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1. Introduction 

Prostaglandins, hormone-like substances initially isolated from human semen in 1930, got 
their name from the presumption that they predominately come from the prostate gland 
(von Euler 1936). In fact, prostaglandins are lipid mediators generated by a wide variety of 
cell types and tissues. Being derivatives of 20 carbon fatty acids, their common feature is 20-
carbon skeleton which includes 5-member carbon ring. Prostaglandins are major players in 
human physiology in both healthiness and illness and are key molecules in the generation of 
the inflammatory response (Miller 2006). Their synthesis is drastically increased in inflamed 
tissue and prostaglandin-mediated signaling contributes to the development of acute 
inflammation (Ricciotti and Fitzgerald 2011). Prostaglandins regulate a number of principal 
signal transduction pathways that modulate progression of renal diseases: cellular adhesion, 
growth, and differentiation. Cyclooxygenases (also termed PGH2 synthases) are key 
enzymes in the production of prostaglandins from arachidonic acid and an immediate 
product of cyclooxygenase activity, prostaglandin H2 (PGH2), is used as a substrate by a 
number of terminal prostaglandin- and thromboxane synthases to produce a whole series of 
potent bioactive prostanoids. Multiple extracellular mitogens, including PDGF and 
endothelins, are involved in the pathogenesis of proliferative forms of glomerulonephritis. 
They share ability to induce Cox-2 expression in glomerular cells resulting in the release of 
prostanoids, with PGE2 being a major prostaglandin produced by renal cells. Selective Cox-2 
inhibitors have an anti-inflammation effect and reduce manifestation of experimental 
membranous glomerulonephritis. This chapter will discuss the role of prostaglandin 
synthesis and signaling via specific prostaglandin receptors in the progression of different 
types of glomerulonephritis.  

2. Cellular synthesis of prostaglandins  

Arachidonic acid is released from membrane glycerophospholipids by phospholipase A2 
and is converted to PGH2 by cyclooxygenases in two steps. Firstly, it is catalyzed to the 
cyclic endoperoxidase, prostaglandin G2 (PGG2), via an intermediate radical. After that 
PGG2 is further transformed to PGH2 by a peroxidase reaction (Fig.1). Remarkably, 
cyclooxygenase molecule possesses two distinct active sites which are responsible for both 
steps (Marnett et al. 1999; Smith et al. 2000). The cyclooxygenase active site appears to be an 
L-shaped hydrophobic channel which contains active-site Tyr-385 shown to be directly 
involved in catalysis, whereas other residues in the active-site are controlling arachidonic 
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acid positioning to ensure that PGG2 is produced, not hydroperoxide side products 
(Thuresson et al. 2001). Both radical abstraction by a tyrosyl radical and combined 
radical/carbocationic models have been proposed for this reaction, but a combined 
radical/carbocation mechanism seems to be less likely (Silva et al. 2007). Generation of 
tyrosyl radical at Tyr-385 at cyclooxygenase active site is a consequence of oxidation of the 
heme group at the peroxidase active site by a hydroperoxide. The peroxidase site activity 
catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to produce the 
PGG2 and as indicated by site-directed mutagenesis the conserved cationic pocket is 
involved in enzyme-substrate binding (Chubb et al. 2006). Since cyclooxygenases function as 
homodimers and each monomer contains its own cyclooxygenase and peroxidase active 
sites, one would expect to have four total active sites per functional unit (dimer) of enzyme. 
On the contrary, it was shown, that while enzyme monomers comprising a dimer are 
identical in the resting enzyme, they differ from one another during catalysis: the 
nonfunctioning subunit provides structural support enabling its partner monomer to 
catalyze the cyclooxygenase reaction (Yuan et al. 2006). Each monomer of the functional 
 

 

Fig. 1. Synthesis of prostanoids from arachidonic acid. Arachidonic acid is liberated from 
phospholipid by phospholipase A2 which acts at the sn-2 position of glycerophospholipid 
(site shown by blank arrow). Both cyclooxygenase and peroxidase reactions catalyzed by 
cyclooxygenases are shown. Further conversion of cyclooxygenase products by terminal 
prostaglandin synthases is also depicted.  
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cyclooxygenase homodimer attaches to the endoplasmic reticulum or nuclear envelope 
membrane through membrane binding domain which contains the main route of substrate 
entry into the cyclooxygenase active site (Menter et al. 2010; Spencer et al. 1999; 
Chandrasekharan and Simmons 2004). Being a relatively unstable intermediate, PGH2 is 
rapidly converted to distinct prostanoids by corresponding terminal prostaglandin synthases 
(Helliwell et al. 2004). Five major active prostanoids produced in vivo are PGF2α, PGD2, PGE2, 
prostacyclin (PGI2) and thromboxane (TXA2) (Fig.1). J-series prostaglandins including PGJ2, 

12-PGJ2, and 15-deoxy- 12,14- PGJ2 (15d-PGJ2) are naturally occurring metabolites of PGD2. 
In addition to prostaglandin synthase mediated conversion to prostanoids, PGH2 can undergo 

spontaneously non-enzymatically decomposition, resulting in production of -keto aldehydes 
– levuglandins (Salomon and Miller 1985). Since PGI2 contains an oxygen bridge between 
carbons 6 and 9, whereas TXA2 is characterized by unstable bicyclic oxygenated ring, they are 
structurally different from prostaglandins and considered to be separate groups of lipid 
mediators. In this chapter we will discuss the cellular regulation and signaling of only three 
true prostaglandins PGF2α, PGD2 and PGE2. 
There are two isoforms of cyclooxygenses: Cyclooxygenase 1 (Cox-1) and Cyclooxygenase 2 
(Cox-2) which differ remarkably in the mode of expression (Smith et al. 2000). Cox-1 is 
characterized by constitutive expression in most tissues, whereas Cox-2 is the inducible form 
of the enzyme, which is expressed upon stimulation with a wide variety of growth factors and 
cytokines (DuBois et al. 1998; Smith et al. 2000). Both Cox-1 and Cox-2 catalyze the same 
enzymatic reaction and segregated utilization of Cox-1 and Cox-2 (even whey they are 
expressed in same cell) is believed to occur in the distinct  prostaglandin biosynthetic 
pathways (Kudo and Murakami 2005). Even though Cox-2 expression is often a part of the 
complex biological response (such as inflammation) to harmful stimulus or pathogens, the 
constitutive expression of Cox-2 is observed in restricted subpopulations of cells (Harris and 
Breyer 2001). In renal cortex Cox-2 expression was localized to the macula densa of the 
juxtaglomerular apparatus and to adjacent epithelial cells of the cortical thick ascending limb 
of Henle (Harris et al. 1994). Since macula densa cells are constantly exposed to varying levels 
of luminal salt concentrations and stress-inducing variability in osmolarity (Bell et al. 2003) the 
constitutive activation of Cox-2 in these cells could be explained by resulting steady activation 
of intracellular signaling pathways known to regulate Cox-2 expression. Given that enforced 
activation of three major mammalian MAPK (ERK, SAPK and p38 MAPK) leads to the 
induction of Cox-2 mRNA and protein (McGinty et al. 2000) it is possible that constitutive 
activation of any of these MAPK in macula densa cells is the cause of Cox-2 up-regulation. The 
transcriptional regulation of Cox-2 is studied in sufficient details. Overall, expression of Cox-2 
mRNA is regulated by several transcription factors including the cyclic-AMP response 
element binding protein (CREB), nuclear factor kappa B (NFkB) and the CCAAT-enhancer 
binding protein (C/EBP) (Tsatsanis et al. 2006). Another example of cells constitutively 
expressing Cox-2 is offered by tumor cells of different origin. Not only tumor progression is 
frequently accompanied by enlarged Cox-2 expression, but also selective Cox-2 inhibitors 
shield against the formation of numerous tumor types in experimental animals (Dannenberg et 
al. 2005). It is likely, that increased expression of Cox-2 in tumor cells can be in part caused by 
constitutively active signaling cascades set off by activating mutations in signaling molecules 
which happen in carcinogenesis. It is generally accepted that Cox-2-mediated resistance to 
apoptosis of cancer cells is amongst mechanisms of Cox-2 related tumor promotion (Riedl et al. 
2004; Arun and Goss 2004). Since anticancer drugs typically act through induction of apoptotic 
cell death in cancer cells (Jendrossek and Handrick 2003; Kawanishi and Hiraku 2004), Cox-2 
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expression antagonizes anticancer treatment making cells resistant to apoptosis and therefore 
decreases the efficiency of therapy.  
Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit both cyclooxygenase 
isoforms and act as competitive active site inhibitors (Ricciotti and Fitzgerald 2011). It is 
believed, however, that NSAIDs have their anti-inflammatory, analgesic and antipyretic effects 
due to inhibition of Cox-2. There is a lot of interest in NSAIDs as possible accessories to cancer 
chemotherapy (Moore and Simmons 2000; Subbaramaiah et al. 1997; Thun et al. 2002) and they 
were shown to reduce incidence of colon cancer (DuBois et al. 1998). Still their undesirable side 
effects such as gastrointestinal ulceration, bleeding and platelet dysfunctions (due to inhibition 
of Cox-1) drastically limited enthusiasm about them as anti-cancer drugs. Since a new class of 
Cox-2 selective inhibitors (COXIBs) which preferentially inhibit the Cox-2 with significantly 
reduced side effects became available, these compounds have emerged as an important 
therapeutic tool for treatment of pain and arthritis (3). Again, the initial excitement about Cox-
2 selective inhibitors has diminished in recent times because it became clear that their use is 
associated with an increased cardiovascular risk (Fitzgerald 2004; Furberg et al. 2005). 
Furthermore, COXIBs can probably act independently of their effect upon Cox-2 (Hanif et al. 
1996) leaving physicians uncertain about mechanism of their action.  
Biologically active prostaglandins regulate various physiological functions outside kidney 
which are of principal significance for embryo development, performance of cardiovascular 
and nervous systems and multiple other biological processes not necessarily connected with 
renal pathologies. The aim of current chapter is to evaluate the role of Cox-2 activity in the 
progression of glomerulonephritis and analyze contribution of signaling pathways initiated 
by particular prostaglandins to the manifestation of the disease. We will also discuss 
regulation of glomerular prostaglandin synthesis both by regulation of Cox-2 expression 
and by interaction of Cox-2 with specific proteins spatially co-localized with the enzyme in 
its natural environment. The significance of the discussed issues is that this cellular 
regulation of prostaglandin synthesis is an important contributor to the progression of 
glomerular renal diseases. 

3. Renal effects of prostaglandins  

3.1 Signaling by prostaglandins  

Newly synthesized prostaglandins are crossing the membrane two times: first they are 
secreted into the extracellular space and later on operate as local hormones in the locality of 
their production site and again enter the cell prior to inactivation. The efflux could be 
maintained by simple diffusion, but often is facilitated by several prostaglandin carriers – 
transporters, which maintain energy-dependent prostaglandin transport across the plasma 
membrane (Schuster 2002). The common feature of all extracellular prostaglandins is that they 
accomplish their biological task via binding and activation of seven transmembrane domain 
G-protein coupled receptors (GPCR), of which eight types and subtypes (FP, DP, IP, TP and 
EP1-4) are known (Narumiya et al. 1999). The rank order of affinity of prostaglandin ligands to 
their receptors is known and roles of individual receptors were established in individual mice 
knockdown systems (Kobayashi and Narumiya 2002). The mouse FP receptor binds PGF2α 
with high affinity, IP receptor binds prostacyclin analogs, thromboxane is a ligand for TP 
receptor. Likewise, mouse DP receptor binds PGD2, but PGD2 can also interact and signal via 
chemoattractant receptor named CRTH2 (chemoattractant receptor homologous molecule 
expressed on Th2 cells), a seven-transmembrane G protein–coupled receptor selectively 
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expressed in Th2 cells, T cytotoxic type 2 cells, eosinophils, and basophils (Satoh et al. 2006). DP 
receptor and CRTH2 receptor are named DP1 and DP2 receptors. PGE2 is the most versatile 
prostaglandin because it has four types of receptors (Milatovic et al. 2011). All four EP 
receptors bind PGE2 albeit with different affinity. The EP1 receptor couples with the Gq protein 
and activates phospholipase C inducing mobilization of intracellular Ca2+. The EP2 and EP4 
receptors are coupled with the Gs protein, so they signal through elevation of intracellular 

cAMP levels and stimulate protein kinase A. On the contrary, the EP3 receptor is coupled with 
the Gi protein causing the decrease of intracellular cAMP levels. Additionally to exerting their 
actions via G-protein coupled receptors, prostaglandins can activate peroxisome proliferator-
activated receptors (PPAR), the superfamily of nuclear receptors that function as ligand-
activated transcription factors (Rizzo and Fiorucci 2006). While three PPAR isoforms were 
described (PPAR-┙, PPAR-┚/├, and PPAR-┛), PPAR-┛ appears to be an intracellular target of 
15d-PGJ2 (Scher and Pillinger 2005).  

3.2 Renal expression of prostaglandin receptors  
Since focus of our attention is renal action of prostaglandins, intra-renal distribution of only 
prostaglandin receptors FP, EP1-4 and DP will be discussed. For information about 
thromboxane TP and prostacyclin IP receptors please look at the excellent review by Breyer 
and Breyer (Breyer and Breyer 2001) and recent update by Nasralla and co-authors (Nasrallah 
et al. 2007). Using RT-PCR analysis and immunohistochemistry intra-renal distribution was 
established for the majority of prostaglandin receptors and transporters (Fig.2). 
 

 

Fig. 2. Intra-renal distribution of selected prostaglandin receptors and transporters.  
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3.2.1 EP1 receptors  
EP1 is expressed in glomerulus, collecting duct and vasculature (Breyer and Breyer 2001). 
Northern blotting indicated EP1 expression in glomerular mesangial cells (Ishibashi et al. 
1999). In reverse transcription-PCR studies, podocyte mRNA for the EP1 could be amplified 
(Bek et al. 1999). In a mouse model of accelerated antiglomerular basement membrane (anti-
GBM) nephrotoxic serum (NTS) nephritis EP1 knockout resulted in stronger impairment of 
renal function (Rahal et al. 2006). EP1 receptor immunoreactiviy is found in human renal 
tissue mainly in connecting segments, cortical and medullary collecting ducts, as well as in 
the media of arteries and afferent and efferent arterioles (Morath et al. 1999). It is not found 
in either proximal tubules, or thin limbs, thick ascending limbs of Henle's loop or distal 
convoluted tubules (Morath et al. 1999). It is able to mediate pain perception and regulate 
blood flow (Stock et al. 2001).  

3.2.2 EP2 receptors  
The exact intra-renal distribution of EP2 receptors is not entirely defined. Northern blot 
analysis of EP2 mRNA distribution suggested diffuse expression with no specific increased 
localization in any particular segments of nephron (Breyer and Breyer 2001). RT-PCR 
analysis of microdissected rat nephron segments implied EP2 expression in Henle's loop and 
in vasa recta of the outer medulla (Jensen et al. 2001). Immunolocalization data 
demonstrated prominent staining of EP2 receptor only in the media of human arteries and of 
glomerular arterioles whereas staining of other structures of renal cortex or medulla was 
negative (Morath et al. 1999). It is interesting, that whereas EP2 receptor is hard to detect in 
normal human kidney, EP2 receptor expression was prominent in cystic epithelial cells 
lining cysts in polycystic kidney tissue from patients with autosomal-dominant polycystic 
kidney disease (Elberg et al. 2007).  

3.2.3 EP3 receptors  
There are more than six alternatively spliced variants of EP3 receptor in humans which 
differ by unique COOH-terminal intracellular tails (Breyer and Breyer 2000). By in situ 
hybridization and reverse-transcription PCR the intra-renal location of EP3 receptor was 
shown to be the thick ascending limb (TAL) and collecting duct. Immunohistochemistry 
confirmed expression of EP3 receptor in late distal convoluted tubules and in cortical and 
medullary collecting ducts (Morath et al. 1999). 

3.2.4 EP4 receptors  
EP4 receptor mRNA is found predominately in glomerulus. Like EP2 receptors, EP4 signals 
through increase of cAMP production, but it is much more abundant (Breyer and Breyer 
2000). The strongest expression of the human protein was detected in smooth muscle cells of 
arteria, vasa recta and in glomerulus (Morath et al. 1999). In glomerulus EP4 is detected in 
mesangial cells and podocytes (Ishibashi et al. 1999; Bek et al. 1999). 

3.2.5 FP receptors  

Studies using FP receptor promoter driving a -galactosidase reporter indicated that these 
receptors are expressed in distal convoluted tubule (Breyer and Breyer 2001). Expression of 
gene encoding FP receptor in distal convoluted tubule and cortical collected duct was 
further confirmed by in situ hybridization, whereas glomeruli, proximal tubules, or thick 
ascending limbs showed no expression (Saito et al. 2003; Hebert et al. 2005a).  
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3.2.6 DP receptors  

Even though DP receptor renal localization has not been shown for any species (Breyer and 
Breyer 2001), indirect evidence (altered tubular transport and haemodynamic effects of 
infused PGD2) suggest the presence of renal DP receptors (Nasrallah et al. 2007). 

3.3 Renal effect of PGE2  

3.3.1 Non-glomerular renal effect of PGE2  

It is sometimes difficult to distinguish glomerular and non-glomerular effects of 
prostaglandins, since even when the target cells are located outside the glomerulus, 
prostaglandin-mediated signaling events could be still relevant for the maintenance of 
glomerular function. For example changes in vascular tone could contribute to 
hypertension, which affects glomerular filtration rate. For the purposes of this review we 
consider effects of prostaglandins to be non-glomerular, if target cells are localized outside 
the glomeruli. PGE2 is indisputably the most abundant kidney prostaglandin and since, in 
addition, it signals via four distinct subtypes of EP receptors, the renal effects of PGE2 are 
multiple and complex. Furthermore, some of non-renal PGE2 effects were abolished by 
inhibitors of EGF receptor tyrosine kinase indicating that transactivation of EGF receptor is 
part of the complex response to PGE2 (Buchanan et al. 2003; Ding et al. 2005; Han et al. 2006). 
PGE2-mediated transactivation of EGF receptor can’t be ruled out for renal effects of PGE2 

either. Adding additional level of complexity, heterodimerization of EP1 with 2-adrenergic 
receptors was reported (McGraw et al. 2006). Probably the most important renal non-
glomerular roles of PGE2 are regulation of tubular transport processes along the nephron 
and regulation of vascular tone (Nasrallah et al. 2007). Availability of knockout mice 
deficient in each EP subtype facilitated understanding the role of each receptor subtype in 
renal and non-renal effects of PGE2 (Sugimoto and Narumiya 2007; Kobayashi and 
Narumiya 2002). Thus, studies of mice deficient in each EP subtypes demonstrated that EP4 
receptor mediates renin secretion and that signaling via EP1, EP3, and EP4 receptors 
contributes to increased PGE2-mediated salt and water excretion in the model of 
hyperprostaglandin E syndrome/antenatal Bartter syndrome, a renal disease which is 
characterized by NaCl wasting, water loss, and hyperreninism (Nusing et al. 2005). In 
another study on isolated perfused kidneys from knockout mice both EP2 and EP4 
stimulated renin secretion and all four subtypes were controlling renal vascular tone: EP1 
and EP3 receptors were increasing it, whereas EP2 and EP4 were decreasing it (Schweda et al. 
2004). Afferent arteriole diameter responses to vasoconstrictor peptide Endothelin-1 were 
enhanced in mice deficient in EP2 receptor, indicating that PGE2 vasodilative activity is 
handled at least partially through EP2 (Imig et al. 2002). Similar data was obtained using 
mice deficient in microsomal PG synthase-1 (PGE synthase), enzyme responsible for 
converting PGH2 into PGE2. In these mice a 7 day AngII infusion at 0.35 mg/kg per day via 
osmotic minipump induced marked hypertensive response, which did not occur in wild 
type mice, suggesting that PGE2 attenuates Ang II-induced vasoconstriction, probably 
because of inhibition of NADPH oxidase-dependent ROS production (Jia et al. 2008). Basal 
renal hemodynamics was not affected by EP2 deficiency, but absence of EP3 caused 
significant increase in basal renal blood flow. EP3 receptor mediates vasoconstriction in the 
kidney, controls renal blood flow in basal state and buffers PGE2-mediated renal 
vasodilation (Audoly et al. 2001).  
Sodium reabsorption by epithelial Na+ channels (ENaC) located on the apical membrane of 
kidney distal and collecting duct plays central role in the maintenance of the extracellular 
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fluid volume. Two classes of arachidonic acid metabolites, those produced by cytochrome P 
450 enzymes (HETEs and EETs) and those generated by cyclooxygenases (prostaglandins) 
have opposite effect upon ENaC activity (Wang et al. 2009). 11,12-EET, 8,9-EET and 14,15-
EET significantly inhibited ENaC NPo (probably due to direct and very fast interaction 
between EETs and ENaC) whereas PGE2 had stimulatory effect and acted via second 
messengers (such as cAMP) (Wang et al. 2009). The Na+ balance and ENaC status are 
determined by interplay of the formation and actions of these two types of lipid mediators. 
PGE2 also regulates (through Gs-coupled EP2 and Gq-coupled EP1) expression of ion carrier 
Na+/K+-ATPase (Nasrallah et al. 2007; Matlhagela and Taub 2006). On the transcriptional 

level PGE2 was stimulating expression of  subunit of Na+/K+-ATPase encoded by the 
ATP1B1 gene.  
PGE2 also stimulates a number of anti-apoptotic signaling cascades in a variety of renal cells. 
Well established anti-apoptotic effect of Cox-2 is mediated as a general rule by anti-
apoptotic signaling by PGE2. Thus, in the process of autosomal-dominant polycystic kidney 
disease PGE2 is released to cyst fluid, binds to EP2 receptor, causes synthesis of cAMP and 
protects cystic epithelial cells from apoptosis eventually leading to cyst expansion (Elberg et 
al. 2007). Renal medullary interstitial cells are under significant osmotic/mechanical stress in 
vivo and respond to stress by expression of considerable levels of Cox-2 resulting in PGE2 
production (Carlsen et al. 2010). Inhibiting of PGE2 synthesis in medullary interstitial cells 
was associated with their death and underlies to NSAID-associated injury in renal medulla 
(Hao et al. 1999). It appears that PGE2 induces the expression of osmoprotective genes, 
including Cox-2, in medullary cells and promotes their survival and adaptation to 
increasing interstitial tonicities (Neuhofer et al. 2007). This positive feedback of PGE2 upon 
Cox-2 expression during osmotic stress is mediated by binding to EP2 receptors and 
resulting activation of cAMP-PKA signaling pathway (Steinert et al. 2009). 

3.3.2 Contribution of signaling pathways initiated by PGE2 to the manifestation of the 
glomerulonephritis  

Different types of glomerulonephritis could be classified based on their clinical presentation 
or histopathology (Khanna 2011). Regardless glomerulonephritis etiology, the deterioration 
of renal function is often accompanied by a number of pathological processes which all 
contribute to the progression of renal injury. These prominent features include the 
progressive accumulation of extracellular matrix components, inflammatory changes, and in 
several types of glomerulonephritis also proliferation of glomerular mesangial cells and 
podocytes injury or proliferation (Kurogi 2003; Alchi and Jayne 2010; Couser and Johnson 
1994; Gomez-Guerrero et al. 2005; Bariety et al. 2005). In this and similar sections we will 
review the potential contribution of particular prostaglandin to the signaling cascades 
underlying these pathological changes.  
PGE2 had pronounced mitogenic effect upon glomerular mesangial cells (Floege et al. 1991a; 
Floege et al. 1991b) and also induced DNA synthesis in glomerular core preparations 
enriched in mesangial cells (Mahadevan et al. 1996). The role of PGE2 in accumulation of the 
extracellular matrix and structural components of glomerular basement membrane in 
glomeruli observed in patients with hypertensive syndromes of pregnancy has been 
suggested long ago (Foidart et al. 1983). Urinary concentrating functions were studied in EP3 
deficient mice and these mice did not loose their ability to concentrate and dilute urine 
normally in response to physiological stimuli, but urinary osmolarity increased significantly 
in wild type mice, but not in EP3 null mice after inhibition of prostaglandin production by 

www.intechopen.com



 
Glomerulonephritis and Cellular Regulation of Prostaglandin Synthesis 

 

149 

indomethacin (Fleming et al. 1998). PGE2 signaling through EP4 receptors mediates podocyte 
injury and affects the glomerular filtration barrier (Stitt-Cavanagh et al. 2010). 
PGE2 is synthesized from PGH2 by terminal PGE synthase mPGES-1. Since deletion or 
inhibition of mPGES-1 strikingly reduced inflammatory response in mouse models, PGE2 

emerged as an important mediator of inflammation (Ricciotti and Fitzgerald 2011). The 
progression of glomerulonephritis is accompanied by inflammation and enhanced 
production of PGE2, is likely to contribute to inflammatory response, but the majority of 
studies using mPGES-1 null mice which link PGE2 to inflammation did not focus on kidney 
injury (Ricciotti and Fitzgerald 2011). In a recent study mPGES-1 null mice were found to be 
protected from cisplatin induced nephrotoxicity, but not from acute kidney injury caused by 
ischemia-reperfusion or endotoxin (Jia et al. 2011). Direct evidence of PGE2 involvement in 
inflammation will come from an analysis of experimental model of glomerulonephritis 
induced in mPGES-1 null animals. Due to the signaling via different receptors, PGE2 is 
capable of both promoting and opposing the inflammatory response in several disorders 
(Ricciotti and Fitzgerald 2011; Milatovic et al. 2011)  

3.4 Renal effect of PGF2  

3.4.1 Non-glomerular renal effect of PGF2  
PGF2α is generated in different parts of the body, but due to rather quick inactivation by 15-
prostaglandin dehydrogenase the half-life of released PGF2α in circulation is less than 1 min. 
Since PGF2α is sometimes considered as the most likely endothelium-derived contraction 
factor underlying endothelium-dependent, thromboxane-prostanoid receptor-mediated 
contractions to acetylcholine in the vasculature (Wong et al. 2009), fast inactivation is 
important for maintenance of normal vascular function. PGF2α activates two spliced 
isoforms of FP receptor, which are coupled to Gq (Nasrallah et al. 2007). In cortical 
connecting duct PGF2α increases calcium level and through pertussis-toxin sensitive 
pathway regulates water transport (Hebert et al. 2005b) and salt balance (Breyer and Breyer 
2001). PGF2α significantly enhanced the ENaC open probability NPo (Wang et al. 2009). 
Latanoprost, agonist of FP receptor, dramatically reduced vasopressin-induced water 
permeability in microperfused rabbit collecting ducts (Hebert et al. 2005a). In summary non-
glomerular renal effects of PGF2α are mainly relate to regulation of water and sodium 
transport.  

3.4.2 Contribution of signaling pathways initiated by PGF2 to the manifestation of the 
glomerulonephritis  
Since PGF2α is involved in a number of inflammation and oxidative stress related pathologies 
(Basu 2010) and could be produced in kidney in substantial amount, it’s role in the 
inflammatory kidney diseases should be considered. Glomerular synthesis of PGF2α (and some 
other prostaglandins including PGE2) was stimulated by donors of oxygen radicals, which are 
likely to stimulate glomerular phospholipases at an early stage of experimental 
glomerulonephritis (Baud et al. 1981). PGF2α is a potent stimulator of glomerular mesangial cell 
growth and its ability to promote DNA synthesis in quiescent mesangial cells is likely to be 
mediated by PLC activation as assessed by increased 1,4,5-inositol trisphosphate (IP3) 
generation and diacylglycerol (DAG) synthesis (Breshnahan et al. 1996; Kelefiotis et al. 1995). 
PGF2α also rapidly increases free cytosolic calcium promoting mesangial cell contraction. 
Through calcium-dependent mechanism PGF2α caused cytosolic acidification of mesangial 
cells followed by recovery and net alkalinization mediated by enhanced Na(+)-H+ exchange 
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(Mene et al. 1991). Effect of PGF2α on increased glomerular mesangial cells calcium level could 
modulate glomerular contraction and affect glomerular function in glomerulonephritis. 

3.5 Renal effect of PGD2  
3.5.1 Non-glomerular renal effect of PGD2  

There are not many reports about PGD2 function in kidney. This prostaglandin is among 
major products of cyclooxygenases in macrophages and in bone marrow and is likely to 
play role in immunological responses (Padilla et al. 2000). It is capable to be converted to 
prostaglandin 15-deoxy-delta 12,14-PGJ2 (15d-PGJ2) that interacts with peroxisome 

proliferator-activated receptor  (PPAR) to promote ROS production and apoptosis in 
kidney proximal tubule cells (Padilla et al. 2000; Nasrallah et al. 2007). PGD2 inhibited 

TGF1-induced epithelial-to-mesanchymal transition in MDCK cells (Zhang et al. 2006). In 
samples of renal papillary tissue PGD2 modulates phosphatidylcholine biosynthesis through 
ERK and PLD activation (Fernandez-Tome et al. 2004). 

3.5.2 Contribution of signaling pathways initiated by PGD2 to the manifestation of the 
glomerulonephritis  

In cultured mesangial cells 15d-PGJ2, derivative of PGD2, inhibited IFN-stimulated generation 
of cytokines presumably by targeting JAK/STAT signaling (Panzer et al. 2008). Since synthetic 

PPARligands failed to produce similar effect, it is likely that in this case 15d-PGJ2 acted 

independent of PPAR interaction. Nevertheless, PPAR , and correspondingly 15d-PGJ2, was 

shown to play protective role in glomerular diseases (Chung et al. 2005). PPAR is known to 

form heterodimers with 9-cis-retinoic acid receptor (RXR) and, following ligand activation, to 

bind to PPAR-responsive element (PPRE) which are present in the promoters of it’s target 

genes (Kliewer et al. 1992). In addition PPAR is also capable to antagonize the activities of 

other transcription factors (AP-1, STAT, NF-B) and thus influence gene expression indirectly 
(Ricote et al. 1998). Although the pathogenesis of glomerulosclerosis is elusive, the imbalance 
between ECM synthesis and dissolution is the critical determinant of matrix accumulation. 
This net matrix turnover reflects rapid and specific changes in gene expression controlled by 
transcription factors that mediate various pathways of cellular injury. PPAR┛ is such a factor 
and has recently attracted significant attention for its anti-inflammatory and anti-fibrotic 
effects against diverse injuries in kidney, liver, lung and heart (Chung et al. 2005; Sugawara et 
al. 2010). The most recognized renal effect of agonists of PPARg on diabetic nephropathy is as 
a rule related to the improved glucose metabolism and insulin resistance. But, there is 
mounting evidence now that PPAR┛ also elicits nonmetabolic functions in the progression of 

glomerular diseases. Thus, PPAR activation prevented albuminuria and enhanced glomerular 
ECM gene expression in models of both insulin dependent and independent diabetes and in 
5/6 nephrectomized rats (Imano et al. 1998; Ma et al. 2001; Fujii et al. 1997). These effects were 
observed in the absence of changes in glucose level and systemic blood pressure. In cell 

culture, PPAR inhibits ECM gene expression in mesangial cells (Maeda et al. 2005; Nicholas et 
al. 2001; Zheng et al. 2002). These effects emphasize the anti-fibrotic and anti-inflammatory 

roles of PPAR in attenuating the progression of glomerular diseases. 

3.6 Non-receptor action of prostaglandins  

Even though prostaglandins act as a rule through their specific receptors, some effects of 
prostaglandins may be non-receptor-mediated. Several studies implied that prostaglandins 
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exerted their diverse effects through post-translational modification of cellular proteins 
(Kim et al. 2007; Takahashi and Breitman 1992; Lecomte et al. 1990). Since prostaglandins 
possess anionic moieties at physiological pH and diffuse poorly through the lipid bilayer 
(Baroody and Bito 1981; Chan et al. 1998), the covalent modification of proteins by 
prostaglandins should be a carrier-mediated transport process. Several prostaglandins 
carriers have been cloned and characterized (Schuster 2002). Prostaglandin uptake carrier 
prostaglandin transporter (PGT) was shown to be expressed in renal collecting ducts and to 
participate in prostaglandin metabolic inactivation (Nomura et al. 2005). Another transporter 
designated OAT-PG exhibited Na+-independent and saturable transport of PGE2 and was 
shown to be present exclusively in the basolateral membrane of the proximal tubules in the 
kidney (Shiraya et al. 2010) (Fig.2). As others prostaglandin transporters, OAT-PG was 
proposed to be involved in the local PGE2 clearance and metabolism for the purpose of 
inactivation of prostaglandin signals in the kidney cortex, but signaling from PGE2 

transported into the cell can’t be ruled out. The covalent binding of prostaglandins to 
proteins has been detected in microsomal cell fractions and in intact platelets (Eling et al. 
1977; Wilson et al. 1979; Anderson et al. 1979). It was demonstrated that proteins in HL-60 
cells were labeled by PGE2 (Takahashi and Breitman 1992). PGE2 possesses a long-chain fatty 
acid portion that could bind covalently to proteins by an ester bond between its carboxyl 
group and either a hydroxyl amino acid or a cysteine of a protein. No data, so far, suggest 
the role of PGE2-mediated modification of proteins in the progression of renal pathologies. 
Nevertheless prostaglandin-mediated modification of signaling molecules involved in the 
progression of glomerulonephritis can’t be ruled out and should be kept in mind when renal 
effects of prostaglandins are observed in cells in the absence of detectable receptors, or in the 
presence of specific receptor inhibitors/antagonists.  

4. Renal regulation of prostaglandin synthesis  

4.1 Regulation at the level of availability of arachidonic acid 

Liberation of free arachidonic acid from glycerophospholipids is catalyzed by 
phospholipase A2 enzymes and presents the initial tightly regulated step in the synthesis of 
prostaglandins (Shimizu and Wolfe 1990). The diverse phospholipase A2 enzymes have been 

classified into eleven groups (Six and Dennis 2000), but cytosolic phospholipase A2 

(cPLA2), member of Group IV, preferentially hydrolyzes the sn-2 position of 
glycerophospholipids to produce free arachidonic acid, substrate for cyclooxigenase 

enzymes (Hirabayashi et al. 2004). Mice deficient in cPLA2 grow normally but are 
characterized by renal concentration defect and cells derived from these mice produce 
significantly less amount of prostaglandins (Uozumi and Shimizu 2002). Regulation of 

cPLA2 occurs mainly by phosphorylation of regulatory serines, by increasing intracellular 
Ca+2 concentrations and changes in enzyme subcellular localization (Hirabayashi et al. 2004). 
The requirement for extracellular Ca+2 and stretch-activated Ca+2 channels was shown for 
cyclic stretching-induced PLA2 activation and a subsequent release of arachidonic acid in 

rabbit proximal tubular epithelial cells (Alexander et al. 2004). Calcium binding to cPLA2 
promotes its translocation to membrane containing phosphatidylcholine from the cytosol. 

Binding to membrane anionic phospholipids and phosphorylation of cPLA2by either 
MAPK on Ser505, or by CaMKII on Ser515, or by MAPK-interacting kinase Mnk1 on Ser727 

are needed to stabilize cPLA2 association with the membrane and to increase its intrinsic 
catalytic activity (Hirabayashi et al. 2004). 
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4.2 Regulation at the level of cyclooxygenases  

It is generally accepted that the major mechanism employed by mammalian cells to regulate 
prostaglandin synthesis is through the control of expression of Cox-2. It is possible however 
that some alternative mechanisms regulating Cox-2 activity (and ultimately prostaglandin 
synthesis) exist and are at least partially responsible for the increased production of 
prostaglandins in glomerular kidney diseases.  

4.2.1 Regulation of cyclooxygenases at the level of transcription  

Signaling pathways involved in the regulation of Cox-2 expression are relatively well 
studied (Tsatsanis et al. 2006). A rapid and transient expression of Cox-2 was found to be 
associated with activation of NF kappa B and NF-IL6 transcription factors (Yamamoto et 
al. 1998). The promoter/enhancer region of Cox-2 genes from different mammalian 
species share a number of modulatory elements, which include cAMP-response element 

(CRE), nuclear factor (NF)-IL6, NF-B and activator protein 2 (Kosaka et al. 1994). Three of 

these consensus sequences (CRE, NF-IL6 and NF-B) have been implicated in agonist-
dependent up-regulation of the human Cox-2 (Kosaka et al. 1994; Inoue and Tanabe 1997; 
Inoue and Tanabe 1998); additionally it appears that p53 might negatively regulate Cox-2 
expression by binding to the TATA sequence (Subbaramaiah et al. 1999). Cox-2 expression 
is induced by multiple agonists and mitogens including PDGF (Goppelt-Struebe et al. 

1996), EGF (Saha et al. 1999), TGF1 (Saha et al. 1999) and Endothelin-1 (Kester et al. 1994). 
It is of note that three principal mitogen activated protein kinase (MAPK) pathways ERK, 
JNK and p38 MAPK are activated by many of the agonists and stimuli capable of 
stimulating Cox-2 expression (Bokemeyer et al. 1996; Widmann et al. 1999). Furthermore, a 
number of MAPK-activated transcription factors are binding to the regions of the 
promoter of human gene encoding Cox-2 which are involved in the transcriptional 
activation of the gene (Widmann et al. 1999; Kosaka et al. 1994). Data obtained with 
adenovirus mediated gene transfer of constitutively active mutants of members of three 
principal MAPK signaling cascades provided evidence that enforced stimulation of any of 
them results in up-regulation of Cox-2 expression (McGinty et al. 2000). It looks like 
MAPK signaling cascades are the convergence point of the many dissimilar stimuli that 
up-regulate Cox-2. 

4.2.2 Regulation of cyclooxygenases at the post-transcriptional pre-translational level  

Regulation at the post-transcriptional pre-translational level occurs through regulation of 
Cox-2 mRNA stability (Tsatsanis et al. 2006). It was reported that signaling via p38 MAPK 
pathway was controlling Cox-2 mRNA stability (Jang et al. 2000) and occurred through p38 
MAPK-regulated binding of mRNA stabilizing protein human antigen R (HuR) to the AU-
rich region of the COX-2 3'-UTR (Subbaramaiah et al. 2003). HuR is related to the Drosophila 
embryonic lethal abnormal vision (ELAV) family of proteins, is ubiquitously expressed and 
was shown to stabilize COX-2 mRNA in human mesangial cells (Doller et al. 2007), human 
tracheal smooth muscle cells (Lin et al. 2011) and human keratinocytes exposed to various 
stimuli (Fernau et al. 2010). The involvement of p38 MAPK and HuR in Cox-2 expression 
was also confirmed by increased level of PGE2 synthesis (Fernau et al. 2010). It is important 
that increased binding of (HuR) to the mRNAs of Cox-2 was demonstrated not only in 
cultured cells, but also in the cytoplasmic fractions of renal homogenates from AngII-treated 
rats (Doller et al. 2009). 
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4.2.3 Regulation of cyclooxygenases at the post- translational level  

It seems that the kinetics of prostaglandin synthesis in mammalian cells does not always 
correlate with the level of cyclooxygenases expression. This suggested that there maybe 
alternative mechanisms in the cellular regulation of cyclooxygenases activity and ultimately, 
prostaglandin synthesis. There are not many reports which suggest regulation of catalytic 
activity of cyclooxygenases at the post-translational level. Until recently only two examples 
of post-translational regulation of Cox-2 were reported: s-nitrosylation and 
phosphorylation. iNOS was shown to bind specifically to Cox-2 and S-nitrosylate it, 
increasing Cox-2 catalytic activity (Kim et al. 2005). The same group demonstrated that Cox-
2 can be activated by S-nitrosylation after selective binding of nNOS to Cox-2 via nNOS 
PDZ domain (Tian et al. 2008). S-nitrosylation of Cox-2 happened also in vivo in atravastatin-
treated but not sham-treated rats. Remarkably, Cox-2 was co-immunoprecipitated from 
myocardial homogenates with iNOS but not with eNOS (Atar et al. 2006).  
First hint that cyclooxygenase could be regulated by phosphorylation was obtained in 
cerebral endothelial cells where it was demonstrated that protein tyrosine phosphatase 
inhibitors rapidly stimulated cyclooxygenase activity resulting in elevated generation of 
prostaglandins. The protein tyrosine kinase inhibitors genistein and tyrphostins inhibited 
cyclooxygenase activity (Parfenova et al. 1998). It is important that in this study protein 
synthesis inhibitors were not able to reverse the stimulation of COX activity evoked by PTP 
inhibitors, suggesting posttranslational modification. The existence of PKC consensus 
sequences in Cox-2 prompted the investigation whether Cox-2 could be phosphorylated by 
the serine/threonine protein kinase C (Vezza et al. 1996). The obtained data argued against 
direct Cox-2 phosphorylation by PKC. Thus, even though some indirect evidence suggests 
that Cox-2 could be regulated by phosphorylation, no specific tyrosine or serine-threonine 
kinase has been proven to phosphorylate cyclooxygenases and regulate their activity.  
We have observed that adenovirus-mediated gene transfer of Cox-2 into renal glomerular 
mesangial cells resulted in the formation of covalent adducts between Cox-2 and some 
unknown proteins (detected as high-molecular weight bands recognized by anti-Cox-2 
antibodies in western blotting). Formation of these covalent adducts was dependent on Cox-
2 enzymatic activity. To identify these proteins which may be involved in regulation of Cox-
2 activity, we isolated Cox-2 adducts by affinity purification with Cox-2 antibody and 
subjected them to tandem mass spectrometry. A following search against mammalian 
database indicated the presence of a number of proteins, potential candidates for post-
translational regulators of Cox-2 activity. It is possible that cross-linking of Cox-2 to some 
specific proteins spatially co-localized with the enzyme in its natural environment occurs 

due to spontaneous decomposition of PGH2 resulting in production of -keto aldehydes – 
levuglandins, which are capable of covalently crosslinking different proteins together 
through their Lys residues (Iyer et al. 1989; Salomon and Miller 1985). One of the proteins 
cross-linked to Cox-2 was identified as ELMO1 (Engulfment and cell motility 1) (Yang and 
Sorokin 2011). ELMO1 is a bipartite guanine nucleotide exchange factor (GEF) for the small 
GTPase Rac 1, which is closely associated with susceptibility to glomerular disease 
(Shimazaki et al. 2005; Leak et al. 2009; Pezzolesi et al. 2009). ELMO1 was shown to increase 
fibronectin expression and contribute to the development and progression of chronic 
glomerular injury (Shimazaki et al. 2006). Interaction of endogenous ELMO1 with 
endogenous Cox-2 was demonstrated in glomerular mesangial cells (Yang and Sorokin 
2011). This interaction of ELMO1 with Cox-2 increased Cox-2-mediated fibronectin 
upregulation, suggesting that ELMO1 serves as a post-translational modulator of Cox-2 
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activity. Since ELMO1 may participate in ECM accumulation in the pathogenesis of 
glomerular pathology through modifying Cox-2 activity via protein-protein interaction 
could play an important role in the development and progression of renal glomerular 
disease. How exactly interaction with ELMO1 up-regulates Cox-2 activity is not known. One 
possibility is that interaction with ELMO1 interferes with Cox-2 degradation and preserves 
Cox-2 for prolonged prostaglandin production. There are two pathways for Cox-2 protein 
degradation in vivo: Cox-2 can be degraded via the N-glycosylation-dependent endoplasmic 
reticulum-associated protein degradation pathway or by substrate-dependent degradation 
which is not inhibited by inhibitors of lysosomal proteases or proteasome inhibitors (Wada 
et al. 2009; Mbonye et al. 2008). Future investigation into whether ELMO1 protein interferes 
with these Cox-2 degradation pathways or contributes to Cox-2 conformational changes 
which affect its enzymatic activity will help to uncover precise mechanism of ELMO1 action.  

4.3 Regulation at the level of prostaglandin synthases  

The repertoire of prostaglandin production is determined by the differential expression of 
terminal prostaglandin synthases in cells located at sites of inflammation (Ricciotti and 
Fitzgerald 2011). In contrast to cyclooxygenases, there is less known about regulation of 
PGE-, PGD- and PGF-synthases which convert PGH2 to PGE2, PGD2 and PGF2 
correspondingly. There are three prostaglandin E synthases (PGES): membrane-bound 
microsomal PGES-1 (mPGES-1), membrane-bound PGES-2 (mPGES-2) and cytosolic PGES 
(cPGES) (Kudo and Murakami 2005). mPGES-1 is functionally coupled to Cox-2 in 
preference to Cox-1 and, similar to Cox-2, mPGES-1 expression can be stimulated by 
proinflammatory stimuli (Kudo and Murakami 2005). Analysis of mPGES-1 promoter 
revealed that stimulus-inducible mPGES-1 transcription is under control of the transcription 
factor Egr-1, which binds to the proximal GC box (Naraba et al. 2002). Signal transduction 
pathway comprising phosphatidylcholine-phospholipase C, protein kinase C, NO, cGMP 

and protein kinas G is important for the induction of mPGES-1 by TNF (Subbaramaiah et 
al. 2004). mPGES-2 is constitutively expressed, could be coupled either with Cox-1 or Cox-2, 
and inflammation or tissue damage do not cause increase of mPGES-2 expression (Kudo 
and Murakami 2005). cPGES is also constitutively expressed but is exclusively coupled with 
Cox-1. Regulation of cPGES is mediated by phosphorylation by casein kinase 2 (CK2) and 
Hsp90 acts as an essential scaffold protein to brings cPGES and CK2 in close proximity to 
allow their efficient functional interaction (Kudo and Murakami 2005). It must be 
mentioned, that there is some discrepancy in the literature with regard to the role of cPGES 
and mPGES-2 in PGE synthesis. Analysis of knockout mice deficient in either cPGES or 
mPGES-2 suggested that cPGES and mPGES-2 do not encode prostaglandin synthases and 
for that reason mPGES-1-dependent conversion of PGH2 to PGE2 may represent the only 
mechanism by which PGE2 is produced in vivo (Jania et al. 2009; Lovgren et al. 2007). 

5. Effect of glomerulitis on prostaglandin production  

5.1 Overexpression of Cox-2 in renal diseases 

Overexpression of Cox-2 and increased production of an array of prostaglandins occurs in 
inflammatory arthritis, several types of cancer, in inflammatory bowel disease (Turini and 
DuBois 2002) as well as in a number of kidney diseases, namely proliferative 
glomerulonephritis (Hirose et al. 1998; Chanmugam et al. 1995), hydronephronic kidney 
(Seibert et al. 1996), hypercalcemia (Mangat et al. 1997), hypertension (Khan et al. 2001), 
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diabetic nephropathy (Nasrallah et al. 2003; Khan et al. 2001) and renal ablation (Schneider 
and Stahl 1998). In normal kidneys renal Cox-2 expression was shown to localize in the 
macula densa and associated cortical thick ascending limb and medullary interstitial cells 
(Harris and Breyer 2001). In patients with active lupus nephritis Cox-2-specific staining was 
localized mainly in the glomeruli, whereas patients with non-lupus nephropathies had no 
increase in renal COX-2 expression (Tomasoni et al. 1998). 
Oxidative stress is significantly higher in patients with proliferative glomerulonephritis, 
when compared with patients with non-proliferative glomerulonephritis (Markan et al. 
2008). Oxidative stress is associated with excess of reactive oxygen species (ROS) and 
signaling pathways triggered by ROS can induce up-regulation of Cox-2 expression and 
prostaglandin production (Jaimes et al. 2008). Isolated glomeruli treated with donor of 

oxygen radicals increased the synthesis of several prostaglandins including PGE2 and PGF2 
(Baud et al. 1981). 

5.2 Regulation of prostaglandin synthesis in experimental models of glomerular 
proliferative diseases 

In several in vivo experimental models Cox-2 contributed to progressive kidney injury 
(Cheng and Harris 2004). Cox-2 inhibition limited progressive injury in 5/6 nephrectomy 
rats (Fujihara et al. 2003) and also decreased proteinurea and retarded progressive renal 
injury in rats with renal ablation (Wang et al. 2000). Production of prostaglandins, 
particularly PGE2, was shown to contribute to both progression (Hirose et al. 1998) and 
resolution (Hartner et al. 2000) of mesangioproliferative glomerulonephritis (GN). Studies 
with experimental models of glomerular proliferative diseases suggested that regulation of 
cellular synthesis of prostaglandins in vivo occurs at multiple levels. Cox-2 mRNA levels 
were increased in nephritic mice with MRL-Faslpr lupus nephritis and in mice with anti-
glomerular basement membrane (GBM) antibody induced glomerulonephritis (Sun et al. 
2001). Anti-GBM glomerulonephritis is usually induced by administration of sheep antibody 
against rat particulate glomerular basement membrane (GBM) and resembles human form 
of rapidly progressive crescentic nephritis. In the rat model of anti-GBM at the early time 
points (day 1) infiltration of glomeruli by activated macrophages is a prominent feature 
while at the late points (days 4, 7 and 14) glomerular cell proliferation and crescent 
formation are the prominent features (Bokemeyer et al. 1997). In Anti-GBM nephritis there is 
an increased expression of Cox-2 and enhanced production of prostaglandins in the 
glomerulus, which may mediate changes in renal hemodynamics (Lianos et al. 1983; Datta et 
al. 2006). Another experimental model of glomerulonephritis where proliferation of 
glomerular mesangial cells is a prominent feature is anti-Thy-1.1 model of 
mesangioproliferative glomerulonephritis. It is a well characterized rat model which closely 
simulates analogous human diseases with regard to initial mesangiolysis followed by 
mesangial cell proliferation and accumulation of mesangial matrix (Jefferson and Johnson 
1999). Mesangioproliferative lesions start occurring 3–7 days after single injection 
(Yamamoto and Wilson 1987), and lesions are resolved within several weeks after injecting 

the antibody. The fact that expression of Cox-2 and cPLA2 mRNAs was minimal in normal 
glomerulus and enhanced after induction of this model (Hirose et al. 1998) suggested the 
regulation of prostaglandin production at two levels: liberation of arachidonic acid and 
transcriptional regulation of Cox-2. Also post-translational regulation of Cox-2 could take 
place, since expression of the rat Elmo1 gene was increased in the kidney of unilaterally 
nephrectomized rats injected with anti-Thy1.1 antibody (Shimazaki et al. 2006).  
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5.3 Mechanisms of renoprotective effect of Cox-2 inhibition 

There could be multiple mechanisms by which inhibition of Cox-2 is renoprotective, but the 
suppression of apoptotic pathways is certainly one of them. It is of note, that glomerular 
mesangial cell (GMC) apoptosis appears to be the major mechanism for resolution of 
glomerular hypercellularity in experimental mesangial glomerulonephritis (Badawi 2000). 
Proliferation of GMC occurs in multiple forms of glomerular immune injury and if continued 
unopposed, would cause the progression of injury to end stage disease (Lianos 1992). The cell 
number in glomeruli is controlled by apoptosis, accordingly cell proliferation is counteracted 
by deletion of extra cells due to apoptotic cell death (Savill 1999). For that reason the failure to 
undergo apoptosis usually results in unbalanced glomerular cell multiplication; hence, 
apoptosis has been proposed as an essential mechanism involved in the resolution of a 
proliferative response. It seems likely that Cox-2 has anti-apoptotic effect, when expressed in 
renal glomerular cells. Surely, Cox-2 is not the only mediator of the resistance of renal GMC to 
apoptosis, but Cox-2, acting in concert with other survival factors is expected to contribute to 
the balance between increase in cell number caused by proliferation and cell elimination by 
programmed cell death. Both extrinsic (death-receptor initiated) and intrinsic (mitochondria-
induced) apoptotic pathways are relevant to renal disease and both of them are likely to be 

inhibited by Cox-2. Macrophage-derived TNF- induced apoptosis of mesangial cells in the 

course of glomerulonephritis and inhibition of NFB-driven survival pathway promoted TNF-

 apoptotic activity (Hirahashi et al. 2000), suggesting the involvement of Cox-2 expression. 

TNF--mediated apoptosis of cultured renal mesangial cells was prevented by Cox-2 
expression, either enforced by adenovirus mediated gene transfer or induced by the 

vasoconstrictor peptide endothelin-1 or the cytokine interleukin-1 (Ishaque et al. 2003). 

Selective Cox-2 inhibition by NS-398 restored TNF-mediated apoptosis, whereas addition of 
PGE2 mimicked Cox-2 effect (Ishaque et al. 2003).  
Even though it is generally accepted that Cox-2 expression has anti-apoptotic effect, the 
precise mechanism of Cox-2 anti-apoptotic activity is unknown and remains to be the focus 
of scientific interest of a number of laboratories. Several mechanisms have been proposed to 
explain the anti-apoptotic effect of Cox-2 (Cao and Prescott 2002), namely: a) depletion of 
arachidonic acid, which prevents the activation of neutral sphyngomyelinase and 
production of ceramide (Cao et al. 2000); b) modulation of expression of the anti-apoptotic 
protein Bcl-2 (Liu et al. 1998; Tsujii and DuBois 1995); c) regulation of Akt activation (Hsu et 
al. 2000; Lin et al. 2001); d) counteracting NO-mediated apoptotic cell death, either via 
modulation of expression of prosurvival gene PIN, inhibiting production of NO (Chang et 
al. 2000), or via regulation of cellular susceptibility toward NO (von Knethen and Brune 
1997). Among genes activated in mesangial cells by Cox-2 expression and/or addition of 
prostaglandins is the multi-drug resistance gene (MDR1) which encodes a protein termed P 
glycoprotein (P-gp). P-gp belongs to the ATP-binding cassette (ABC) family of transporter 
molecules, which require hydrolysis of ATP to run the transport mechanism. The substrates 
of P-gp may be endogenous (steroid hormones, cytokines) or xenobiotics (cytostatic drugs). 
P-gp is known to confer the drug resistance in cancer cells. Only recently has the role of P-gp 
expressed in normal tissues has been examined. In the kidney P-gp is present in the brush 
border membrane of the proximal tubule, a site compatible with a role in xenobiotic 
secretion (Johnstone et al. 2000a; Ernest et al. 1997). It is also expressed in the mesangium, the 
thick ascending limb of Henle’s loop, and the collecting duct (Ernest et al. 1997), locations 
that are not traditionally associated with drug excretion. P-gp may regulate apoptosis, 
chloride channel activity, cholesterol methabolism and immune cell function (Ernest et al. 
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1997; Johnstone et al. 2000b; Zager 2001). It was shown that Cox-2 regulated P-gp expression 
in GMC (Patel et al. 2002) and rescued GMC from apoptosis induced by adriamycin (Miller 
et al. 2006), suggesting P-gp role in Cox-2-mediated GMC survival (Sorokin 2004). On the 
contrary, it appears that transgenic mice overexpressing Cox-2 selectively in podocytes were 
more susceptible to glomerular injury by adriamycin (Cheng et al. 2009). It was suggested 
that basal Cox-2 is important for podocyte survival, but overexpression of podocyte Cox-2 
increases susceptibility to podocyte injury (Cheng et al. 2009). 

5.4 Future directions 

Even though inhibitors of cyclooxygenases are capable to induce adverse reactions it is 
unlikely that efforts would stop to develop drugs affecting prostaglandin production which 
will be free of this negative aspects. If it would be shown that environmental as well as 
genetic factors may cause interpatient variability in NSAIDs and COXIBs metabolism and 
therapeutic effect, it would set the stage for personalized treatment of inflammatory diseases 
including glomerulonephritis. Only few pharmacogenomics reports have been published to 
date in nephrology and there is a need to build up efforts in this important research field 
(Zaza et al. 2010). It is reassuring that the susceptibility to crescentic glomerulonephritis was 
found to be linked to a polymorphism in the promoter region of Jund, the gene for the AP-1 
transcription factor JunD (Behmoaras et al. 2008). 
Several studies have established unequivocally that certain widely used inhibitors of 
cyclooxygenases caused anti-inflammatory and antiproliferative effects independent of 
cyclooxygenase activity and prostaglandin synthesis inhibition (Tegeder et al. 2001). Hence, 
the possibility to regulate cyclooxygenase activity at the level of protein-protein interactions 
is of significant interest, because it could set the basis for generation of novel inhibitors of 
prostaglandin synthesis. A number of signaling proteins, including ELMO1, were identified 
as candidates for the post-translational regulation of Cox-2 activity. Interaction with ELMO1 
increased Cox-2-mediated induction of expression of the extracellular matrix protein 
fibronectin (Yang and Sorokin 2011). The ability of Cox-2 to induce fibronectin expression 
depended on the production of PGE2, implying that an interaction with ELMO1 promoted 
ability of Cox-2 to synthesize prostaglandins. Thus, the role of ELMO1 could be to increase 
the synthesis of prostaglandins by Cox-2. One could expect that inhibition of ELMO1/Cox-2 
interaction would decrease the biological action of Cox-2 and therefore, represent a novel 
strategy to attenuate Cox-2 activity in inflammatory renal diseases. It is of note, that 
exposure to pathological stimuli induced glomerular mesangial cells to produce 
extracellular matrix proteins (ECM), such as collagens, fibronectin and proteinase inhibitors, 
resulting in the abnormal accumulation ECM in glomerular mesangium and irreversible 
glomerular injury (Pezzolesi et al. 2009; Wilson et al. 1998).  

6. Conclusions 

Three major levels of cellular control of prostaglandin synthesis are 1) at the level of 
liberation of free arachidonic acid from glycerophospholipids; 2) at the level of 
cyclooxygenases, and 3) at the level of terminal prostaglandin synthases. As a rule, 
prostaglandins exert their actions through specific G-protein coupled receptors even though 
direct modification of cellular proteins by prostaglandins was also observed. Intra-renal 
localization of prostaglandins receptors and their coupling to particular G-proteins and, 
correspondingly, to specific intracellular signaling pathways determine the outcome of renal 
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action of distinct prostaglandins. There is mounting evidence that progression of 
glomerulitis is accompanied by increased expression of cyclooxygenases (usually inducible 
isoform Cox-2) and enhanced production of prostaglandins, which have profound effect 
upon the survival/functioning of glomerular cells and normal performance of glomeruli. 
Prostaglandins are major mediators of inflammation and continuing treatment with Cox-2 
specific inhibitors usually improves functional and structural damage in experimental 
models associated with changed renal hemodynamics and progressive renal injury. Even 
though inhibition of renal prostaglandin production is supposed to be renoprotective, 
prostaglandins also have antiflammatory properties. Currently used inhibitors of 
cycclooxygenases are not free from adverse effects and their action is not always explained 
by inhibition of cyclooxygenase activity and prostaglandin synthesis. Therefore, increased 
understanding of novel mechanisms of regulation of prostaglandin production (such as 
regulation of cyclooxygenases at the post-translational level) will set the base for the design 
of new generation of inhibitors of prostaglandin synthesis and will open novel strategies to 
combat progression of glomerular renal diseases. 
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