference range of 5-20 mg/L has been proposed for topiramate for epilepsy 

therapy (Johannessen et al., 2003). TDM of topiramate is most useful due to variability in 

metabolism. 

5.13 Vigabatrin 

Vigabatrin is an irreversible inhibitor of GABA transaminase, an enzyme that catalyzes 

the elimination of GABA (Rey et al., 1992; Schechter, 1989). Vigabatrin has high 

bioavailability (60-80%), low binding to serum proteins and is primarily excreted 

unchanged in the urine (Durham et al., 1993; Rey et al., 1992). Dose reductions  of 

vigabatrin are generally needed in patients with renal failure (Rey et al., 1992). Clearance 

of vigabatrin increased during hemodialysis (Jacqz-Aigrain et al., 1997). The irreversible 

action of vigabatrin on its molecular target is likely the reason a wide range of 

serum/plasma concentrations (0.8-36 mg/L) of vigabatrin are associated with successful 

treatment with with vigabatrin. Other than to assess compliance or possible drug 

overdose, there is little value in monitoring vigabatrin plasma/serum concentrations 

(Patsalos, 1999). 

www.intechopen.com



 
Novel Treatment of Epilepsy 

 

146 

Drug 
Need for 

TDM 
Factors Favoring TDM Limitations of TDM 

Carbamazepine Frequent 
Auto-induction of metabolism; 

drug-drug interactions; high 
serum protein binding 

Free drug 
concentrations needed 

for some patients 

Clonazepam Uncommon
Distinguish tolerance from 

inadequate dosing 
Wide reference range; 
low toxicity incidence 

Eslicarbazepine 
acetate 

Intermediate
Decreased clearance with chronic 

dosing and liver failure 
Generally predictable 

pharmacokinetics 

Ethosuximide Intermediate Complex metabolism 
Wide reference range, 
variable toxicity range 

Felbamate Intermediate
Variable metabolism, potential 

for severe toxicity 
Uncertain reference 

range 

Gabapentin Uncommon
Decreased clearance with renal 

failure 
Wide reference range; 
low toxicity incidence 

Lacosamide Uncommon  Predictable dosing 

Lamotrigine Frequent 
Variable metabolism; significant 

drug-drug interactions 
 

Levetiracetam Intermediate
Decreased clearance with renal 

failure 
Wide reference range, 
low toxicity incidence 

Oxcarbazepine 
Intermediate 
to Frequent 

Variable metabolism, well-
defined toxic range 

 

Phenobarbital Frequent 
Drug-drug interactions, long half-

life 
Tolerance to drug can 

complicate TDM 

Phenytoin Frequent 
Variable absorption; high serum 

protein binding; drug-drug 
interactions; zero-order kinetics 

Free drug 
concentrations needed 
in some populations 

Primidone Intermediate
Long half-life of metabolites, 

potential for toxicity 
Need to monitor 

phenobarbital as well 

Pregabalin Uncommon
Decreased clearance with renal 

failure 
Wide reference range, 
low toxicity incidence 

Rufinamide 
Intermediate 
to Frequent 

Variable absorption; drug-drug 
interactions; decreased clearance 

with renal failure 

Uncertain reference 
range 

Stiripentol Frequent 
Extensive first-pass metabolism, 

high serum protein binding, zero-
order kinetics 

 

Tiagabine Intermediate High serum protein binding 
Uncertain reference 

range 
Topiramate Intermediate Variable metabolism  

Valproic acid Frequent 
Well-established therapeutic 

range 

Limited correlation of 
plasma concentration 

and efficacy 
Vigabatrin Uncommon  Irreversible action 

Zonisamide Frequent 
Variable metabolism, well-define 

toxic range 
 

Table 2. Summary of Justifications of TDM of AEMs 
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5.14 Zonisamide 

Zonisamide is approved in the United States for adjunctive treatment of partial seizures but 
is also used ‘off-label’ for bipolar disorder and migraine headaches (Leppik, 1999; Mimaki, 
1998). After oral administration, zonisamide is rapidly absorbed and is only approximately 
50% bound to serum proteins. Zonisamide is extensively metabolized by acetylation, 
oxidation, and other enzymatic pathways (Buchanan et al., 1996). CYP3A4 is responsible for 
some of the metabolism of zonisamide.  Consequently, the metabolism of zonisamide can be 
significantly affected by CYP inducers and inhibitors. The elimination half-life of 
zonisamide is approximately 50-70 hr for patients receiving zonisamide as monotherapy but 
decreases to 25-35 hr in patients concomitantly taking enzyme inducers such as 
carbamazepine or phenobarbital. On the other hand, liver enzyme inhibitors such as 
ketoconazole and valproic acid may prolong zonisamide half-life (Perucca & Bialer, 1996).  
Zonisamide is cleared effectively by hemodialysis (Ijiri et al., 2004). In general, children 
require higher doses by weight than adults (Perucca, 2006). A serum/plasma reference 
range of 10-40 mg/L has been proposed for seizure management (Glauser & Pippenger, 
2000; Mimaki, 1998). Toxic side effects are uncommon at serum concentrations below 30 
mg/L (Miura, 1993). The main reason to perform TDM for zonisamde is inter-individual 
variability in metabolism, particularly in patients concomitantly taking CYP enzyme 
inducers or inhibitors. 

6. Conclusion 

TDM has traditionally been applied to the first generation AEMs such as carbamazepine, 
phenobarbital, phenytoin, and valproic acid, mainly due to the challenging pharmacokinetics 
of this group of drugs. The newer generation AEMs generally have more favorable 
pharmacokinetics and fewer adverse effects.  The strongest evidence for routine TDM for the 
new generation AEMs are for lamotrigine, oxcarbazepine (10-hydroxycarbazepine metabolite), 
stiripentol, tiagabine, and zonisamide. For other AEMs, TDM may have value in adjusting 
dosing for organ failure or to assess compliance with therapy.  Future research is needed to 
better delineate reference ranges and to establish the benefit of TDM in clinical practice. 
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