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1. Introduction  

The complement system is an essential part of innate immunity by its role in protection 
against infections, but it is also involved in waste disposal and in modulating the adaptive 
immune response. Under physiological conditions complement activation is effectively 
regulated to restrain it to the required targets and extent, and to prevent collateral host 
tissue damage. An imbalance between complement activation and inhibition can lead to 
various diseases. Inappropriate regulation of complement activation, in particular that of the 
alternative pathway, is linked to kidney diseases. Mutations in complement components 
and regulatory molecules, and/or autoantibodies against complement proteins have been 
identified in patients with lupus nephritis, membranoproliferative glomerulonephritis 
(MPGN), dense deposit disease, C3 glomerulonephritis, CFHR5 nephropathy, and 
hemolytic uremic syndrome. This chapter summarizes the current knowledge on the role of 
complement dysregulation and of anti-complement autoantibodies in particular in dense 
deposit disease and MPGN. 

2. Complement: Activation and regulation 

The complement system plays a role in a variety of vital functions in the body, including the 

discrimination between self and nonself, the defense against invading pathogens, 

inflammation, disposal of cellular debris and apoptotic cells, immune complex clearance, 

developmental processes, and tissue regeneration. Complement is also involved in several 

pathophysiological processes, such as various renal disorders, age-related macular 

degeneration, rheumatoid arthritis, Alzheimer’s disease, cancer, and other diseases  (Ricklin 

et al., 2010). Complement is a complex network consisting of more than 40 molecules that 

are distributed in body fluids and/or appear on cell membranes. These include components 

that initiate and propagate the cascade, enzymatic components, soluble and cell membrane-

bound regulators as well as cell surface receptors. The activated complement system exerts 

its functions through its components and their active fragments. These form enzymes to 

ensure the propagation of the cascade; deposit on activator surfaces such as microbes and 

dying host cells to mark them for phagocytosis (a process called opsonization); bind to 
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complement receptors on several cell types and mediate adherence, phagocytosis or cell 

activation processes; the released anaphylatoxins C3a and C5a mediate inflammation; and 

the terminal components punch holes into target cell membranes and thus can cause cell 

lysis (Figure 1). 

 

 

Fig. 1. Complement activation and its major functions. The three major pathways of 

complement activation are shown. Eventually, all three pathways lead to the formation  

of C3 convertases (C4b2b represents the classical/lectin pathway C3 convertase, and 

C3bBb the alternative pathway C3 convertase), which activate the central component  

C3. The C3b fragment can bind to the existing convertases and thus form the C5 

convertases of the classical/lectin pathway (C4b2b3b) or the alternative pathway 

(C3bBbC3b). The latter are essential for the activation of the common terminal pathway, 

which leads to the generation of the lytic membrane attack complex. Note, that via the 

generation of active C3b fragments, which can interact with factors B and D, the 

classical/lectin pathways also lead to the activation of the alternative pathway 

(“amplification”). The C3b fragment is also a major opsonin, mediating phagocytosis via 

C3-fragment receptors on phagocytes. The generated C3a and C5a are potent 

anaphylatoxins that are involved in the activation of various cell types and mediate 

inflammatory processes. Asterisks denote enzymatic components. MBL, mannose-binding 

lectin; MASPs, MBL-associated serine proteases. 
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Complement can be activated via three major pathways (Figure 1). The classical pathway is 

activated by immune complexes or pentraxins, which bind the C1q molecule. The lectin 

pathway is activated by binding of mannose-binding lectin or ficolins to sugar patterns e.g. 

on microbes, but is also activated by pentraxins and by IgA. The alternative pathway can be 

activated by foreign surfaces such as microbes, by IgA, by properdin when it is bound to 

certain microbes or to apoptotic cells, and is also spontaneously activated by the hydrolysis 

of the internal thioester bond of C3 in plasma. All three pathways eventually lead to the 

formation of C3 convertases. These C3-converting enzymes cleave the central complement 

component C3 into C3a and C3b fragments. C3a is an anaphylatoxin and is involved in 

inflammation. The large C3b fragment can covalently bind to nearby molecules and surfaces 

via its thioester group, where it may further be degraded, and its fragments can bind to 

specific complement receptors on cells. C3b also binds factor B, and upon the action of factor 

D, the C3b-bound factor B is cleaved. The resulting C3bBb represents the alternative 

pathway C3 convertase that can generate further C3b. Because all three pathways lead to C3 

activation, the formation of C3bBb allows an amplification of the cascade. The C3 

convertases also allow the further propagation of the cascade by binding C3b, thus forming 

the C5 convertases and gaining the ability to cleave C5. This step is necessary for the 

generation of the C5a fragment, which has potent inflammatory activity, and the C5b 

fragment, which by interacting with the C6, C7, C8, and C9 components leads to the 

assembly of the so-called membrane attack complex that forms pores in target cell 

membranes and causes osmotic cell lysis. 

Since each enzymatic step amplifies the activation of complement, this potentially leads to a 

systemic activation and total complement consumption which would be destructive to the 

host. The activated system may also be harmful because of its inflammatory and lytic effects 

in the host if not properly controlled. One of the means to avoid an overactivation of the 

complement cascade is that the human plasma contains several regulatory molecules that 

control the various activation steps in order to limit the activation to target surfaces and to 

the necessary extent (Zipfel and Skerka, 2009). Similarly, cells and tissues carry surface 

complement regulators in various combinations that help them protect themselves from 

complement attack. Deficiencies in complement components and disturbances in the proper 

function and regulation of the complement cascade cause severe diseases (Walport, 2001a, 

2001b; Markiewski and Lambris, 2007). 

2.1 The alternative pathway C3 convertase and its regulation 

When the thioester bond is hydrolyzed in C3, the resulting C3(H2O) molecule (also called 
“C3b-like C3”) gains the ability to interact with factor B (Pangburn et al., 1981). The bound 
factor B is cleaved by factor D. The resulting initial alternative pathway convertase 
C3(H2O)Bb can cleave plasma C3 into C3a and C3b. C3b in turn can form the C3bBb 
convertase upon interacting with factors B and D. This enzyme cleaves additional C3 
molecules and thus amplifies the cascade. The convertase is not a stable enzyme and decays 
spontaneously. The plasma protein properdin stabilizes the convertase, thus positively 
regulates the alternative pathway. On the other hand, the plasma regulator factor H, and the 
membrane proteins decay accelerating factor and complement receptor type 1 destabilize 
the convertase. In addition, the plasma serine protease factor I can cleave C3b in the 
presence of one of its cofactors (factor H, membrane cofactor protein, complement receptor 
type 1), and the inactivated C3b (iC3b) can no longer form a convertase (Figure 2). 
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Fig. 2. Activation and regulation of the alternative pathway and the C3 convertase. The 
spontaneous activation of the alternative pathway is due to a low rate of hydrolysis of the 
thioester bond in C3. The resulting C3(H2O) can bind factor B, and after the action of factor 
D, the C3(H2O)Bb forms an initial C3 convertase enzyme. This cleaves C3 into C3a and C3b. 
C3b upon its interaction with factor B generates the C3bBb convertase that further amplifies 
the alternative pathway. Properdin stabilizes the C3 convertase, whereas CR1, DAF and 
factor H destabilize the convertase. In addition, C3b is inactivated by factor I in the presence 
of CR1, MCP or factor H. Asterisks denote enzymes. CR1, complement receptor type 1; 
DAF, decay accelerating factor; iC3b, inactivated C3b; MAC, membrane attack complex; 
MCP, membrane cofactor protein. 

2.2 Complement and kidney diseases 

The importance of a finely tuned balance between the protective and damaging effects of the 
complement system has clearly been demonstrated in recent years (Ricklin et al., 2010). 
Complement is implicated in various forms and aspects of renal pathology (Berger and 
Daha, 2007; Trouw et al., 2003). Deficiencies, mutations and polymorphisms in complement 
components and regulators, as well as anti-complement autoantibodies have been linked to 
renal diseases such as lupus nephritis, hemolytic uremic syndrome, MPGN, dense deposit 
disease, and C3 glomerulonephritis. 
Alternative pathway dysregulation in particular is associated with renal disorders (Meri, 
2007; Zipfel et al., 2006). Recent data on the genetics and pathophysiology led to a better 
understanding of underlying pathomechanisms and the role of complement especially in 
atypical hemolytic uremic syndrome and dense deposit disease, and also to the 
identification of new disease entities, such as the CFHR5 glomerulopathy (Gale et al., 2010; 
Pickering and Cook, 2011). Identified mutations affect the activity of complement proteins 
that are either part of the C3 convertase (C3 and factor B) or that are regulators (factor H, 
factor I, membrane cofactor protein, CFHR5) of complement activation. 
In addition, complement dysregulation caused by anti-complement autoantibodies is 
involved in the pathophysiology of a number of diseases, several of them affecting the 
kidney, such as MPGN, dense deposit disease, C3 glomerulonephritis, and atypical 
hemolytic uremic syndrome (Trouw et al., 2001; Servais et al., 2007; Skerka et al., 2009). 
Autoantibodies against the complement regulator factor H are detected in some patients 
with atypical hemolytic uremic syndrome and patients with dense deposit disease, and 
autoantibodies against the C3 convertase (C3 nephritic factor [C3NeF] or anti-factor B) in 
patients with MPGN, dense deposit disease and C3 glomerulonephritis. 
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3. The role of complement in membranoproliferative glomerulonephritis and 
dense deposit disease 

Complement deposition in the presence or absence of immunoglobulins is observed in the 
glomeruli of patients with MPGN and dense deposit disease. Fluorescence microscopic 
analyses show staining for C3 fragments in the glomeruli together with immunoglobulins 
in MPGN I and in MPGN III, or usually in the absence of immunoglobulins in dense 
deposit disease (Benz and Amann, 2009). MPGN I is characterized with subendothelial 
glomerular basement membrane deposits, whereas MPGN III is associated with both 
subendothelial and subepithelial electron-dense glomerular basement membrane 
deposits. The characteristic of dense deposit disease is electron-dense deposits within the 
glomerular basement membrane. Dense deposit disease was formerly termed MPGN II; 
however, an MPGN pattern is not seen in many cases. Dense deposit disease is associated 
with defective complement alternative pathway regulation, and hypocomplementemia is 
often observed in the patients (Smith et al., 2007). The glomerular deposits contain 
components of the alternative and the terminal activation pathways (Sethi et al., 2009). 
Genetic and acquired factors (i.e., autoantibodies) have been described in MPGN, in C3 
glomerulonephritis with or without MPGN, and in dense deposit disease (Licht and 
Frémeaux-Bacchi, 2009; Pickering and Cook, 2008; Servais et al., 2007, 2011). Recent 
research provided fresh insights into mechanisms of pathologic complement activation in 
these diseases. First, some aspects of genetic complement defects related to glomerular 
disease will be summarized, followed by an overview of autoantibodies associated with 
MPGN and dense deposit disease.  

3.1 Insights from human complement mutations 

Deficiency of the major alternative pathway regulator factor H has been associated with 
MPGN I, dense deposit disease, and C3 glomerulonephritis (Dragon-Durey et al., 2004; 
Pickering and Cook, 2008; Servais et al., 2011). Several reports described patients with 
mutations in cysteine residues that are essential for disulfide bridge formation and thus the 
proper folding and stabilization of the SCR domains. This leads to defective protein folding 
and a retainment of factor H intracellularly (Ault et al., 1997; Servais et al., 2011). A case was 
also reported where the Cys431Tyr amino acid exchange caused factor H aggregation and a 
likely reduced protein half-life (Montes et al., 2008). In these cases, the resulting quantitative 
factor H deficiency leads to a lack of proper complement regulation in body fluids. In 
addition, a functional factor H deficiency due to a deletion of one amino acid in SCR4 of 
factor H causing a defect in the regulatory activity was described (Licht et al., 2006). All 
these factor H abnormalities lead to a defective C3 regulation in both plasma and at cell 
surfaces. Sequence variations in the genes coding for factor H and the CFHR5 protein have 
also been linked to dense deposit disease (Abrera-Abeleda et al., 2006), although it is not 
clear if and how these allele variants are related to the pathophysiology of the disease. 
Recently, a C3 mutation in dense deposit disease was described that results in the deletion 
of two amino acids in the molecule (C3923delDG). This mutant C3 protein generates a 
convertase that is resistant to decay by factor H, and is also resistant to cleavage by factor I 
when factor H is the cofactor (Martínez-Barricarte et al., 2010). Dysfunctional C3 was also 
associated with MPGN III (Marder et al., 1983). 
These data indicate that the tipping of the tightly regulated balance between complement 
activation and inhibition can lead to glomerular disease. 
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3.2 Insights from animal models 

Factor H deficiency was described in pigs that died of kidney failure due to 
membranoproliferative glomerulonephritis (Høgåsen et al., 1995). The factor H deficiency 
was caused by a mutation that led to the retention of this protein intracellularly (Hegasy et 
al., 2002). 
The essential role of a failed C3 regulation in plasma in the development of 
glomerulonephritis was demonstrated in genetically engineered factor H-deficient mice 
(Pickering et al., 2002). These factor H-deficient mice spontaneously developed 
membranoproliferative glomerulonephritis and 23% of them died by 8 months. If the gene 
coding for factor B was also knocked out, no deposits at the glomerular basement membrane 
and no MPGN were observed, indicating the essential role of the alternative pathway 
(Pickering et al., 2002). Also, mice with combined factor H and factor I deficiency, despite 
uncontrolled alternative pathway activation, did not develop dense deposit disease because 
of the lack of C3b degradation in the absence of factor I. Reconstitution with exogenous 
factor I, however, caused C3 fragment deposition, which was derived from plasma, along 
the glomerular basement membrane (Rose et al., 2008). These data provide evidence that the 
development of dense deposit disease critically depends on activated C3 fragments 
generated in plasma. Additional studies showed that mice deficient in both factor H and C5, 
i.e., lacking activation of the terminal complement pathway, still develop 
membranoproliferative glomerulonephritis, although with less glomerular inflammation 
and cellular infiltration (Pickering et al., 2006). Thus, an impaired regulation of C3 is enough 
to develop the disease. 

4. Anti-complement autoantibodies in membranoproliferative glomerulo-
nephritis and dense deposit disease 

Autoantibodies against complement proteins have been associated with various forms of 
MPGN and with dense deposit disease. Whereas C3NeF is commonly detected in patients 
with MPGN, so far there are only one and two cases reported for anti-factor B and anti-
factor H autoantibodies, respectively. These antibodies affect complement regulation and 
are implicated in the pathophysiology of renal disease, even though a direct pathogenic role 
for the autoantibodies was rarely demonstrated. 

4.1 C3 nephritic factor 

C3NeF is an IgG or IgM autoantibody against the alternative pathway C3 convertase 
enzyme (Spitzer et al., 1969), and is the most common autoantibody detected in patients 
with MPGN. It can be detected in up to 50% of patients with MPGN I and MPGN III, and 
up to 80% in dense deposit disease (Appel et al., 2005; Schwertz et al., 2001). C3NeF was 
also found in C3 glomerulonephritis with or without MPGN (Servais et al., 2007). 
However, C3NeF was reported in patients with partial lipodystrophy (Mathieson et al., 
1993; Sissons et al., 1976), and even in healthy individuals (Spitzer et al., 1990, 1992). 
Therefore, and because of the lack of a clear correlation between the presence and 
amounts of C3NeF, C3 levels, and renal pathology, a nephritogenic role of C3NeF is 
unclear. This may partly be related to the heterogeneity of C3NeF and the problematic of 
C3NeF detection assays, as discussed below. It is possible that C3NeF appears secondarily 
due to otherwise present complement activation products and thus a prolonged exposure 
of neoantigenic sites. 
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C3NeF binds to a neoepitope appearing on the newly formed alternative pathway C3 
convertase, and stabilizes the convertase against intrinsic (natural) and extrinsic (e.g., factor 
H-mediated) decay, thus significantly increasing the half-life of the convertase (Daha et al., 
1976; Daha and van Es, 1981). This leads to an enhanced C3 activation in the plasma of the 
patients (Figure 3A and 3B). Hypocomplementemia is indeed often observed (Ruley et al., 
1973; Smith et al., 2007), and glomerular deposits of patients with C3NeF contain C3 
fragments, and may also contain C5 (West et al., 2001). 
 

 

Fig. 3. The effect of autoantibodies on the alternative pathway C3 convertase. (A) The C3bBb 
convertase cleaves C3 and thus generates C3b fragments, which participate in opsonization 
and in the propagation of the cascade by forming additional convertases. The enzyme has a 
short half-life, which is influenced by positive (properdin) and negative (e.g., factor H) 
regulators. (B) C3NeF binds to a neoepitope on C3bBb and stabilizes this enzyme against 
intrinsic and extrinsic decay, thus the convertase can cleave more C3. (C) The anti-factor B 
autoantibody binds to the Bb portion of the convertase, and stabilizes it against both natural 
and factor H-mediated decay. 

The term C3NeF describes a heterogeneous group of autoantibodies (Davis et al., 1977; Daha 
et al., 1978), which can be different in their functional effects. It was reported that C3NeFs 
that were not associated with hypocomplementemia did not stabilize the C3 convertase 
against extrinsic decay, while still acting against natural convertase decay (Ohi et al., 1992). 
C3NeF may also be properdin-dependent (Clardy et al., 1989; Tanuma et al., 1990), and such 
a C3NeF:P slowly activates C3 and the terminal pathway (Clardy et al., 1989). By contrast, 
some C3NeFs appear to inhibit the generation of C5 convertases and therefore do not cause 
terminal pathway activation (Mollnes et al., 1986). Thus, C3NeFs can be directed against 
different epitopes and have distinct effects on complement activation. 
C3NeF may change over time, disappear and reappear; moreover, reports supporting both a 
relationship and also indicating a lack of correlation between C3NeF, C3 plasma levels and 
clinical course are published (Appel et al., 2005). C3NeF may also occur together with C4 
nephritic factor and/or anti-C1q (Tanuma et al., 1989; Ohi and Yasugi, 1994; Strife et al., 
1990), and may present together with heterozygous mutations of factor H or factor I (Leroy 
et al., 2011). It is still not clear if C3NeF is directly nephritogenic or it rather appears due to a 
prolonged or increased presence of the C3 convertase enzyme and complement activation 
fragments in plasma. Nevertheless, once present, C3NeF by stabilizing the convertase 
further contributes to an abnormally increased complement activation. As the animal 
models demonstrated, the generated C3 fragments are involved in glomerular injury, 
without the requirement of terminal pathway activation, although the latter (also increased 
by most C3NeFs) exacerbates glomerular inflammation and damage. 
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C3NeF determination is not very reliable, partly because of the heterogeneous nature of 
C3NeFs and because commonly used methods are indirect measurements based on 
hemolysis (López-Trascasa et al., 1987; Rother et al., 1982; West, 2008). Immunoglobulins are 
most often not directly measured and functional assays for C3NeF based on lysis of sheep 
erythrocytes may not necessarily detect antibodies. On the other hand, it is possible to 
measure C3NeF by ELISA (Seino et al., 1987). The lack of a readily available and simple 
assay that makes C3NeF measurements truly comparable between laboratories makes 
interpretation of literature data and the assessment of the pathogenic relevance of these 
autoantibodies difficult. C3NeF diagnostics should be improved, and the autoantibodies 
functionally characterized using modern methods (e.g., surface plasmon resonance), in 
order to unravel the role of C3NeF in renal pathology. 

4.2 Anti-factor B autoantibody 

Recently, we have identified an anti-factor B autoantibody in dense deposit disease. This 
autoantibody also targets the alternative pathway C3 convertase but has some features that 
distinguishes it from C3NeF (Strobel et al., 2010a). The patient showed signs of systemic 
complement activation and enhanced amounts of the alternative pathway activation 
product Bb were present in the patient’s plasma. Whereas the traditional assay to detect 
C3NeF (Rother, 1982) failed to identify a convertase-specific antibody, an anti-factor B IgG 
was readily detectable by ELISA. The anti-factor B antibody bound to the alternative 
pathway C3 convertase and, by stabilizing it, enhanced the turnover of C3 (Figure 3C). The 
anti-factor B autoantibody stabilized the convertase against both spontaneous and factor H-
mediated decay. However, the anti-factor B antibody inhibited the activation of the terminal 
pathway, likely by interfering with the formation of the C5 convertase. Differences from 
C3NeF include binding of the autoantibody to native factor B in plasma, as well as to the Bb 
fragment incorporated into the C3 convertase, and interference with C5 convertase activity, 
even though the latter may also be characteristic to some types of C3NeF (Mollnes et al., 
1986). Future studies need to determine the frequency of anti-factor B antibodies in dense 
deposit disease and evaluate its diagnostic and prognostic relevance. 

4.3 C4 nephritic factor 

Similar to the C3 convertase of the alternative pathway, the classical pathway C3 convertase 
(C4b2b) can also be a target for autoantibodies. These IgG autoantibodies termed C4 
nephritic factor (C4NeF) were first described in patients with post-infectious 
glomerulonephritis (Halbwachs et al., 1980) and in patients with SLE (Daha and van Es, 
1980). C4NeF stabilizes the C4b2b convertase and thus causes an enhanced classical 
pathway mediated complement activation, leading to C3 consumption. The binding of this 
antibody renders the convertase resistant against both the intrinsic and the extrinsic decay, 
mediated by C4b-binding protein, and the C4b portion of the convertase is protected from 
the proteolytic inactivation by factor I (Gigli et al., 1981). In a case report of a patient with 
chronic glomerulonephritis the C4NeF was analyzed for binding to the convertase and 
shown to recognize a neoepitope on the convertase but not C4b (Fujita et al., 1987). C4NeF 
and C3NeF can also be present together in patients (Ohi and Yasugi, 1994; Tanuma et al., 
1989). To date, only few studies have addressed the presence and role of C4NeF in 
glomerulonephritis, and patients with MPGN or dense deposit disease are not routinely 
tested for this kind of autoantibody. This is partly due to the difficulties with the detection 
method, applying hemolytic assays or ELISA (Seino et al., 1990). 
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4.4 Anti-factor H autoantibody 

An anti-factor H autoantibody was described in a patient with hypocomplementemic 
MPGN and characterized in detail. The antibody was isolated as a monoclonal lambda light 
chain dimer from the patient’s serum and urine. It was shown to bind to factor H and cause 
alternative pathway activation in the fluid phase (Meri et al., 1992). The binding site of the 
antibody was localized to SCR3 of factor H, i.e., within the part responsible for complement 
regulatory activity (Figure 4), and the autoantibody inhibited the interaction of factor H 
with C3b. In functional assays, this “miniautoantibody” led to defective complement control 
by functionally blocking factor H and thus leading to uncontrolled alternative pathway 
activation and enhanced C3 conversion (Jokiranta et al., 1999). Thus, the anti-factor H 
autoantibody led to an acquired functional factor H deficiency in the patient. Because the 
antibody affects the regulatory activity of factor H, factor H activity is impaired in both the 
fluid phase and on surfaces. Although not tested, the antibody likely also inhibits the 
function of factor H-like protein 1, which shares the N-terminal seven domains with factor 
H. Since this original description there is only one additional report of an anti-factor H 
antibody in C3 glomerulonephritis, but the antibody was not further characterized (Sethi et 
al., 2011). Apparently, anti-factor H antibodies are relatively rare in glomerulonephritis, 
especially in comparison with the occurrence of C3NeF. 
 

 

Fig. 4. Anti-factor H autoantibody inhibits the complement regulatory activity of factor H in  
MPGN. Factor H consists of 20 domains termed short consensus repeats (SCRs). The N-
terminal four SCRs mediate the cofactor and convertase decay accelerating activities of 
factor H, whereas the C-terminal domains (SCRs 19 and 20) are responsible for targeting the 
molecule to host surfaces. The anti-factor H lambda light chain dimer causes alternative 
pathway activation in plasma due to its inhibitory effect on factor H function (Jokiranta et 
al., 1999; Meri et al., 1992). 

By contrast, approximately 10% of the patients with atypical hemolytic uremic syndrome 
have circulating anti-factor H antibodies, most of which bind to the C-terminal recognition 
domains (i.e., SCRs 19-20) of factor H, thus impairing the ability of factor H to protect self 
surfaces, whereas the activity in plasma is usually not compromized (Dragon-Durey et al., 
2005; Józsi et al., 2007; Moore et al., 2010; Strobel et al., 2010b). Further studies are needed to 
systematically screen patients with dense deposit disease and MPGN for anti-factor H 
autoantibodies, and to characterize such antibodies in detail. 

4.5 Anti-C1q autoantibody 

Anti-C1q antibodies against a neoepitope on the collagen-like region of C1q have also been 
identified in patients with MPGN I, MPGN III and dense deposit disease (Strife et al., 1989, 
1990), and such antibodies can occur together with C3NeF. Interestingly, in most cases of 
MPGN I the anti-C1q autoantibodies were IgG3, which is considered an antibody subclass 
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that efficiently activates the classical pathway. The patient with dense deposit disease and 
anti-factor B antibody also had detectable anti-C1q that activated the classical pathway as 
demonstrated by antigen microarray analysis (Strobel et al., 2010a). The relevance of such 
anti-C1q antibodies for the pathophysiology of MPGN and dense deposit disease is unclear. 

5. Conclusion 

Our current understanding of the role of anti-complement autoantibodies in MPGN and 
dense deposit disease is insufficient. Even though C3NeF is known for long, its relationship 
with disease manifestation is still unclear. The heterogeneic nature of MPGN/dense deposit 
disease-associated autoantibodies makes diagnostics and interpretation of results difficult. 
More detailed studies into the functional effects of these autoantibodies are necessary to be 
able to assess their role and relevance. There is much need for improvement of autoantibody 
diagnostics and functional analyses. Novel assays, such as antigen arrays to detect the 
presence of autoantibodies in parallel with their complement activating capacity, could be 
invaluable tools in characterizing autoantibodies in patients’ samples (Papp et al., 2008).  
Recent genetic, functional and structural studies provided fresh mechanistic insights into the 
regulation of the alternative complement pathway and into the formation and regulation of 
the alternative pathway C3 convertase (Fakhouri et al., 2010a; Forneris et al, 2010; Martínez-
Barricarte et al., 2010; Torreira et al., 2009). New autoantibodies and the concurrence of 
acquired and genetic defects in MPGN and dense deposit disease have been described (Leroy 
et al., 2011; Strobel et al., 2010a). Patients should be analyzed for the presence of such 
autoantibodies and complement mutations to determine their diagnostic and clinical 
significance. Additional autoantibodies and genetic changes affecting the complement system 
are likely to join the list of those associated with MPGN and/or dense deposit disease.  
There is no general therapy for MPGN and dense deposit disease. Treatment should be 
tailored to individual patients based on diagnosis and the identified complement defect(s). 
Better and more comprehensive diagnostics, and an increased understanding of the 
underlying pathomechanism could in the future improve the treatment of the patients. 
Patients with complement abnormalities may benefit from novel therapeutic complement 
inhibitors such as anti-C5 antibody or recombinant complement regulatory proteins 
(Wagner and Frank, 2010). Additional options include immunosuppressive therapies to 
patients with autoantibodies, plasma exchange, and factor H replacement in the case of 
inherited or acquired factor H deficiency (Fakhouri et al., 2010b; Noris and Remuzzi, 2008; 
Smith et al., 2007). Improved diagnostic tools are also useful to assess the efficacy of 
treatments and to monitor autoantibody levels during therapy. 
There has been significant advancement in our understanding of the role of complement 
and in particular that of the alternative pathway in kidney diseases in recent years. There is 
hope that the improved diagnostic and therapeutic tools can be applied to translate this 
knowledge into personalized treatment for the benefit of the patients. 

6. Acknowledgment 

I thank laboratory members, especially Stefanie Strobel, collaboration partners and in 
particular the patients, their relatives and clinicians for contributing to the work on anti-
complement autoantibodies. The German Science Fund (Deutsche Forschungsgemeinschaft) 
is gratefully acknowledged for supporting the research on autoantibodies in kidney diseases 
(JO 844/1-1). I also thank Barbara Uzonyi for helpful suggestions. 

www.intechopen.com



Anti-Complement Autoantibodies in  
Membranoproliferative Glomerulonephritis and Dense Deposit Disease 

 

41 

7. References 

Abrera-Abeleda, M.A., Nishimura, C., Smith, J.L., Sethi, S., McRae, J.L., Murphy, B.F., 
Silvestri, G., Skerka, C., Józsi, M., Zipfel, P.F., Hageman, G.S. & Smith, R.J. (2006) 
Variations in the complement regulatory genes factor H (CFH) and factor H related 
5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II 
(dense deposit disease). J. Med. Genet., 43:582-589. 

Appel, G.B., Cook, H.T., Hageman, G., Jennette, J.C., Kashgarian, M., Kirschfink, M., 
Lambris, J.D., Lanning, L., Lutz, H.U., Meri, S., Rose, N.R., Salant, D.J., Sethi, S., 
Smith, R.J., Smoyer, W., Tully, H.F., Tully, S.P., Walker, P., Welsh, M., Würzner, R. 
& Zipfel, P.F. (2005) Membranoproliferative glomerulonephritis type II (dense 
deposit disease): an update. J. Am. Soc. Nephrol., 16:1392-1403. 

Ault, B.H., Schmidt, B.Z., Fowler, N.L., Kashtan, C.E., Ahmed, A.E., Vogt, B.A. & Colten, 
H.R. (1997) Human factor H deficiency. Mutations in framework cysteine residues 
and block in H protein secretion and intracellular catabolism. J. Biol. Chem., 
272:25168-25175. 

Benz, K. & Amann, K. (2009) Pathological aspects of membranoproliferative 
glomerulonephritis (MPGN) and haemolytic uraemic syndrome (HUS) / 
thrombocytic thrombopenic purpura (TTP). Thromb. Haemost., 101:265-270. 

Berger, S.P. & Daha, M.R. (2007) Complement in glomerular injury. Semin. Immunopathol., 
29:375-384. 

Clardy, C.W., Forristal, J., Strife, C.F. & West, C.D. (1989) A properdin dependent nephritic 
factor slowly activating C3, C5, and C9 in membranoproliferative 
glomerulonephritis, types I and III. Clin. Immunol. Immunopathol., 50:333-347. 

Daha, M.R., Fearon, D.T. & Austen, K.F. (1976) C3 nephritic factor (C3NeF): stabilization of 
fluid phase and cell-bound alternative pathway convertase. J. Immunol., 116:1-7. 

Daha, M.R., Austen, K.F. & Fearon, D.T. (1978) Heterogeneity, polypeptide chain 
composition and antigenic reactivity of C3 nephritic factor. J. Immunol., 120:1389-
1394. 

Daha, M.R. & van Es, L.A. (1980) Relative resistance of the F-42-stabilized classical pathway 
C3 convertase to inactivation by C4-binding protein. J. Immunol., 125:2051-2054. 

Daha, M.R. & van Es, L.A. (1981) Stabilization of homologous and heterologous cell-bound 
amplification convertases, C3bBb, by C3 nephritic factor. Immunology, 43:33-38. 

Davis, A.E., Ziegler, J.B., Gelfand, E.W., Rosen, F.S. & Alper, C.A. (1977) Heterogeneity of 
nephritic factor and its identification as an immunoglobulin. Proc. Natl. Acad. Sci. U 
S A, 74:3980-3983. 

Dragon-Durey, M.A., Frémeaux-Bacchi, V., Loirat, C., Blouin, J., Niaudet, P., Deschenes, G., 
Coppo, P., Herman Fridman, W. & Weiss, L. (2004) Heterozygous and homozygous 
factor H deficiencies associated with hemolytic uremic syndrome or 
membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. 
J. Am. Soc. Nephrol., 15:787-795. 

Dragon-Durey, M.A., Loirat, C., Cloarec, S., Macher, M.A., Blouin, J., Nivet, H., Weiss, L., 
Fridman, W.H. & Frémeaux-Bacchi, V. (2005) Anti-Factor H autoantibodies 
associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol., 16:555-
563. 

Fakhouri, F., Frémeaux-Bacchi, V., Noël, L.H., Cook, H.T. & Pickering, M.C. (2010a) C3 
glomerulopathy: a new classification. Nat. Rev. Nephrol., 6:494-499. 

www.intechopen.com



 
An Update on Glomerulopathies – Etiology and Pathogenesis 

 

42

Fakhouri, F., de Jorge, E.G., Brune, F., Azam, P., Cook, H.T. & Pickering, M.C. (2010b) 
Treatment with human complement factor H rapidly reverses renal complement 
deposition in factor H-deficient mice. Kidney Int., 78:279-286. 

Forneris, F., Ricklin, D., Wu, J., Tzekou, A., Wallace, R.S., Lambris, J.D. & Gros, P. (2010) 
Structures of C3b in complex with factors B and D give insight into complement 
convertase formation. Science, 330:1816-1820. 

Fujita, T., Sumita, T., Yoshida, S., Ito, S. & Tamura, N. (1987) C4 nephritic factor in a patient 
with chronic glomerulonephritis. J. Clin. Lab. Immunol., 22:65-70. 

Gale, D.P., de Jorge, E.G., Cook, H.T., Martinez-Barricarte, R., Hadjisavvas, A., McLean, 
A.G., Pusey, C.D., Pierides, A., Kyriacou, K., Athanasiou, Y., Voskarides, K., Deltas, 
C., Palmer, A., Frémeaux-Bacchi, V., de Cordoba, S.R., Maxwell, P.H. & Pickering, 
M.C. (2010) Identification of a mutation in complement factor H-related protein 5 in 
patients of Cypriot origin with glomerulonephritis. Lancet, 376:794-801. 

Gigli, I., Sorvillo, J., Mecarelli-Halbwachs, L. & Leibowitch, J. (1981) Mechanism of action of 
the C4 nephritic factor. Deregulation of the classical pathway of C3 convertase. J. 
Exp. Med., 154:1-12. 

Halbwachs, L., Leveillé, M., Lesavre, P., Wattel, S. & Leibowitch, J. (1980) Nephritic factor of 
the classical pathway of complement: immunoglobulin G autoantibody directed 
against the classical pathway C3 convetase enzyme. J. Clin. Invest., 65:1249-1256. 

Hegasy, G.A., Manuelian, T., Høgåsen, K., Jansen, J.H. & Zipfel, P.F. (2002) The molecular 
basis for hereditary porcine membranoproliferative glomerulonephritis type II: 
point mutations in the factor H coding sequence block protein secretion. Am. J. 
Pathol., 161:2027-2034. 

Høgåsen, K., Jansen, J.H., Mollnes, T.E., Hovdenes, J. & Harboe, M. (1995) Hereditary 
porcine membranoproliferative glomerulonephritis type II is caused by factor H 
deficiency. J. Clin. Invest., 95:1054-1061. 

Jokiranta, T.S., Solomon, A., Pangburn, M.K., Zipfel, P.F. & Meri, S. (1999) Nephritogenic 
lambda light chain dimer: a unique human miniautoantibody against complement 
factor H. J. Immunol., 163:4590-4596. 

Józsi, M., Strobel, S., Dahse, H.M., Liu, W.S., Hoyer, P.F., Oppermann, M., Skerka, C. & 
Zipfel, P.F. (2007) Anti-factor H autoantibodies block C-terminal recognition 
function of factor H in hemolytic uremic syndrome. Blood, 110:1516-1518. 

Leroy, V., Fremeaux-Bacchi, V., Peuchmaur, M., Baudouin, V., Deschênes, G., Macher, M.A. 
& Loirat, C. (2011) Membranoproliferative glomerulonephritis with C3NeF and 
genetic complement dysregulation. Pediatr. Nephrol., 26:419-424. 

Licht, C., Heinen, S., Józsi, M., Löschmann, I., Saunders, R.E., Perkins, S.J., Waldherr, R., 
Skerka, C., Kirschfink, M., Hoppe, B. & Zipfel, P.F. (2006) Deletion of Lys224 in 
regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit 
disease (MPGN II). Kidney Int., 70:42-50. 

Licht, C. & Fremeaux-Bacchi, V. (2009) Hereditary and acquired complement dysregulation 
in membranoproliferative glomerulonephritis. Thromb. Haemost., 101:271-278. 

López-Trascasa, M., Marín, M.A. & Fontán, G. (1987) C3 nephritic factor determination. A 
comparison between two methods. J. Immunol. Methods, 98:77-82. 

Marder, H.K., Coleman, T.H., Forristal, J., Beischel, L. & West, C.D. (1983) An inherited 
defect in the C3 convertase, C3b,Bb, associated with glomerulonephritis. Kidney 
Int., 23:749-758. 

www.intechopen.com



Anti-Complement Autoantibodies in  
Membranoproliferative Glomerulonephritis and Dense Deposit Disease 

 

43 

Markiewski, M.M. & Lambris, J.D. (2007) The role of complement in inflammatory diseases: 
from behind the scenes into the spotlight. Am. J. Pathol., 171:715-727. 

Martínez-Barricarte, R., Heurich, M., Valdes-Cañedo, F., Vazquez-Martul, E., Torreira, E., 
Montes, T., Tortajada, A., Pinto, S., Lopez-Trascasa, M., Morgan, B.P., Llorca, O., 
Harris, C.L. & Rodríguez de Córdoba, S. (2010) Human C3 mutation reveals a 
mechanism of dense deposit disease pathogenesis and provides insights into 
complement activation and regulation. J. Clin. Invest., 120:3702-3712. 

Mathieson, P.W., Würzner, R., Oliveria, D.B., Lachmann, P.J. & Peters, D.K. (1993) 
Complement-mediated adipocyte lysis by nephritic factor sera. J. Exp. Med., 
177:1827-1831. 

Meri, S., Koistinen, V., Miettinen, A., Törnroth, T. & Seppälä, I.J. (1992) Activation of the 
alternative pathway of complement by monoclonal lambda light chains in 
membranoproliferative glomerulonephritis. J. Exp. Med., 175:939-950. 

Meri, S. (2007) Loss of self-control in the complement system and innate autoreactivity. Ann. 
N. Y. Acad. Sci., 1109:93-105. 

Mollnes, T.E., Ng, Y.C., Peters, D.K., Lea, T., Tschopp, J. & Harboe, M. (1986) Effect of 
nephritic factor on C3 and on the terminal pathway of complement in vivo and in 
vitro. Clin. Exp. Immunol., 65:73-79. 

Montes, T., Goicoechea de Jorge, E., Ramos, R., Gomà, M., Pujol, O., Sánchez-Corral, P. & 
Rodríguez de Córdoba S. (2008) Genetic deficiency of complement factor H in a 
patient with age-related macular degeneration and membranoproliferative 
glomerulonephritis. Mol. Immunol., 45:2897-2904. 

Moore, I., Strain, L., Pappworth, I., Kavanagh, D., Barlow, P.N., Herbert, A.P., Schmidt, C.Q., 
Staniforth, S.J., Holmes, L.V., Ward, R., Morgan, L., Goodship, T.H. & Marchbank, 
K.J. (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, 
CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical 
hemolytic uremic syndrome. Blood, 115:379-387. 

Noris, M. & Remuzzi, G. (2008) Translational mini-review series on complement factor H: 
therapies of renal diseases associated with complement factor H abnormalities: 
atypical haemolytic uraemic syndrome and membranoproliferative 
glomerulonephritis. Clin. Exp. Immunol., 151:199-209. 

Ohi, H., Watanabe, S., Fujita, T. & Yasugi, T. (1992) Significance of C3 nephritic factor 
(C3NeF) in non-hypocomplementaemic serum with membranoproliferative 
glomerulonephritis (MPGN). Clin. Exp. Immunol., 89:479-484. 

Ohi, H. & Yasugi, T. (1994) Occurrence of C3 nephritic factor and C4 nephritic factor in 
membranoproliferative glomerulonephritis (MPGN). Clin. Exp. Immunol., 95:316-
321. 

Pangburn, M.K., Schreiber, R.D. & Müller-Eberhard, H.J. (1981) Formation of the initial C3 
convertase of the alternative complement pathway. Acquisition of C3b-like 
activities by spontaneous hydrolysis of the putative thioester in native C3. J. Exp. 
Med., 154:856-867. 

Papp, K., Végh, P., Miklós, K., Németh, J., Rásky, K., Péterfy, F., Erdei, A. & Prechl, J. (2008) 
Detection of complement activation on antigen microarrays generates functional 
antibody profiles and helps characterization of disease-associated changes of the 
antibody repertoire. J. Immunol., 181:8162-8169. 

www.intechopen.com



 
An Update on Glomerulopathies – Etiology and Pathogenesis 

 

44

Pickering, M.C., Cook, H.T., Warren, J., Bygrave, A.E., Moss, J., Walport, M.J. & Botto, M. 
(2002) Uncontrolled C3 activation causes membranoproliferative 
glomerulonephritis in mice deficient in complement factor H. Nat. Genet., 31:424-
428. 

Pickering, M.C., Warren, J., Rose, K.L., Carlucci, F., Wang, Y., Walport, M.J., Cook, H.T. & 
Botto, M. (2006) Prevention of C5 activation ameliorates spontaneous and 
experimental glomerulonephritis in factor H-deficient mice. Proc. Natl. Acad. Sci. U 
S A, 103:9649-9654. 

Pickering, M.C. & Cook, H.T. (2008) Translational mini-review series on complement factor 
H: renal diseases associated with complement factor H: novel insights from 
humans and animals. Clin. Exp. Immunol., 151:210-230. 

Pickering, M. & Cook, H.T. (2011) Complement and glomerular disease: new insights. Curr. 
Opin. Nephrol. Hypertens., 20:271-277. 

Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. (2010) Complement: a key system for 
immune surveillance and homeostasis. Nat. Immunol., 11:785-797. 

Rose, K.L., Paixao-Cavalcante, D., Fish, J., Manderson, A.P., Malik, T.H., Bygrave, A.E., Lin, 
T., Sacks, S.H., Walport, M.J., Cook, H.T., Botto, M. & Pickering, M.C. (2008) Factor 
I is required for the development of membranoproliferative glomerulonephritis in 
factor H-deficient mice. J. Clin. Invest., 118:608-618. 

Rother, U. (1982) A new screening test for C3 nephritis factor based on a stable cell bound 
convertase on sheep erythrocytes. J. Immunol. Methods, 51:101-107. 

Ruley, E.J., Forristal, J., Davis, N.C., Andres, C. & West, C.D. (1973) Hypocomplementemia 
of membranoproliferative nephritis. Dependence of the nephritic factor reaction on 
properdin factor B. J. Clin. Invest., 52:896-904. 

Schwertz, R., Rother, U., Anders, D., Gretz, N., Schärer, K. & Kirschfink, M. (2001) 
Complement analysis in children with idiopathic membranoproliferative 
glomerulonephritis: a long-term follow-up. Pediatr. Allergy Immunol., 12:166-172. 

Seino, J., Fukuda, K., Kinoshita, Y., Sudo, K., Horigome, I., Sato, H., Saito, T., Furuyama, T. 
& Yoshinaga, K. (1987) Quantitation of C3 nephritic factor of alternative 
complement pathway by an enzyme-linked immunosorbent assay. J. Immunol. 
Methods, 105:119-125. 

Seino, J., Kinoshita, Y., Sudo, K., Horigome, I., Sato, H., Narita, M., Noshiro, H., Kudo, K., 
Fukuda, K., Saito, T. & Yoshinaga K. (1990) Quantitation of C4 nephritic factor by 
an enzyme-linked immunosorbent assay. J. Immunol. Methods, 128:101-108. 

Servais, A., Frémeaux-Bacchi, V., Lequintrec, M., Salomon, R., Blouin, J., Knebelmann, B., 
Grünfeld, J.P., Lesavre, P., Noël, L.H. & Fakhouri, F. (2007) Primary 
glomerulonephritis with isolated C3 deposits: a new entity which shares common 
genetic risk factors with haemolytic uraemic syndrome. J. Med. Genet., 44:193-199. 

Servais, A., Noël, L.H., Dragon-Durey, M.A., Gübler, M.C., Rémy, P., Buob, D., Cordonnier, 
C., Makdassi, R., Jaber, W., Boulanger, E., Lesavre, P. & Frémeaux-Bacchi, V. (2011) 
Heterogeneous pattern of renal disease associated with homozygous Factor H 
deficiency. Hum. Pathol., 2011 Mar 9. [Epub ahead of print] 
doi:10.1016/j.humpath.2010.11.023 

Sethi, S., Gamez, J.D., Vrana, J.A., Theis, J.D., Bergen, H.R. 3rd, Zipfel, P.F., Dogan, A. & 
Smith, R.J. (2009) Glomeruli of Dense Deposit Disease contain components of the 
alternative and terminal complement pathway. Kidney Int., 75:952-960. 

www.intechopen.com



Anti-Complement Autoantibodies in  
Membranoproliferative Glomerulonephritis and Dense Deposit Disease 

 

45 

Sethi, S., Fervenza, F.C., Zhang, Y., Nasr, S.H., Leung, N., Vrana, J., Cramer, C., Nester, C.M. 
& Smith, R.J. (2011) Proliferative Glomerulonephritis Secondary to Dysfunction of 
the Alternative Pathway of Complement. Clin. J. Am. Soc. Nephrol., 6:1009-1017. 

Sissons, J.G., West, R.J., Fallows, J., Williams, D.G., Boucher, B.J., Amos, N. & Peters, D.K. 
(1976) The complement abnormalities of lipodystrophy. N. Engl. J. Med., 294:461-
465. 

Skerka, C., Licht, C., Mengel, M., Uzonyi, B., Strobel, S., Zipfel, P.F. & Józsi, M. (2009) 
Autoimmune forms of thrombotic microangiopathy and membranoproliferative 
glomerulonephritis: Indications for a disease spectrum and common pathogenic 
principles. Mol. Immunol., 46:2801-2807. 

Smith, R.J., Alexander, J., Barlow, P.N., Botto, M., Cassavant, T.L., Cook, H.T., Rodríguez de 
Córdoba, S., Hageman, G.S., Jokiranta, T.S., Kimberling, W.J., Lambris, J.D., 
Lanning, L.D., Levidiotis, V., Licht, C., Lutz, H.U., Meri, S., Pickering, M.C., Quigg, 
R.J., Rops, A.L., Salant, D.J., Sethi, S., Thurman, J.M., Tully, H.F., Tully, S.P., van der 
Vlag, J., Walker, P.D., Würzner, R. & Zipfel, P.F.; Dense Deposit Disease Focus 
Group. (2007) New approaches to the treatment of dense deposit disease. J. Am. Soc. 
Nephrol., 18:2447-2456. 

Spitzer, R.E., Vallota, E.H., Forristal, J., Sudora, E., Stitzel, A., Davis, N.C. & West, C.D. 
(1969) Serum C'3 lytic system in patients with glomerulonephritis. Science, 164:436-
437. 

Spitzer, R.E., Stitzel, A.E. & Tsokos, G.C. (1990) Evidence that production of autoantibody to 
the alternative pathway C3 convertase is a normal physiologic event. J. Pediatr., 
116:S103-108. 

Spitzer, R.E., Stitzel, A.E. & Tsokos, G. (1992) On the origin of C3 nephritic factor (antibody 
to the alternative pathway C3 convertase): evidence for the Adam and Eve concept 
of autoantibody production. Clin. Immunol. Immunopathol., 64:177-183. 

Strife, C.F., Leahy, A.E. & West, C.D. (1989) Antibody to a cryptic, solid phase C1Q antigen 
in membranoproliferative nephritis. Kidney Int., 35:836-842. 

Strife, C.F., Prada, A.L., Clardy, C.W., Jackson, E. & Forristal, J. (1990) Autoantibody to 
complement neoantigens in membranoproliferative glomerulonephritis. J. Pediatr., 
116:S98-102. 

Strobel, S., Zimmering, M., Papp, K., Prechl, J. & Józsi, M. (2010a) Anti-factor B autoantibody 
in dense deposit disease. Mol. Immunol., 47:1476-1483. 

Strobel, S., Hoyer, P.F., Mache, C.J., Sulyok, E., Liu, W.S., Richter, H., Oppermann, M., 
Zipfel, P.F. & Józsi, M. (2010b) Functional analyses indicate a pathogenic role of 
factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol. Dial. 
Transplant., 25:136-144. 

Tanuma, Y., Ohi, H., Watanabe, S., Seki, M. & Hatano, M. (1989) C3 nephritic factor and C4 
nephritic factor in the serum of two patients with hypocomplementaemic 
membranoproliferative glomerulonephritis. Clin. Exp. Immunol., 76:82-85. 

Tanuma, Y., Ohi, H. & Hatano, M. (1990) Two types of C3 nephritic factor: properdin-
dependent C3NeF and properdin-independent C3NeF. Clin. Immunol. 
Immunopathol., 56:226-238. 

Torreira, E., Tortajada, A., Montes, T., Rodríguez de Córdoba, S. & Llorca O. (2009) 3D 
structure of the C3bB complex provides insights into the activation and regulation 

www.intechopen.com



 
An Update on Glomerulopathies – Etiology and Pathogenesis 

 

46

of the complement alternative pathway convertase. Proc. Natl. Acad. Sci. U S A, 
106:882-887 

Trouw, L.A., Roos, A. & Daha, M.R. (2001) Autoantibodies to complement components. Mol. 
Immunol., 38:199-206. 

Trouw, L.A., Seelen, M.A. & Daha, M.R. (2003) Complement and renal disease. Mol. 
Immunol., 40:125-134. 

Wagner, E. & Frank, M.M. (2010) Therapeutic potential of complement modulation. Nat. 
Rev. Drug Discov., 9:43-56. 

Walport, M.J. (2001a) Complement. First of two parts. N. Engl. J. Med., 344:1058-1066. 
Walport, M.J. (2001b) Complement. Second of two parts. N. Engl. J. Med., 344:1140-1144. 
West, C.D., Witte, D.P. & McAdams, A.J. (2001) Composition of nephritic factor-generated 

glomerular deposits in membranoproliferative glomerulonephritis type 2. Am. J. 
Kidney Dis., 37:1120-1130. 

West, C.D. (2008) A hemolytic method for the measurement of nephritic factor. J. Immunol. 
Methods, 335:1-7. 

Zipfel, P.F., Heinen, S., Józsi, M. & Skerka, C. (2006) Complement and diseases: defective 
alternative pathway control results in kidney and eye diseases. Mol. Immunol., 
43:97-106. 

Zipfel, P.F. & Skerka, C. (2009) Complement regulators and inhibitory proteins. Nat. Rev. 
Immunol., 9:729-740. 

www.intechopen.com



An Update on Glomerulopathies - Etiology and Pathogenesis

Edited by Prof. Sharma Prabhakar

ISBN 978-953-307-388-0

Hard cover, 276 pages

Publisher InTech

Published online 06, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book has fourteen chapters which are grouped under different sections: Immune System and

Glomerulonephritis, Animal Models of Glomerulonephritis, Cytokines and Signalling Pathways, Role of Cells

and Organelles in Glomerulonephritis and Miscellaneous. While the purpose of this volume is to serve as an

update on recent advances in the etio-pathogenesis of glomerulopathies, the book offers the current and

broad based knowledge in the field to readers of all levels in the nephrology community.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Miha ́ly Jo ́zsi (2011). Anti-Complement Autoantibodies in Membranoproliferative Glomerulonephritis and Dense

Deposit Disease, An Update on Glomerulopathies - Etiology and Pathogenesis, Prof. Sharma Prabhakar (Ed.),

ISBN: 978-953-307-388-0, InTech, Available from: http://www.intechopen.com/books/an-update-on-

glomerulopathies-etiology-and-pathogenesis/anti-complement-autoantibodies-in-membranoproliferative-

glomerulonephritis-and-dense-deposit-disease



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


