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1. Introduction  

In this chapter we will describe about numerical simulation with meshfree methods. We 

know; phenomena in nature, whether physical, geological, mechanical, electrical, or 

biological, can often be describe by means of algebraic, differential, or integral equations. 

Obtaining exact solutions for these equations is ideal. Unfortunately, we can only obtain 

exact ones for limited practical problems because most of these problems are complex.  

Therefore using numerical procedure to obtain approximate solutions is inevitable. One of 

the most important tools in the field of numerical methods that has been developed newly is 

meshfree or meshless methods. 
A meshfree method is a method used to establish system algebraic equations for the whole 
domain of problem without using a predefined mesh for the domain discretization. This 
infant method uses a set of scattered nodes, called field nodes, to establish the problem 
domain and boundaries, which do not require any priori information on the relationship 
between the nodes for the interpolation or approximation of the unknown functions of field 
variables.  In the FEM, a continuum with a complicated shape is divided into elements, finite 
elements. The individual elements are connected together by a topological map called a mesh. 
Meshfree methods have been proposed and achieved remarkable progress over the past few 

years. According to the formulation procedure, meshfree methods fall into three categories: 

meshfree weak form methods (like: EFG, MLPG, LRPIM,…), meshfree strong form methods 

(like: SPH, Collocation method,…) and meshfree weak-strong form methods based on the 

combination of both weak form and strong form (like: MWS method). These three categories 

and their limitations, applications, advantages and other descriptions will be introduced. In 

seeking for an approximate solution to the problem governed by PDEs and boundary 

conditions, one first needs to approximate the unknown field function using shape (trial or 

base) functions before any formulation procedure can be applied to establish the discretized  

system equations. In this chapter definition of base and shape functions and various 

techniques for meshfree shape function constructions are discussed. These shape functions 

are locally supported, because only a set of field nodes in a small local domain are used in 

the construction and the shape function is not used or regarded as zero outside the local 

domain. Such a local domain is termed the support domain or influence domain. The 

concept and kinds of support domain and determination of the dimension of the support 

domain will be described.  

After introducing the concept of support domain, the point interpolation method (PIM) in 
detail will be discussed. Point interpolation method is one of the series representation 
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methods for the function approximation, and useful for creating meshfree shape functions. 
A scalar function defined in the problem domain that is represented by a set of scattered 
nodes will be shown. There are two types of PIM shape functions have been developed so 
far using different forms of basis functions Polynomial basis functions and radial basis 
functions (RBF) have often been used in meshfree methods. These two types of PIMs will be 
discussed in the following chapter.  
For satisfying the boundary conditions, penalty method, direct method, lagrange multiplier 
method and direct interpolation method can be used to enforce essential boundary 
conditions. One of these methods due to using meshfree method can be elected and  they 
will be explained  and compared. 
To simulate some problems, the partial differential equations and boundary conditions for  
two dimensional solid mechanics and fluid mechanics problem and heat transfer problem 
especially thermodynamics of plates and shells will be given in sub-sections. These 
problems are solved with meshfree methods.  

2. Meshfree methods categories 

According to the formulation procedure, meshfree methods fall into three categories: 
meshfree weak form methods (like: EFG, MLPG, LRPIM,…), meshfree strong form methods 
(like: Collocation method, SPH,…) and meshfree weak-strong form methods based on the 
combinations of both weak forms and strong forms  (like: MWS method). 

2.1 Strong form methods 

Regarding to formulate the governing equations, the direct approximate solution from the 
differential equations is used. It means the strong form of governing equations for boundary 
conditions are directly discretized at the field nodes to obtain a set of discretized system 
equations. If Taylor series is used and the differentiations are replaced, the method is the 
strong form method. The strong form method does not need the numerical integration. Thus  
The background mesh even locally is not needed for the strong form methods.   
Meshfree strong form methods have some attractive advantages: a simple algorithm, 
computational efficiency,  and truly meshfree. However, Meshfree strong form methods are 
often unstable, not robust, and inaccurate, especially for problems with derivative boundary 
conditions. Several strategies may be used to impose the derivative (Neumann) boundary 
conditions  in the strong form methods, such as the use of fictitious nodes, the use of the 
Hermite-type Meshfree shape functions, the use of a regular grid on the derivative 
boundary.   

2.2 Weak form methods 

In Meshfree weak form methods, the governing partial differential equations (PDEs) with 
derivative boundary conditions are first transformed to a set of so called weak form integral 
equations using different techniques. The weak forms are then used to derive a set of 
algebraic system equations through a numerical integration process using sets of 
background cells that may be constructed globally or locally in the problem domain. 
Meshfree weak form  methods were relatively under developed before 1990, but there has 
been a substantial increase in research effort since then. 
There are now many different versions of Meshfree weak form  methods. Meshfree weak form  
methods based on the global weak forms are called Meshfree global weak form methods, and 

www.intechopen.com



 
Meshfree Methods 233 

those based on local weak forms are called Meshfree local weak form  methods. Meshfree 
global weak form  methods are based on the global Galerkin weak form  for equations of 
problems and the Meshfree shape functions. Two typical Meshfree global weak form  
methods: the element free Galerkin (EFG) method (Belytschko et al., 1994a) and the radial 
point interpolation method (RPIM) (GR Liu and Gu, 2001c; Wang and GR Liu, 2000; 2002a).  
Another typical Meshfree global weak form  method is the reproducing kernel particle 
method (RKPM) proposed by Liu and coworkers in 1995 (Liu et al., 1995). The main idea of 
RKPM is to improve the SPH approximation to satisfy consistency requirements using a 
correction function. RKPM has been used in nonlinear and large deformation problems 
(Chen et al., 1996; Chen et al., 1998; Liu and Jun, 1998), inelastic structures (Chen et al., 1997), 
structural acoustics (Uras et al., 1997), fluid dynamics (Liu and Jun et al., 1997), et cetera. 
Meshfree local weak form  methods were developed by Atluri and coworkers based on the 
local Petrov-Galerkin weak form , and the Meshfree shape functions. Some other Meshfree 
weak form  methods have also been developed, such as the hp-cloud method (Armando and 
Oden, 1995), the partition of unity finite element method (PUFEM) (Melenk and Babuska, 
1996; Babuska and Melenk, 1997), the finite spheres method (De and Bathe, 2000), the free 
mesh method (Yagawa and Yamada, 1996), et cetera. 

2.3 Weak-strong form methods 

These Meshfree methods are called Meshfree weak-strong (MWS) form methods in this 

book because are based on the combination of weak and strong form methods. The MWS 

method was developed by GR Liu and Gu (2002d, 2003b). The key idea of the MWS method 

is that in establishing the discretized system equations, both the strong form and the local 

weak form  are used for the same problem, but for different groups of nodes that carries 

different types of equations/conditions. The local weak form  is used for all the nodes that 

are on or near boundaries with derivative (Neumann) boundary conditions. The strong form 

is used for all the other nodes. The MWS method uses least background cells for the 

integration, and it is currently the almost ideal Meshfree method that can provide stable and 

accurate solutions for mechanics problems.  

There are also Meshfree methods based on the integral representation method for function 

approximations, such as the Smooth Particle Hydrodynamics (SPH) methods (Lucy, 1977; 

Gingold and Monaghan, 1977; GR Liu and Liu, 2003, etc.). In the standard SPH method, the 

function approximation is performed in a weak (integral) form, but strong form equations 

are directly discretized at the particles. 

2.4 Comparisons between three meshfree categories  

Each meshfree method has features with advantages and defects. With these properties, the 
appropriate method can be selected to solve the problem. The features of methods are 
presented in sub-sections.  

2.4.1 Advantages and disadvantages 

Convergence rate and highest accuracy are important properties in numerical methods. 
When the problems include Dirichlet boundary conditions, the strong form methods are the 
best but in case of Neumann boundary conditions, weak form methods are optimum and 
when the both of Dirichlet and Neumann boundaries are used in problems, the weak-strong 
form methods are useful. 
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The strong form methods are with good convergence rate and they are truly meshless. The 
procedure is straightforward, and the algorithms and coding are simple. They are 
computationally efficient, and the solution is accurate when there are only Dirichlet 
boundary conditions. 
However, Meshfree strong form methods have disadvantages: they are often unstable and 
less accurate, especially for problems governed by PDEs1 with derivative boundary 
conditions. Derivative boundary conditions (DBCs) involve a set of separate differential 
equations defined on the boundary; these are different from the governing equations 
defined in the problem domain. These DBCs require special treatments. Unlike integration, 
which is a smoothing operator, differentiation is a roughening operator; it magnifies errors 
in an approximation. This magnified error is partially responsible for the instability of the 
solution of PDEs. Hence, Meshfree strong form methods are often unstable. Special 
treatments are employed to implement the derivative boundary conditions in Meshfree 
strong form methods. However, such treatments cannot always control the error. A 
technique suitable for one problem may not work for another, even one of the same types. A 
set of parameters tuned for one problem may not work for another.  
The common feature of Meshfree weak form  methods is that the PDE of a problem is first 
replaced by or converted into an integral equation (global or local) based on a principle 
(weighted residual methods, energy principle). Weak form  system equations can then be 
derived by integration by parts. A set of system equations of Meshfree weak form  methods 
can be obtained from the discretization of the weak form  using meshfree interpolation 
techniques. There are four features of the local weak form . The integral operation can smear 
the error over the integral domain and, therefore improve the accuracy in the solution. It 
acts like some kind of regularization to stabilize the solution. The requirement of the 
continuity for the trial function is reduced or weakened, due to the order reduction of the 
differential operation resulting from the integration by parts. The force (derivative) 
boundary conditions can be naturally implemented using the boundary integral term 
resulting from the integration by parts. The system equations in the domain and the 
derivative boundary conditions are conveniently combined into one single equation. 
These features give Meshfree weak form  methods the following advantages. They exhibit 
good stability and excellent accuracy for many problems. The derivative (Neumann) 
boundary conditions can be naturally and conveniently incorporated into the same weak 
form  equation. No additional equations or treatments are needed and no errors are 
introduced in the enforcement of traction boundary conditions. A method developed 
properly using a weak form  formulation is applicable to many other problems. A set of 
parameters tuned for one method for a problem can be used for a wide range of problems. 
This robustness of the weak form  methods have been demonstrated through many practical 
problems. It is this robustness that makes the weak form  methods applicable to many 
practical engineering problems.  
However, Meshfree global weak form  methods are meshfree only in terms of the interpolation 
of the field variables. Background cells have to be used to integrate a weak form over the 
global domain. The numerical integration makes them computationally expensive, and the 
background mesh for the integration means that the method is not truly meshless.  
In the Meshfree local weak form  methods, the local integral domain in the interior of the 
problem domain is usually of a regular shape. It can be as simple as possible and can be 

                                                                 
1Partial Differential Problems 
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automatically constructed in the process of computation. The Meshfree local weak form  
methods have obtained satisfactory results in solid mechanics and fluid mechanics (Atluri 
and Shen, 2002; GR Liu, 2002). 
Although the Meshfree local weak form  methods made a significant step in developing 
ideal meshfree methods, the numerical integration is still burdensome, especially for nodes 
on or near boundaries with complex shape. The local integration can still be 
computationally expensive for some practical problems. It is therefore desirable to minimize 
the need for numerical integrations. 
The Mesh Weak-Strong method is designed to combine the advantages of strong form and 
weak form  methods and to avoid their shortcomings. This can be performed only after a 
thorough examination of the features of both types of methods, presented in the above 
sentences. An Meshfree weak-strong (MWS) form method was proposed recently by GR Liu 
and Gu (2002d); it aimed to remove the background mesh for integration as much as 
possible, and yet to obtain stable and accurate solutions even for PDEs with derivative 
boundary conditions. The MWS method has been successfully developed and used in solid 
mechanics (Gu and GR Liu, 2005; GR Liu and Gu, 2003b) and fluid mechanics (GR Liu and 
Wu et al., 2004; GR Liu and Gu et al., 2003c). 
The convergence of the MWS method is studied numerically by comparison with other 
methods. The weak form method treats the Neumann boundary condition naturally and 
easily. In addition, the accuracy achieved by meshfree methods based on the weak form 
equations are generally much better than those based on strong form equations. However, 
the efficiency is a big problem for the weak form methods because of the need for weak 
form integration.   
The MWS method proposed by Liu and Gu was based on both collocation and local radial 
point interpolation formulation. In the present MWS method, the strong form of meshfree 
collocation method is applied to the internal nodes and the nodes on the essential 
boundaries, while the local radial point interpolation weak form is applied to the nodes on 
the natural boundaries. The advantages of this MWS method are: 
1. The Neumann boundary condition can be imposed straightforwardly and accurately 

with arbitrary nodal distributions.  
2. Stable and accurate solution can be obtained with high efficiency.  

2.4.2 Applications of each category 

Strong form methods are suitable for Dirichlet boundary conditions problems and weak 
form methods are used more with problems that have Neumann boundary conditions. 
Weak-strong form methods are appropriate for problems with both of Dirichlet and 
Neumann boundary conditions. 

3. Shape functions  

In seeking for an approximate solution to a problem governed by PDEs and boundary 
conditions, one first needs to approximate the equation variables using shape functions, 
befor any formulation procedure can be applied to establish the descretized system 
equations.  
This section discusses various techniques for MFree shape function constructions. These 
shape functions are locally supported, because only a set of field nodes in a small local 
domain are used in the construction and the shape function is not used or regarded as zero 
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outside the local domain. Such a local domain is termed the support domain or influence 
domain or smoothing domain. 

3.1 Point interpolation methods shape functions 

The point interpolation method (PIM) is one of the series representation methods for the 
function approximation, and is useful for creating Meshfree shape functions. Consider a 
scalar function T(x) defined in the problem domain Ω that is represented by a set of 
scattered nodes. The PIM approximates T(x) at a point of interest x in the form of  

 T(x)=∑ ሻܽ௜௠௜ୀଵݔ௜ሺܤ  (1) 

where the Bi(x) are the basis function defined in the space Cartesian coordinates XT=[x, y] , m 
is the number of basis functions, and the ai are the coefficients.            
For function approximation, a local support domain is first formed for the point of interest 
at x which includes a total of n field nodes. For the conventional point interpolation method 
(PIM), n=m is used that results in the conventional PIM shape functions that pass through 
the function values at methods. The RPIM interpolation augmented with each scattered 
node within the defined support domain.  
 For the weighted least square (WLS) approximation or the moving least squares (MLS)  
approximation, n is always larger than m. There are two types of PIM shape functions have 
been developed so far using different forms of basis functions. Polynomial basis functions 
(GR Liu and Gu, 1999; 2001a) and radial basis functions (RBF) (Wang and GR Liu, 2000; GR 
Liu, 2002) have often been used in Meshfree methods. 

3.1.1 Conventional polynomial PIM 

Using polynomials as the basis functions in the interpolation is one of the earliest 

interpolation schemes. It has been widely used in establishing numerical methods, such as 

the FEM. Consider a continuous function u(x) defined in a domain  , which is represented 

by a set of field nodes. The u(x) at a point of interest x is approximated in the form of 

 u(x)=∑ ௜ሺxሻܽ௜݌ = {m
i=1 …		ଶሺxሻ݌		ଵሺxሻ݌ . . } ൞ܽଵܽଶ... ൢ = ்ܲܽ      (2) 

 PT(x)=(1  x   y  x2     xy  y2)       for  m=6, p=2 (2-D) (3) 

where pi(x) is a given monomial in the polynomial basis function in the space coordinates  
xT=[x,y], m is the number of monomials, and ai  is the coefficient for pi(x) which is yet to be 
determined. The pi(x) in Equation is built using Pascal's triangles, and a complete basis is 
usually (but not always) 

3.1.2 Radial point interpolation shape functions 

In order to avoid the singularity problem in the polynomial PIM, the radial basis function 
(RBF) is used to develop the radial point interpolation method (RPIM) shape functions for 
Meshfree weak form  methods (GR Liu and Gu, 2001c; Wang and Liu, 2000; 2002a,c). The 
RPIM shape functions will be used for both Meshfree weak form and strong form polynomials 
can be written as 
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Fig. 1. Pascal-khayyam triangle of monomials for two dimensional domain 

 u(x,y)=∑ ௝ܴሺx,yሻ ௝ܾ ൅ ∑ ௜ሺx,yሻܽ௜m݌
i=1

n
j=1 = ܤ்ܴ ൅  (4)   ܣ்ܲ

Where Rj(x) is a radial basis function (RBF), n is the number of RBFs, pi(x) is monomial in the 

space coordinates xT=[x, y], and m is the number of polynomial basis functions. When m=0, 

pure RBFs are used. Otherwise, the RBF is augmented with m polynomial basis functions. 

Coefficients ai and bj are constants. r is the distance between the point of interest (x,y) and a 

node (xi,yi) at 

 r=ඥሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ  ௜ሻଶ     (5)ݕ

There are a number of types of radial basis functions (RBF), and the characteristics of RBFs 

have been widely investigated (Kansa,1990; Sharan et al.,1997; Franke and Schaback, 1997; 

etc). Four often used RBFs, the multi-quadrics (MQ) function, the Gaussian (Exp) function, 

the thin plate spline (TPS) function, and the Logarithmic radial basis function, are listed in 

Table.1. 

 

 

Table 1. Typical radial basis functions with dimensionless shape parameters 

Note: dc is a characteristic length that relates to the nodal spacing in the local support 

domain of the point of interest x, and it is usually the average nodal spacing for all the nodes 

in the local support domain.  

 

1 1 2 1 1

1 2 2 2 2
0

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n n n

R r R r R r

R r R r R r
R

R r R r R r

 
 
 
 
 
 



 
 (6) 

the polynomial moment matrix is 
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1 2

1 2

1 1 1

( ) ( ) ( )
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m m m n

x x x
P
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 
 
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 
 
 
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

  
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 2 2( ) ( )k k i k ir x x y y     (8) 
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m
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  1( ) ( ) ( ) ( )T T T

S Su x R x P x G U x U     (10) 

 

  1

1 2 1
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

 

  





 
 (11) 

The above equations are brought to show the procedure of shape function produce. The 
shape functions Φ are obtained and then the discretized derivatives can be used to 
governing equations and the parameters are shown with the equation 

 
1

( ) ( )
n

T
S i i

i

u x x U u


    (12) 

The derivatives of u(x) are easily obtained as 

 , ,( ) ( )T
l l Su x x U   (13) 

where l denotes either the coordinates x or y.       

3.2 Support domain 

The accuracy of interpolation for the point of interest depends on the nodes in the support 
domain as shown in Fig.2. Therefore, a suitable support domain should be chosen to ensure 
an efficient and accurate approximation. For a point of interest at ݔ௤, the dimension of the 

support domain ݀௖ is determined by 

 

.

.
sx s cx

sy s cy

r d

r d







 (14) 

 is the dimensionless size of the support domain, and dc is the nodal spacing near the point	௦ߙ

at ݔ௤. If the nodes are uniformly distributed, dc is simply the distance between two 

neighboring nodes. When nodes are non uniform and where ߙ	is a constant of shape 

parameter, dc can be defined as an average nodal spacing in the support domain of ݔ௤. The 

exponential function of the support domain ߙ௦ controls the actual dimension of the support 

domain. 
Rectangular support domains (	ݎ௦௫ 	and 	ݎ௦௬	: dimensions of the support domain in x and y 

directions). The support domain is centred by ݔொ. 
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Fig. 2. Support domains of points of interest at ݔொ in Meshfree models.  

The actual number of nodes, n, can be determined by counting all the nodes included in the 
support domain. Generally, an ߙ௦=2.0~3.0 leads to good results for many problems that we 
have studied. Note that the support domain is usually centered by a point of interest at ݔொ. 

4. Satisfying boundary conditions 

For the Dirichlet boundary condition, the essential boundary conditions for u can be simply 
given as follows: (when node is on the boundary) 

 u= തܶ (15) 

The essential boundary condition can be directly imposed using the direct interpolation 
method. another method is the Penalty method has been used to enforce essential boundary 
conditions in the MLPG and LRPIM Methods. Since RPIM shape functions possess the 
Kronecker delta function property, the essential boundary conditions can be easily enforced 
as in the FEM (see, e.g., GR Liu and Quek, 2003).  
The natural boundary conditions can be satisfy automatically when we use weak-strong 
form method and no additional equation or treatment is needed. 

4.1 Direct method 

The ith component is prescribed by setting 

 ui= തܶ௜ (16) 

Such an essential boundary condition can then be enforced directly into the system Equation 
through the following modifications to the global matrix and the global right vector. The 
global matrix, K, is changed to 
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 
 
 
 
 
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 
 

 
 

 (17) 
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The components in the global right vector are changed to 

 
i

i
j ji i

T i j
F

i jF k T

   
 (18)  

The direct method can exactly enforce essential boundary conditions, but changing matrices 

and vectors needs additional computational operations. In addition, the algorithm of the 

direct method is also complicated. 

4.2 Penalty method 

The penalty method is a convenient alternative for enforcing the essential boundary 

conditions, in which the diagonal entry iik  in the stiffness matrix, is changed to 

 .ii iik k  (19) 

where ߙ is the penalty coefficient that is the much larger number than the components of 
the global matrix K. In the global right vector F, only the component Fi is changed as 
follows 

 
. .ii i

i
j

i jk T
F

i jF

   
 (20) 

The penalty method has some advantages: there are only two changes of matrices, and the 
algorithm is very simple. However, the penalty method can only approximately satisfy the 
essential boundary conditions. In addition, the accuracy is affected by selection of the 
penalty coefficient. 
the global  matrix, K, is then changed to 
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 
 
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  

 

  

 (21) 

5. Examples for numerical simulations 

In this section, some problems are brought to show the abilities of meshfree methods for 
solving the heat, solid and fluid mechanics problems. 

5.1 Heat conduction 
Meshfre methods are used to solve the heat transfer problem. For example, heat conduction  

in the plate is solved. 
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5.1.1 Formulation of heat transfer in the plate  

Formulation of heat transfer in Cartesian coordinate is  

 ( ) ( ) ( )p

T T T
k k q C

dx x dy y t
      

  
 (22) 

 

If k(conductivity coefficient) is constant and for steady state  and without any energy 

generation we have: 

 
2 2

2 2
0( ) ( )

T T

x y

 
 

 
 (23) 

 

T is the Temperature and ݍᇱ is the rate of energy generation and ߩ is the density and Cp is 

the specific heat in the formula. 

5.1.2 Numerical results and discussion Domain representation for heat transfer 

First, the temperature distribution in square plate is obtained. In problem 1, the bottom wall 

is in temperature T0 and other walls are in temperature 0 and in problem 2, the up wall has 

Neumann boundary condition. To check the validity of the method, three different 

problems are considered. Fig.3 shows the domain representation for problems 1 and 2 by 

the scattered nodes. The essential and natural boundary conditions should be satisfied on 

the boundary nodes.  

 

 

Fig. 3. The problem is represented by 256(16x16) regular nodes 

5.1.3 Problem 1 with essential boundary conditions 

Fig.4  shows the problem 1 and its boundary conditions. The temperature distribution in the 

plate obtained by MWS method presented in this chapter is given in Fig. 5.  

The constant temperature lines in this figure are shown by solid lines. Table.2 compares the 

results obtained by collocation method and LRPIM method with those obtained by the 

analytical method. 
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Fig. 4. Problem 1 and its boundary conditions 

 

 

Fig. 5. Temperature distribution with essential boundary conditions (problem1 solved with 
MWS method) 

the analytical solution of the problem can be written as  

 
1

1

2 1 1
( , ) sin( )( tanh( ).cosh( ) sinh( ))

n

n

T x y n x n n y n y
n





 
      


 (24) 

(x,y) are the coordinate of points in the plate. T is the temperature. We showed the 
difference between three meshfree methods and the difference between using different 
number of nodes to give the better results.  
We used the error norm  

 
( ) ( )

( )
( )

analytic

analytic

T j T j
Err j

T j


  (25) 
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and Total Error defined as  

 
1

)( ( )
n

j

n

Err j

TotalErr



 (26) 

 

x=0.5 256 nodes 1156 nodes 

y Analytical Collocation LRPIM MWS LRPIM MWS 

0 1 1 1 1 1 1 

0.1 0.8017 0.7978 0.7980 0.7976 0.8010 0.8013 

0.2 0.6208 0.6137 0.6142 0.6134 0.6198 0.6203 

0.3 0.4679 0.4624 0.4632 0.4620 0.4667 0.4671 

0.4 0.3449 0.3390 0.3401 0.3386 0.3445 0.3448 

0.5 0.2500 0.2462 0.2473 0.2458 0.2493 0.2495 

0.6 0.1765 0.1728 0.1737 0.1724 0.1760 0.1761 

0.7 0.1194 0.1174 0.1181 0.1171 0.1190 0.1191 

0.8 0.0737 0.0720 0.0725 0.0717 0.0735 0.0736 

0.9 0.0351 0.0345 0.0419 0.0342 0.0350 0.0350 

1 0 0 0 0 0 0 

Table 2. Comparison between Mfree methods and analytical method in problem 1 

 

x=0.5 256 nodes 1156 nodes 

y 
Analytical

Err 
Collocation

Err 
LRPIM 

Err 
MWS 

Err 
Collocation 

Err 
LRPIM 

Err 
MWS 

Err 

0.1 0 0.0051 0.0046 0.0051 0.0015 0.0009 0.0004 

0.2 0 0.0119 0.0106 0.0119 0.0029 0.0016 0.0008 

0.3 0 0.0126 0.0100 0.0126 0.0045 0.0026 0.0009 

0.4 0 0.0183 0.0139 0.0183 0.0038 0.0012 0.0009 

0.5 0 0.0168 0.0108 0.0168 0.0056 0.0028 0.0008 

0.6 0 0.0232 0.0159 0.0232 0.0062 0.0028 0.0006 

0.7 0 0.0193 0.0109 0.0193 0.0067 0.0034 0.0008 

0.8 0 0.0271 0.0163 0.0271 0.0068 0.0027 0.0014 

0.9 0 0.0256 0.1937 0.0256 0.0085 0.0028 0.0001 

Total  Err 0.018 0.0319 0.0178 0.005 0.0023 0.0007 

Table 3. Errors in problem 1 

5.1.4 Problem 2 with natural boundary condition 

The MWS method is used to solve the same problem with both essential and natural 

boundary conditions by 256(16x16) and 1156(34x34) nodes. The temperature distributions 

for those problems are given in Fig.7. It should be noted that the essential boundary 

conditions are satisfied exactly whereas the natural (Neumann) boundary conditions are 

satisfied in the weak form formulation. 
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Fig. 6. Problem 2 and its boundary conditions 

 

 

Fig. 7. Temperature distribution with 1156 nodes (Problem2 solved with MWS method) 

In Tables 4 and 5 the LRPIM and MWS methods are compared with the analytical method. 

The numerical values for the temperature distributions with 256 and 1156 nodes are also 

given in Tables 4 and 5. The defined error equations (25 and 26) are used to show the 

accuracy of MWS and LRPIM. 

5.2 Lid driven cavity problem 

In this section, the lid driven cavity problem is solved by meshfree method. In this problem, 

the cavity is full of fluid and the upper plate in the cavity drive horizontally. It is shown that 

the moving boundary conditions in the top wall are easily applied and natural boundary 

condition can be satisfied. 
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x=0.5 256 nodes 1156 nodes 

y analytical MWS LRPIM MWS LRPIM 

0 1 1 1 1 1 

0.1 0.8047 0.8006 0.8009 0.8035 0.8041 

0.2 0.6271 0.6196 0.6202 0.6254 0.6262 

0.3 0.4782 0.4723 0.4732 0.4762 0.4771 

0.4 0.3606 0.3538 0.3550 0.3589 0.3598 

0.5 0.2718 0.2675 0.2688 0.2705 0.2712 

0.6 0.2071 0.2026 0.2039 0.2059 0.2066 

0.7 0.1617 0.1591 0.1603 0.1608 0.1614 

0.8 0.1320 0.1293 0.1304 0.1314 0.1318 

0.9 0.1152 0.1137 0.1147 0.1147 0.1151 

1 0.1098 0.1081 0.1089 0.1093 0.1097 

Table 4. Comparison between Meshfree methods and analytical method in problem 2 

 

x=0.5 256 nodes 1156 nodes 

y 
Analytical 

Err 
MWS 

Err 
LRPIM 

Err 
MWS 

Err 
LRPIM 

Err 

0.1 0 0.0051 0.0047 0.0015 0.0007 

0.2 0 0.0120 0.0110 0.0027 0.0014 

0.3 0 0.0123 0.0105 0.0042 0.0023 

0.4 0 0.0189 0.0155 0.0047 0.0022 

0.5 0 0.0158 0.0110 0.0048 0.0022 

0.6 0 0.0217 0.0155 0.0058 0.0024 

0.7 0 0.0161 0.0087 0.0056 0.0019 

0.8 0 0.0205 0.0121 0.0045 0.0015 

0.9 0 0.0130 0.0043 0.0043 0.0009 

1 0 0.0158 0.0082 0.0046 0.0009 

Total Err 0.0162 0.0108 0.0046 0.0017 

Table 5. Errors in problem 2 

5.2.1 Formulation and boundary conditions of driven cavity problem  

The application of Navier-Stokes equation in solving fluid flow has evolved in the past few 

decades with meshfree method as one of the most adopted techniques. In this section the 

Navier-Stockes equation is solved: 

 
2 2

2 2
1 ( )

Re
u u P u u

u v
x y x x y

    
    

    
 (27) 

The boundary conditions are shown in fig.8 and it is shown that three walls are without 

motion and the upper wall move with the fix speed. 
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Fig. 8. Boundary conditions for driven cavity problem  

5.2.2 Numerical results 
The results from the solution of driven cavity problem when Reynolds number is 100 are 
shown below: 
 

 

Fig. 9. Stream line contours for Reynolds 100  

The vortex on the corner is created and is related to Reynolds number and the corner vortex 
will grow if Reynolds number increases. The vorticity and velocity contours are shown: 
 

Reference Reynolds Minimum stream functionLocation of large vortex 

Ghia and   Shin 100 -0.0103 (0.6172,0.7344) 

Hou and Doolen 100 -0.0103 (0.6196,0.7373) 

Present 100 -0.0129 (0.6231,0.7460) 

Ghia 400 -0.114 (0.5547,0.6055) 

Gupta and Kalita 400 -0.113 (0.5500,0.6125) 

Present 400 -0.114 (0.5411,0.6005) 

Table 6. Minimum stream function and location of large vortex 
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Fig. 10. Vorticity contours for driven cavity problem for Reynolds 100 

 

 

Fig. 11. Horizontal velocity contours for driven cavity problem for Reynolds 100 

In Table 6 the results are compared with the minimum stream function and the location of 
large vortex. The results show the ability of meshfree methods to simulate the fluid 
mechanics problems. 

5.3 Cantilever beam problem 
Numerical studies are conducted for a cantilever beam that is often used for benchmarking 
numerical methods because the analytic solution for this problem is known. This problem is 
a sample of solid mechanics. 

5.3.1 Formulation of cantilever beam problem  
The equilibrium equation is used with the formula:  

 0,ij j ib   is the stress vector and ܾ௜ ߪ (28)  	is the body force vector components. The strain-displacement 
relations are another formula that are brought  in two directions: 
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Fig. 12. The beam problem 

 xx

u

x
 




 .௫௫ is the strain component and u is the displacement in the horizontal directionߝ (29) 

 yy

v

x
 




 .௬௬ is the strain component and v is the displacement in the vertical directionߝ (30) 

The last equation is Hook’s law: 

 eD   (31) 

De  is the matrix of elastic constant. 

5.3.2 Numerical results 

The analytical solution is obtained for displacement of points of beam:  

 
2

26 3 2
6 4

( ) ( )( )
Py D

u L x x y
EI


 

     
  

 (32) 

u is the displacement of points in horizontal direction and P is the force at the end of the 

beam. E is the elasticity modulus and υ is the poisson ratio and moment of inertia is I, D is 

the height and L is the  length 

 
 

 

Fig. 13. The beam after effect of force 
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The energy norm is defined to compare the results. 

 
1

2
( ( ) ( )n numer exact e numer exacte D d   


     (33) 

Ω is the problem domain and ߝ௡௨௠ and ߝ௘௫௔௖௧ are the strain vector with numerical and 
analytical solutions. 
 

Energy norm Solution method No.

0.0258 MWS 1 

0.026 LRPIM 2 

Table 7. Energy norm for beam problem 

These results show the capacity of MWS and LRPIM methods to solve the solid mechanics 
problems. The Table 7 shows the errors are minimums with comparison with the analytic 
solution.    
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7. Conclusion 

The meshfree methods are numerical methods that can be used to solve the many different 
and complicated problems. The heat transfer problems, solid and fluid mechanics problems 
have been solved with meshfree methods.  
Three categories are used to solve the problems. Strong form methods, weak form methods 
and weak-strong form methods(MWS) are meshfree categories. They can be used to solve 
the problems with Dirichlet and Neumann boundary conditions. For examples the heat 
conduction problem and lid driven cavity and cantilever beam are solved that they have 
different type of boundary conditions. Solutions are related to many parameters: the 
selected meshfree method, number of nodes, shape function parameters et cetera. 
Nowadays, many changes are employed to different types of meshfree methods. The 
advantages are improved and the high convergence rate and high accuracy are accessible. 

8. References  

Hou, S. , Doolen, G. & Cogley, A. (1995). Simulation of cavity flows by lattice boltzmann 
method, Journal of computational physics, Vol.118, pp. 329-347 

Gu, Y.T. & Liu, G.R. (2005). A meshfree weak-strong (MWS) form method for time 
dependent problems, Computational Mechanics, Vol. 35,  No.2 ,  pp. 134-145 

Gu, Y.T & Liu, G.R. (2001). A Local Point Interpolation Method (LPIM) For Static And 
Dynamic Analysis Of Thin Beams, Computer Methods in Applied Mechanics and 
Engineering. Vol. 190 

www.intechopen.com



 
Numerical Analysis – Theory and Application 250 

Hong, W.u. & Quan, W. (2007) Meshless method based on local weak form s for steady-state 
heat conduction problems, International Journal of Heat and Mass Transfer Vol.51, 
(2008) pp. 3103-3112 

Incropera, Frank. & Witt, David.P. (2002). Introduction to heat transfer, 4th edition, springer 
Liu, G.R. & Gu, Y.T. (2005). An Introduction to Meshfree Methods and Their Programming, 

springer 
Liu, G.R. , Wu, Y.L. & Ding, H. (2005). Meshfree weak-strong(MWS) form method and its 

application to imcompressible flow problems, International Journal for Numerical 
Methods in Fluids, Vol.46, pp. 1025-1047 

Liu, G.R. & Gu, Y.T. (2003). A meshfree method: Meshfree Weak-Strong (MWS) form 
method, for 2-D solids, Computational Mechanics, Vol.33, No.1, pp. 2-14 

Liu, G.R. , Yan, L. , Wang, J.G. & Gu, Y.T. (2002). Point Interpolation Method Based On Local 
Residual Formulation Using Radial Basis Functions, Structure Engineering Mechanic, 
Vol.14, No.6, pp. 713-732 

Liu, G.R. & Gu, Y.T. (2001). A local radial point interpolation method (LRPIM) for free 
vibration analyses of 2-D solids,  Journal of  Sound and Vibration, Vol.246, No.1,  pp. 
29–46 

Liu, G.R. & Gu, Y.T. (2003). A meshfree formulation of local radial point interpolation 
method (LRPIM) for incompressible flow simulation, Computational Mechanics 
Vol.30, pp. 355–365 

Rao, S. (2004), The Finite Element Method in Engineering, Elsevier Science & Technology 
Books. 

Reddy, J.N. (2006), An introduction to finite element method, Third edition, Springer, McGraw-
Hill Publishing Corporation 

Zahiri, S. , Daneshmand, F. and Akbari, M.H. (2009). Using meshfree weak-strong form 
method for 2-D heat transfer problem, Proceedings of ASME 2009 International 
Mechanical Engineering Congress and Exposition,  IMECE2009-12525, Lake Buena 
Vista, Florida, USA, November 13-19, 2009 

www.intechopen.com



Numerical Analysis - Theory and Application

Edited by Prof. Jan Awrejcewicz

ISBN 978-953-307-389-7

Hard cover, 626 pages

Publisher InTech

Published online 09, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Numerical Analysis â€“ Theory and Application is an edited book divided into two parts: Part I devoted to

Theory, and Part II dealing with Application. The presented book is focused on introducing theoretical

approaches of numerical analysis as well as applications of various numerical methods to either study or

solving numerous theoretical and engineering problems. Since a large number of pure theoretical research is

proposed as well as a large amount of applications oriented numerical simulation results are given, the book

can be useful for both theoretical and applied research aimed on numerical simulations. In addition, in many

cases the presented approaches can be applied directly either by theoreticians or engineers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Saeid Zahiri (2011). Meshfree Methods, Numerical Analysis - Theory and Application, Prof. Jan Awrejcewicz

(Ed.), ISBN: 978-953-307-389-7, InTech, Available from: http://www.intechopen.com/books/numerical-

analysis-theory-and-application/meshfree-methods



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


