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1. Introduction 

The term tomography comes from the Greek words tomos, which means to cut or to divide, 
and graphos, which is a graphic representation. Thus, tomography is a technique aimed to 
obtain a cut section (a slice) image of an object. This technique is extensively used in 
Medicine, Astrophysics, Archaeology, Biology, Geophysics, Oceanography, Material 
Sciences, and other scientific disciplines. Although cut sections can be obtained using 
several alternative or possible schemes, many of them are based on a mathematical 
procedure called tomographic reconstruction [Deans, 1983]. The mathematical formulae that 
are used to reconstruct 2D slices from several 1D so called projections were developed by 
the Austrian mathematician Johann Radon [1887-1956] for slices with no particular 
symmetry. His work were not widely known and it was rediscover in connection with radar 
and X-ray applications X-ray equipment was not able to make several cross-sections, neither 
were there the computers with the necessary capacity that is required for the automatic 
calculations. In order to apply them to Medicine, it was necessary to wait until enough 
computer power was developed. It was also required the equipment able to make several 
axial images separated by small distances, to electronically store the results, and finally to 
analyze them. All this was done separatelly by A. M. Cormack and G. H. Hounsfield in the 
70´s [Byer & Garbuny, 1973]. The computerized optical tomography (OT) of X rays, 
substituting X rays by visible light, was born as an extension of the Computerized 
Tomography (CT) of X rays. The CT is considered as an non-invasive method, which make 
possible the cross section of objects or bodies, which have certain internal properties, without 
having to cut through them o to damage the sample. Basically, it consists of the sequential 
detection of the changes suffered by some wave when it travels through a slice with different 
projection angles [Byer & Shepp, 1979] and to obtain the information with adequate techniques 
of inversion and reconstruction algorithms [Kak & Slaney, 1987]. 
The radiation source is found in the visible range of the electromagnetic spectrum, and the 
object that will be analyzed has transparency characteristics [Byer & Shepp, 1979] in which it 
is possible to observe at least one of the possible effects, such as changes in the polarization, 
absorption, diffraction [Brown, 1966] [Wolf, 1969], refraction, birefringence, phase, etc. This 
paper is focused on the analysis of transparent objects that present phase effects only. 
In this context, the analysis is begun considering a probe that travels as a plane wave, or in 

interpretative terms, as a set of parallel rays. Afterwards, the action exerted on the object after 

crossing is considered indifferent respect to its path, but it is affected in its amplitude and/or 

phase. This type of interaction is known as refractionless limit (diffractionless, no polarization 
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changes, no dispersion, etc.), and it is known as parallel ray tomography [Stanley, 1981]. Thus, 

the Radon transform is simplified and reduced to projected path integrals or to the central 

theorem of the Fourier transform [Stanley, 1981]. It is noteworthy that this type of 

approximation can be used in several applications, such as X-ray tomography [Stanley, 1981], 

where the amplitude of an X-ray is absorbed by the human body without deviating 

significantly in its path; positron-emission tomography [Kak, 1979], in which a radioactive 

isotope that is inside the body generates a pair of high energy particles whose paths are 

straight lines; optical tomography of phase objects [Byer, 1979], where thin objects in phase or 

absorption are considered [Brown, 1966]; and there are also interferometric techniques of 

spatial filtering that have been suggested [Rodríguez-Zurita et al., 2005], in which a phase 

operation is made and a modification over the reconstruction is obtained [Philipp, et. al., 1993]. 

There are also studies of thick phase objects, but it is necessary to make a correction of the 

projections before applying the reconstruction algorithm [Oppenheim, et. al., 1973]. 

It is important to note that in the discussion mentioned before, it is generally assured that the 

image reconstruction shows information of the slice of the object under consideration. 

Nevertheless, in some specific cases, it can result of interest to know only the interface line that 

divides two media, in which a technique that reconstructs images with enhanced edges is useful. 
This is particularly true for phase objects, where the detection of phase is an issue to be 
solved in the first place. This can be done with interferometry, or by optical derivatives, for 
example. In either case, an inversion procedure is needed in order to quantitatively recover 
the phase distribution, such as determination of the inverse tangent for the first example, or 
an integration for the second example. But techniques rendering edge-enhancement of 
phase can permit qualitative edge visualization of phase slices without such an inversion 
stage. This would be also true for optical amplitude derivatives, of course, but simpler 
schemas are possible with similar results. Hilbert transform filtering is one of them. 
In this chapter, a mathematical model is described in order to obtain the reconstruction of 
tomographic images with enhanced edges, and there is an experimental implementation 
shown which is applied to optical tomography of phase objects. In the first place, there is a 
proof that the mathematical model is based on the establishment of the relation existent 
between the Radon transform (RT) and the 2-D directional Hilbert transform (HT). 
Afterwards, there is a description of the experimental possibility, beginning with the relation 
existent between the projection and the phase of the optical wave when it transverses a thin 
phase object, continuing with a description of the optical image-forming system 4f in order to 
obtain the HT of the optical field that is produced after crossing the object [Meneses-Fabian, 
2011]. Finally, there is a description of the theoretical relationship between the experimental 
procedures used to obtain the image reconstruction with their enhanced edges in a directional 
manner whose mathematical expression accepts the directional HT of the object slice as such, 
and whose direction can be selected with the position of the filter in the Fourier plane of the 4f 
system respect to the projection angle [Montes-Perez et. al., 2011]. Moreover, the possibility of 
image reconstruction with isotropic edge-enhancement is shown [Montes-Perez et. al., 2011] 

2. Parallel-ray tomography and the Radon transform 

In tomography, the probe must be able to cross the sample and carry the information of the 
structure to the outside. The action exerted upon the object due to the interaction with the 

medium is known as the projection or profile f


 and the predominant physical property in 
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the sample is denoted by the function f. This physical effect can be mathematically related 
with the Radon transform [Deans, 1983] by 

 { }f f

  , (1) 

where { }   denotes the RT operator. Since the profile is the physical quantity that can be 

measured experimentally, the inverse problem consists of knowing f from the projections f


, 

which implies the establishment of an inverse transform relationship. 
Specifically, considering only one ray of the test probe that is crossing the sample, the 
path that it describes in the object can be affected in its direction, and this deviation can be 
caused by the effects of the refraction, but in any case, the path must follow a geodesic, 
because the ray will follow the path in the minimum time. Therefore, the Radon transform 
is described by a path integral, 

 { }
C

f f f dl

    , (2) 

where C represents the geodesic path of the ray, and dl is an arc differential over C. In this 
study, we will only analyze the particular case in which the geodesic is a straight line and 
when the lines contained in the probe are parallel, so we be discussing parallel ray 
tomography, and unless mentioned otherwise in this chapter, we will always refer to this 
type of tomography. In the experimental context, the parallel-ray tomography can be 
obtained when there is a medium in which the sample is immersed is very similar respect to 
the test object. This effect is known as refractionless limits, and there are sever examples of 
test probes that satisfy this condition: the X-rays that cross the human body [Bates & Peters, 
1983], the positrons that emerge from an animal due to a radioactive isotope that has been 
introduced into it [Kak, 1979], or a light wave crossing a phase object that has been 
submerged in oil to equalize de refraction index [Goodman, 1985]. 
This discussion is focused on the study of only one slice of the object. The retrieval of the 
construction of a volume can be done making cuts from different positions and afterwards 
interpolating this set of reconstructions [Deans, 1983]. This is the reason why the definition 
of the Radon transform in a plane is stated in the following form: 

Definition: Consider the coordinates ( , )x y  as points in the plane and an arbitrary function 

f which is defined in a domain D of 2R . If L is a straight line in the plane, then the path 

defined by the projection or the line integral of f over all the possible lines L is the Radon 

transform of f. In other words, 

 { } ( , )
L

f f f x y dl

    , (3) 

where dl is a differential element of length along L, as shown in Fig. 1. The domain D can 
include the entire plane or it can be some region. If the Radon transform exists for every 
possible line L in the domain D, f must be continuous. Fig. 1 shows a straight line 
characterized by its distance from the origin and the angle that it forms with the horizontal 
axis, so the equation of the line L is given in terms of p  and   by the following expression: 

 cos sinp x y    (4) 
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the points ( , )x y  that satisfy (4) are all the points that lie along the straight line L. Rotating 
the reference system by an angle , where ( , )p p  are the rotated axes, then p is given by Eq. 
(4) and p   is given by 

 sin cosp x y      (5) 

In the rotated system, the result is that the line L is described by p K , where K is constant. 
Therefore, dl dp is always parallel to p , which indicates the propagation direction of the 
probe. This point of view is useful when it is necessary to numerically implement the Radon 
transform. 
 

 

Fig. 1. The set of all the projections for every angle constitute the Radon transform. 

The line L expressed in Eq. (4) can be used to rewrite the line integral described in (3) using 
the following equation, 

   ( , ) , ( , ) ( cos sin )f p f x y f x y p x y dxdy   
 

 

      , (6) 

where ( , )f p 


 is the RT, the coordinates ( , )p  are the points that lie in the Radon space, 
where each point defines a line in the object space, and this point has a value given by the 
integral of the function ( , )f x y  through this line. The argument of the Dirac delta function 
restricts the integral in the plane to the line L. The Dirac delta function selects the line 

cos sinp x y    from the rest of the points in the 2  space. In this manner, the Radon 
transform has been defined over all the 2 .space. 
When   remains constant and p is varied over all its possible values, the integral stated in 
Eq. (6) becomes a special case 

   ( ) , ( , ) ( cos sin )f p f x y f x y p x y dxdy    
 

 

      , (7) 
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which is a sample of the RT, and it is an one-dimensional function of the variable p known 

as the parallel projection of the function ( , )f x y  at an angle  , p is the projection variable, 

and   is the projection angle. Fig. 2 shows three parallel projections ( )f p


 at different 

projection angles. 
 

 

Fig. 2. Parallel projections are taken by measuring a set of parallel rays for three projection angles. 

3. Properties of parallel projections 

The RT defined in the last section can be extended to nR . If the reader is interested, he can 
review the references [Bates & Peters, 1983], and this can also be generalized to any probe 
the test probe follows through the medium. In this case, the reader can review [Bates & 
Peters, 1983]. It is interesting to note that the RT and the projection have important 
properties, which can be stated as follows: 
1. They are periodic from 0 to 2 . 
2. They are symmetric respect to  . 
3. The zero-momentum of the Radon transform is constant for any projection angle. 

These properties are necessary to be sure that the Radon inverse and the unicity of the 

function ( , )f x y  exist univocally in a semiperiod  0,  . 

3.1 Proof of the properties 

First property: Periodicity with a period of 2 , 2
( ) ( )f p f p  

 

  . The proof is trivial. 

Second property: Symmetry respect to a half period  , ( ) ( )f p f p  

 

   . In this case, in 

order to prove it, it is only necessary to substitute      in Eq. (7): 

 

( ) ( , ) [ cos( ) sin( )]

             = ( , ) [ cos sin ]

f p dxdyf x y p x y

dxdyf x y p x y

      

  

 


 
 

 

    

 

 

 
, (8.1) 
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            = ( , ) [( ) cos sin ]

             = ( )

dxdyf x y p x y

f p

  
 

 


  



 
 (8.2) 

which proves the property. 

Third property: The property that the area is constant for every projection, which is every 

general, and is related with the zero-momentum of the RT defined as the integral of a 

tomographic projection ( )dp f p

 


 , which represents the probe as it is crossing the sample. 

Substituting Eq. (7), it is possible to prove that: 

( ) ( , ) ( cos sin )dp f p dp f x y p x y dxdy   
   

   

     
 

 

0

( , ) ( cos sin )

( , )

{ ( , )} (0,0)

f x y dxdy dp p x y

f x y dxdy

f x y f 

  
  

  
 

 

 

  



  

  

 


, (9) 

which is the volume under the function ( , )f x y , or the value of (0,0) order of its bidimensional 

Fourier-transform (FT) (0,0)f . The volume of ( , )f x y  does not depend on  . Therefore, the 

zero-order (0,0)f  is the only common point of the FT (one-dimensional, from p to w) of every 

projection, so it has to have the same value, not depending on  . Interpreting the area of every 

projection, which must have the same value, notwithstanding the angle of incidence on the 

object. It is suggested that if this were carried to the expermental area, this property can be 

useful as a criterion for discarding experimental data if it is contradicted [Ornelas-Rodríguez et 

al., 1999]. This property is also useful in the design of reconstruction algorithms based on 

iterative and/or statistical methods [Kak & Slaney, 1987]. 

3.2 Central slice Fourier theorem 

The central slice Fourier theorem, also known as the projection theorem, describes the 

relation between the RT and the FT of a function. This relationship is the cap stone of 

parallel projection tomography, because it is the fundamental bridge to find the inverse RT 

and to theoretically make possible the retrieval of the internal information of the sample. 

The projection theorem predicts in what measure can a parallel projection to the angle   

can be used in the retrieval of the internal information of the object. 
We begin by defining the bidimensional Fourier transform of the object function as 

 
~

2 ( )( , ) ( , ) i x yf f x y e dxdy   
 

 

 

   , (10) 
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and the FT of the parallel projection  f p


 to the angle   can be expressed in the following 

form: 

    
~

i wpf w f p e dp
 

 




  . (11) 

A simple example of the slice Fourier theorem is given by a projection in 0  . Let us 
consider first that the FT of the object along a line in the frequence domain is given by 0  . 
The FT described in Eq. (10) is 

 
~

( ,0) ( , ) i xf f x y e dxdy
 



 

   , (12) 

This result is due to the fact that in the phase factor, the dependence on y has been 
eliminated, so we can divide the integral in two parts; i. e., 

 
~

( ,0) ( , ) i xf f x y dy e dx
 



 

 
  

  
  . (13) 

From the definition of the parallel projection, it is possible to recognize that what lies 
between the square brackets is an equation for the projection angle along a line with x 
constant. Thus, if we substitute this 

 
~

2( ,0) ( ,0) i xf f x e dx
 





  . (14) 

In this way, the right member of the equation represents the one-dimensional FT of the 
projection when 0  , since in this case, p x  and w  , Therefore, in this way we have 
found a relationship between the vertical projection and the 2-D transform of the object 
function in the following manner 

 

~
~

( ,0) ( ,0)f f 


 . (15) 

Up to this moment, it has only been proven for a particular and simple example of the 
Fourier slice. Nevertheless, it can be stated that this result is independent of the orientation 
that exists between the object and the coordinate system. 

In order to deduce the Fourier slice theorem, let us consider the following rectangular 
coordinate axes system  ,p p  and  ,w w  obtained through the rotation of the axes  ,x y  
and  ,   by an angle   (as shown in Fig. 3). 

 
cos sin

sin cos

p x

p y

 
 

    
        

;  
cos sin

sin cos

w

w

  
  

    
        

. (16) 

It is possible to mathematically describe a sampling of the transform along a line that passes 
through the origin, with a slope given by  : 

        
~ ~

, sin cos ,f f w             , (17) 
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this equation describes a mapping in the frequence Fourier space, as shown in the right-

handed side of the diagram in Fig. 3, where ( )w   denotes the sampling of the transform 

along the line 0w  ; i. e., along the axis w . The sampling that is obtained corresponds to 

the object plane with a convolution between the inverse transforms of each factor. If we now 

consider the fact that 1{ ( )} ( )w p 
  , then for every value of  , it is possible to obtain 

the following identities: 

              
~ ~ ~

1 1 1, , ,f w f f w f x y p f p      


  
 

     
           

     
, (18) 

where   indicates the convolution operation in two dimensions, one with respect to x 

and the other one with respect to y. Eq. (18) is known as the slice Fourier theorem, or the 
projection theorem [Haykin, 1985], and it can be stated as establishing the fact that the one-

dimensional Fourier transform of the projection to the angle   is identical to the sampling 

along a line which has a slope with an angle  of the bidimensional Fourier transform of the 

slice function. In this proof, it has been assumed that      ,f x y p f p


  , and in order 

to verify this, it is possible to rewrite Eq. (7) changing the integration variables  ,x y  by 

 ,   and substituting cos sinp x y   , so 

 

   

( ) ( , ) ( cos sin cos sin )

( , ) cos sin

f p f y x y d d

f y x y d d

          

       

 

 
 

 

   

     

 

 
, (19) 

 

 

Fig. 3. Coordinate system for parallel projections. From the plane of the slice of object f, to 

the Fourier plane f . 
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this can be seen as a convolution of the form ( , ) ( cos sin )f x y x y    , which proves the 

last statement, since ( cos sin ) ( )x y p     . It can be concluded that the Radon transform 

can be symbolically written as a convolution of the slice function  ,f x y  with a Dirac delta 

function 

         , , ,f p f x y f x y p 


    , (20) 

hence, the slice Fourier theorem, expressed in Eq. (18), can finally be written as 

        
~

~

,f w f p f w   
 


 

   
 

. (21) 

It is important to note that the convolution of the two functions in order to find the FT of Eq. 

(20) is identical to Eq. (21), which is the projection theorem. Therefore, the same properties 

of symmetry and the zero-moment of the RT must satisfied in the frequency space. 

3.3 Inverse Radon transform 

The inverse Radon transform can be solved interpreting the parallel projection ( )f p


 as an 

unidimensional inverse transform 1
1 {...}D
  of a sampling of the bidimensional transform 

2 { ( , )}Df f x y   made along the line 0w  . Thus, if ( )f p


is known, then for every   it is 

possible to state that 

  1 1
2 2 1( , ) ( , ) ( )D D Df x y f B f p 


    

      
  

 , (22) 

 

where it is implied that ( , )f    is constructed with all ( )f p


 conventionally accomodated. 

Here 1 {...}D , is from p w  and the accomodation is denoted by B [Deans, 1983]. 

If we start from the definition of the inverse Fourier transform of the slice function, 

 2 ( )( , ) ( , ) i x yf x y d d f e      
 



 

    , (23) 

 

changing to polar coordinates: 'cosw   and 'sinw  , with 2 2 2'w    , then 

' 'd d w dw d   , and by substituting this in the equation of the inverse bidimensional 

transform, the following expression is obtained: 

      
2 ~

2 ' cos sin

0 0

, ' ' ',
i w x y

f x y d w dw f w e


   


   , (24) 

where    
~ ~

, ',f f w    and this last equation can be rewritten as: 
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         
2~ ~

2 ' cos sin 2 ' cos sin

0 0 0

, ' ' ', ' ' ',
i w x y i w x y

f x y d w dw f w e d w dw f w e
 

     



   
 

      , (25) 

But if      is substituted in the second term of the right-hand side of the equation, 

         ~ ~
2 ' cos sin 2 ' cos sin

0 0 0 0

, ' ' ', ' ' ',
i w x y i w x y

f x y d w dw f w e d w dw f w e
 

         
 

        . (26) 

In the rotated coordinate system, the function  
~

,f    is described by  
~

,f w w . 

Nevertheless, considering in particular one projection angle , it is possible to establish the 

fact that 

        
~ ~

', ,f w f w w w u w   , (27) 

where  u w  is the unitary step function or the Heaviside function defined under the Direclet 

criterion [Hwei, 1970], which selects only the positive part of the sampling of  
~

,f w w  over 

the line 0w   along w , which is caused by  w  . Substituting    
~ ~

, ,f w w f    and 

applying the Fourier slice theorem,  

      
~

~

',f w f w u w


 , (28) 

Selecting one half of the projection for a positive w , it is possible to prove in a similar 
manner that 

      
~

~

',f w f w u w 


   , (29) 

which selects the other half of the projection for negative w . Making the change of variable 

 'w wu w , then  'dw dwu w  so substituting this in Eq. (28), in the integral of the first 

term of Eq. (26), and if another change of variable  'w wu w    is done, then 

 'dw dwu w   , so by substituting Eq. (29) in the second term of Eq. (26), it is possible to 

arrive to the conclusion that 

          
~ ~

2 2

0 0

, i wp i wpf x y d wu w dw f w e d wu w dw f w e
 

 
  

  

 

      , (30) 

where it has been assumed that        exp 2 exp 2i wu w p u w u w i wp         , where 

   nu w u w    with n real, and     0u w u w  . By grouping the integrals, we have 

        
~

2

0

, i wpf x y d w u w u w dw f w e





 



       , (31) 
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and by rewriting the signum function in terms of the Heaviside function in the form 

     sgn w u w u w    [Ronald, 2000]; it is possible to conclude that    w w u w u w      , 

where the bars indicate an absolute value, so we finally arrive to the following expression 

    
~

2

0

, i wpf x y d w dw f w e





 



   , (32) 

 

If the filtered projection is defined with a spatial filter of the form 

~

2( ) ( ) i wpg p dw w f w e 
 

 



  , 

then 

    
~ ~

21( ) i wpg p w f w dw w f w e 
  

  




 
    
  

 , (33) 

so the inverse Radon transform can be written as  

 
0 0

( , ) ( ) ( cos sin )f x y d g p d g x y
 

    
 

    . (34) 

This result establishes the existence of a possible inverse Radon transform operation which 

is mediated by a spatial filter w . This is the reason why it is known as a filtered projection, 

and Eq. (34) is known as the retroprojection of the filtered projections. It is important to note 

that the resulting filter is reminiscent of the derivative (by a linear factor w ) [Deans, 1983]. 

4. Numerical simulation 

A numerical simulation is a mathematical recreation of a natural process. By using 

numerical simulations, it is possible to study physical processes. Thus, the field of 

numerical simulations represents a rich field of interdisciplinary research. Some of the 

scientific problems are studied principally through the use of numerical simulations, such 

as those scientific fields that are governed by non-linear simultaneous equations, or those 

that are not easily reproducible in the laboratory. The use of these to study a problem 

normally requires a careful study of the numerical methods and algorithms that will be 

used and the fundamental process that will be included. A numerical simulation differs 

from a mathematical model in the sense that the first one is a representation in every 

instant of the process that will be simulated, while the second one is a mathematical 

abstr5action of the fundamental equations necessary to analyze the phenomenon. 

Normally, the use of a numerical simulation in the analysis of a given problem requires a 

careful planning of the mathematical model that will be used and the necessary 

algorithms that will be employed. 

The numerical simulation presented here will have the following steps: 

1. Definition of the slice function of the object ( , )f x y , 

2. Calculation of the profiles or parallel projections of the object ( )f p


 for every  in 

the range  0,2 , and 
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3. Calculation of the reconstruction of the slice of the object through the filtered 
retroprojection algorithm. 

Fig. 4(a) presents a slice of an object in a finite domain in gray levels and in 3D, where in the 

sake of simplicity, a unitary value has been assigned inside, and it is null outside this 

domain. The image shown has a resolution of 200x200 pixels and is encoded in 256 gray 

levels. The slice of the object generally is a cross section at a constant height of the study 

object. Once the slice function ( , )f x y  has been defined, it is necessary to calculate the 

projections through the implementation of the Radon transform. This sample is identified 

with a sinogram, as can be seen in Fig. 4(b) in 2D and 3D. A sinogram is a data matrix, 

where the number of rows represents the number of projections taken between 0 and 2 

radians; i. e. , and the number of columns is the number of samples considered in the 

projection coordinates p. Each row is identified with a projection angle and the data in these 

can be seen as a profile in this angle. The angular step 100    was used, where 200 was 

the number of projections calculated, while the number of data for each projection was of 

200, so the sinogram has a resolution of 200 x 200 pixels, and it is encoded in 256 levels of 

grays. 
Respect to the reconstruction of the slice of the object, in this chapter, the filtered 
retroprojection algorithm is used [Deans, 1983], which is a discrete implementation of the 
inverse Radon transform. The filtered retroprojection algorithm was first proposed by 
Bracewell and Riddle [Bracewell & Riddle, 1967] and was also stated independently by 
Ramachandran and Lakshminarayanan [Ramachandran & Lakshminarayanan, 1971]. The 
superiority of the filtered retroprojection algorithm when compared to the algebraic 
techniques was first proven by Shepp and Logan [Shepp & Logan, 1974]. This was 
developed for data with a form of a fan, and it was done by Lakshminarayanan 
[Lakshmnarayanan, 1975] for the case of equidistant collinear detectors, and was later 
extended by Herman and Naparstek [Herman & Naparstek, 1977] for the case of 
equiangular rays. Several authors [Baba & Murata, 1977] [Kenue & Greenleaf, 1979] [Kwoh 
et al., 1977] [Lewitt, 1979] [Tanaka & Iinuma, 1975] have proposed variations to the filter 
function of the filtered retroprojection algorithm. The images can be reconstructed from data 
from beams that have a fan form. The filtered retroprojection algorithm was used for 
reconstructions that were done from data generated by the use of very narrow angles in a 
fan form and beams that rotate and cross continuously the surroundings of the object. The 
projection algorithm is also known for non-uniform data of the sample [Horn, 1978] [Horn, 
1979] [Lewitt & Bates, 1978] [Oppenheim, 1975] [Sato et al., 1980] [Tam & Perez-Mendez, 
1981] and for reconstructions obtained from incomplete and limited projections. 
Complete reconstructions in three dimensions are discussed in [Chiu et al., 1979] [Chiu et al., 
1980] [Smith, 1985]. It is also possible to obtain tomographic images with the use of the 
direct inverse Fourier transform, although it has less precision, instead of using the filtered 
retroprojection method. This was proven first by Bracewell [Bracewell, 1956] in radio 
astronomy, and afterwards it was also done independently by DeRosier and Bracewell 
[DeRosier & Klug, 1968] for electronic microscopy and Rowley [Rowley, 1969] in optic 
holography. Several authors apply this method to the radiography, such as Tretiak [Tretiak 
et al., 1969]. In order to use 2-D FFT algorithms for image formation, they focus specially on 
the direct Fourier approximation. For some methods that are more recent that reduce to the 
minimum the resultant interpolation error, you can see [Stark et al., 1981]. Recently, 
Wernecke and D’Addario [Wernecke & D’Addario, 1977] have proposed an approach of 
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maximum entropy to direct the Fourier inverse. Their procedure is especially useful if for 
some reason, the projection of the data is insufficient. A more extensive discussion about 
these algorithms, as well as the study of their characteristic artifacts is beyond the present 
study. 
The implementation of the filtered retroprojection, in the first place, requires the calculation 
of the filtered projection (Eq. 34), which is implemented in an approximated manner, 
introducing a limited bandwidth, 

 

~

2( ) ( ) i wpg p dw w f w e 
 

 



  . (35) 

The projection with a bandwidth   must satisfy the Nyquits criterion, 1 / 2   where   is 

the sampling range of the projection. Under this condition, the original ramp function w  is 

multiplied by a window function  2rect w  ,  ( ) 2H w w rect w  . Another type of 

window, such as the Hanning, hamming, etc, have also been used [Deans, 1983], so under 

these considerations, it is possible to describe the impulse response that validates a data 

sample [Deans, 1983] 

 

2

2

1

4

1

0

( ) 0

n

n

h n n par

n impar







 
 
 

 (36) 

If the discrete number of the projection is denoted by ( )  ( 0,... 1)f k k N 


   at the angle , 

the filtered projection described by Eq. (34) can be expressed as a convolution in the spatial 

domain as 

 
1

0

( ) ([ ] ) (k ),    0,1,..., 1.
N

k

g n h n k f n N    
 



     (37) 

Continuing with the procedure in order to obtain the object reconstruction, the filtered 

projection is adequately introduced in the retroprojection sum 

     
1

0

( , ) cos sin
M

m

b x y g x m y m  




    , (38) 

this comes from the suggesting integral of the inverse Radon transform of f, Eq. (34), where 

  increases by steps  , and for some point and =m   p n     the transformation points 

( , )x y  must satisfy cos( ) sin( )n x m y m      . If we choose 1  , in the simulation and 

applying successively Eqs. (36-38), the sinogram obtained in Fig. 4-(b), the reconstruction of 

the defined object in Eq. (22) is obtained, as shown in Fig. 4(c) [Deans, 1983]. 

5. Tomography of enhanced edges using the Hilbert transform 

As was mentioned before, the internal information of the object under study can be 

retrieved from the projections measured with adequate inversion techniques with having to 
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Fig. 4. (a) Slice of the object ( , )f x y  in 2-D and 3-D; (b) sinogram corresponding to the slice 

of the object in 2-D and 3-D; (c) reconstruction of the slice of the object in 2-D and 3-D. 

cut or damage the sample. In this section, a mathematical model is shown to retrieve the 
Hilbert transform of the slice function instead of only the slice function. It will be proven 
that this transform can be obtained in a directional manner in 2-D, and this effect can be 
accomplished in a spatial filtering process in the frequency domain of the projection. It will 
be shown that this idea, applied to optical tomography of phase objects can find, for the case 
of thin phase objects, the directional Hilbert transform of the refraction index distribution, 
which results in a directional edge enhancement of the reconstructed image, and in the case 
of thick phase objects, it will be shown that an isotropic edge enhancement of the refraction 
index can be found. This is based on the relationship that the Hilbert transform has with the 
Radon transform, as will be stated below. 

5.1 The Hilbert transform 

It is known that the Hilbert transform is a useful mathematical tool for the description of the 
complex envelope of the modulated signal for a real carrier. Mathematically, in one 
dimension, the transform is defined in the following manner [Abhilash, 2006] 

 
1 ( ') 1

( ) { ( )} '= ( )
'

s x
s x H s x dx s x

x x x 





  
 , (39) 

where ( )s x  is the input function, ( )s x


 is its corresponding Hilbert transform, and { }H   is 

the respective operator. The integral is evaluated in its principal value. The last term 

indicates that the Hilbert transform can be written in a symbolic manner as the convolution 

of the input signal with the function 1 x . 
The typical procedure commonly used for the calculation of the Hilbert transform of a 
function is done using Fourier analysis [Poularikas, 2000] 

  
~

1( ) { ( )} sgn ( )s x H s x i s 


  
    

 
, (40) 
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where the convolution property of the Fourier transform has been applied, with 

  
~

( )s s x    and    sgn 1i x     [Abhilash, 2006], where  sgn   is known as the 

signum function, which is a special function defined as 

 

, 0

sgn( ) 0, 0

, 0

i

i

i


 



 
  
 

, (41) 

in general, the signum function is undefined at 0  , but here, it has been defined as equal 

to zero under the Direchlet criterion [Seeley, 1970]. 

The expression enclosed between brackets in Eq. (40) can be interpreted as a filter operation 

in a linear system, with  sgni   having the role of the filter in the spectral domain of the 

signal  s x , and its corresponding Fourier inverse   11 sgnx i    as a consequence 

of the input. The operation can be seen as a phase change of 2  radians for each one of 

the positive frequency components of the signal and a phase change of 2  radians for 

each one of the negative frequency components of the signal, without changing its 

amplitude. For this reason, an experimental implementation is viable in areas in which the 

signal treatment is possible; for example, in communication systems with electric signals 

[Almeida, 1994] or in optical data processing in Fourier optics [Philipp et al., 1992]. 
In two dimensions, the HT has been defined in several ways, being one of the most used 
[Abhilash, 2006] 

 
  2 2

( ', ')1 1
( , ) { ( , )} ' '= ( , )

' '

s x y
s x y H s x y dx dy s x y

x x y y xy 

 

 

  
   , (42) 

Again, the integrals are evaluated in their respective principal Cauchy value. One definition 
in n dimensions can be seen in [Poularikas, 2000]. On the other hand, the partial Hilbert 
transforms have also been defined [Poularikas, 2000]. For example, the partial transform 
with respect to x has the form 

 
0

0 ( ', )1
( , ) { ( , )} '

'

s x y
s x y H s x y dx

x x





 
 , (43) 

and with respect to y, it has the form 

 
2

2
( , ')1

( , ) { ( , )} '
'

s x y
s x y H s x y dy

y y

 







 
 , (44) 

where the superindices are angles in radians, that indicate the direction in which the 

transform operation is done, although for the x direction, the notation ( , )xs x y


 is more 

commonly used, and for the y direction, ( , )ys x y


 is more extensively employed. In these 

expressions, the angles 0 and 2  have been used as superscripts. This notation has been 

selected for simplicity, and in order to avoid a possible ambiguity with the notation used in 
tomography. In a symbolical form, for x this can be written as 
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 0 y

( , )= ( , )s x y s x y
x





 , (45) 

and for the variable y 

 
 2

( , )= ( , )
x

s x y s x y
y






 . (46) 

In a similar manner, we define the directional Hilbert transform in the form 

 
   

   
' sin ' cos1

( , ) { ( , )} ( ', ') ' '
' cos ' sin

x x y y
s x y H s x y s x y dx dy

x x y y


   

  

 

 

      
    , (47) 

and in a symbolic form, 

 
 
 

sin cos
( , )= ( , )

cos sin

x y
s x y s x y

x y

   
  

  



, (48) 

where the angle   is expressed in radians, and it denotes the direction at which the Hilbert 

transform is done. It is important to note that the partial Hilbert transform with respect to x 

and y as defined in Eqs. (45) and (46) can be derived from the definition of the directional 

Hilbert transform when 0   and when 2  , respectively. 
Using Fourier analysis, the directional transform can be defined using the convolution 

property in two dimensions through 

  
~

-1( , )= sgn cos sin ( , )s x y i s


     
  

   
 

, (49) 

where   
~

( , ) ,s s x y     and 

      sgn cos sin sin cos cos sini x y x y                , which can be proved 

in the following manner. Using the integral definition of the Fourier transform, 

 
 
 

 
   sin cos sin cos

exp 2
cos sin cos sin

x y x y
i x y dxdy

x y x y

     
  

     

 

 

                
  , (50) 

rotating by an angle   both coordinate systems  ,x y  and ( , )  , it is possible to state that 

 
cos sin

sin cos

x r r

y r r

 
 





   
      

 and 
cos sin

sin cos

    
    





   
      

, (51) 

where the rotated coordinates have been denoted by  ,r r  and ( , )  , respectively and 

thus, dxdy drdr , x r  , and y r   . Substituting Eq. (51) in Eq. (50), 

 
 
 

   
sin cos

exp 2
cos sin

x y r
i r r drdr

x y r

   
  

   

 


  
 

            
  . (52) 
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This equation can be written as a separable integral 

 
 
       

sin cos 1
exp 2 exp 2

cos sin

x y
i r dr r i r dr

x y r

  
  

   

 

   
 

       
  

  , (53) 

where each factor is a one-dimensional Fourier transform that is known, the first being 

   1 sgnr i     and the second one is    1r   , so the solution is given by 

 
 
   

sin cos
sgn

cos sin

x y
i

x y

  


  
      

  
, (54) 

Finally, by direct substitution of cos sin       the following expression is obtained: 

 
 
   

sin cos
sgn cos sin

cos sin

x y
i

x y

  
   

  
       

  
, (55) 

which proves the point. It is thus important to note that the corresponding expressions for 
the definitions of the partial Hilbert transform can be directly obtained from Eq. (49) using 
Fourier analysis by substituting 0   for the partial derivative with respect to x: 

  
0 ~

-1( , )= sgn ( , )s x y i s  
  

  
 

, (56) 

and 2   for the partial with respect to y: 

  
~2 -1( , )= sgn ( , )s x y i s



  
  

  
 

, (57) 

The definition of the directional Hilbert transform and the slice theorem will serve as a basis 
to establish the relationship that the Hilbert transform has with the Radon transform, and 
afterwards to establish how the directional Hilbert transform can be obtained of the slice 
function of the object study [Meneses-Fabian et. al., 2011]. 

5.2 Tomography and the Hilbert transform 

Starting from the projection data ( )f p


, in the first place it is necessary to calculate the 

Hilbert transform for every projection angle, to prove that this new projection data is still 
valid from the point of view of tomography. Then the proofs of symmetry and zero-
momentum of the Radon transform, and it is proven that the partial Hilbert transform of the 
slice of the object with respect to y is reconstructed. In the second place, after finding the 

directional Hilbert transform of the slice function ( , )f x y , we proceed to establish the filter 

function in the frequency space of the projection in order to reconstruct the directional 

Hilbert transform of ( , )f x y  as if we had begun from the projection data ( )f p


. 

The Hilbert transform of the projection ( )f p


 using the definition given in Eq. (49) is 
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1

( ) { ( )} ( )f p H f p f p
p   


  

   . (58) 

In order to prove the symmetry property, it is necessary to substitute      and we 
proceed in an analogous manner to the one followed in section (3.1), 

 

1
( ) ( )

1
             = ( )

( )

             = ( )

f p f p
p

f p
p

f p

   









 

 





 

  


 

, (59) 

the negative sign that is outside the function reveals that the property is not satisfied. One 
half of the projections is multiplied by +1 and the other one by -1. In order to compensate 
this, it has been observed that the function  sgn sin( )  can successfully compensate the 
negative sign, because sin( )  is positive when (0, )  , and it is negative when ( ,2 )   . 
In this manner, the new projection is given by 

 1
sgn[sin ] ( ) sgn[sin ] ( )f p f p

p  


 
  . (60) 

This projection satisfies the symmetry property. In order to prove the zero momentum of the 
RT, 

 

1
sgn[sin ] ( ) sgn[sin ] ( )

1
                                 =sgn[sin ] dp d ( )

( )

1
                                 =sgn[sin ] d ( ) 0

( )

dp f p dp f p
p

q f q
p q

dp
q f q

q p

 





 








  

 
  

 
 

 

 






 

 

 

, (61) 

where it has been assumed that 1

( )

dp

q p



   is the Hilbert transform of the unity, which is 

equal to zero, {1} 0H  . In this manner, it is proven that it is a constant equal to zero and 

independent respect to the projection angle, so the zero-momentum property of the RT is 
also satisfied. In this moment, it is possible to state that a set of modified projection data, as 
those indicated in Eq. (60) is considered enough to reconstruct the slice function. Up to this 
moment, it is not possible to analytically describe this function. In order to deduce it, the 
modified projection indicated in Eq. (60) can be expressed using Fourier analysis: 

          
~

1sgn sin sgn sin sgnf p i w f w  
 


 
    
  

, (62) 
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Applying the slice Fourier theorem and rearranging the terms, 

          
~

1sgn sin sgn sin ,f p i w f w    





 
   

 
, (63) 

Using Eq. (16), and taking into account the filter property of the delta function, it is possible 

to find that    sgn sin sgnw   , and obtaining the inverse Fourier assuming that the 

convolution property for the triple product is given by the convolution of each one of the 

individual inverses, it can be proven that 

              2
2( )

sgn sin , ,
x

f p f x y p f x y p f p
y

 


  





  
      
 

, (64) 

where it has been assumed that what is enclosed between brackets is the definition of the 
partial Hilbert transform respect to y, and in this manner, the following relationship can be 
stated, 

         2sgn sin , ,H f x y H f x y



 
      
  

, (65) 

which means that the Hilbert transform of a projection at an angle   mediated by a sign 

factor from the sine of the projection angle equal to the projection of the partial Hilbert 

transform with respect to y of the slice function. This result predicts that the partial Hilbert 

transform respect to y will be reconstructed when each parallel projection will be calculated. 

Their Hilbert transform will have as a result an edge enhancement in the vertical direction. 
 

 

Fig. 5. Numerical simulation. Edge-enhancement along the vertical direction of a unitary 
rectangle used as the slice function of a thin phase object: (a) slice, (b) sinogram, (c) Hilbert-
sinogram, (d-e) vertical edge enhancement reconstruction. The second row shows a line or 
column data corresponding to each image at first row as is indicated with the yellow dotted 
line. 

Fig. 5 shows a numerical simulation of the theory mentioned above. Column (a) shows the 

slice of the object  ,f x y , while the lower image shows the plot of the profile of the function 

along the dotted vertical line that crosses the rectangle in the center. Column (b) shows the 
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sinogram of  ,f x y . The image of the upper part of column (c) shows the convolution for 

each one of the projections in the sinogram that are consequence of the input of the system 

1 p  with the corresponding sign compensation, as indicated in Eq. (60). Observe that the 

signs of the projections change around  , as a result of the symmetry property of the 

Radon transform. We have denominated this modified sinogram as a Hilbert-sinogram. The 

lower image shows a sketch of the Hilbert transform of the projection along the same angle 

used for the last profile. Moreover, with the use of a filtered retroprojection algorithm, the 

tomographic reconstruction is obtained. The images of the column (d-e) present the 

reconstruction of the slice function in 2-D and 3D, respectively, where the edge 

enhancement in the vertical direction is shown, as was expected. The images in the lower 

part show the profile of the dotted line in the reconstructed image. The line in (d) selects a 

row of the reconstructed image, as shown in the lower image, and the line in (e) selects one 

profile of the image, presenting an edge enhancement on the vertical direction. 
In this point, and with the purpose of generalizing this discussion, the directional Hilbert 

transform is calculated using the definition (48) of the slice function. 

    
   sin cos

, = ,
cos sin

x y
f x y f x y

x y
   

  

  



. (66) 

The projection at an angle   is symbolically given by 

    
     sin cos

= ,
cos sin

x y
f p f x y p

x y



  


  


  

 


. (67) 

Applying the convolution property for the triple product of functions in the Fourier space, 

Eq. (67) will be given by 

        
~

sgn cos sin

~

f w i f Ǎ,ǎ δ w
    




   . (68) 

Rotating the coordinates using Eq. (16), it is possible to demonstrate the equation

   cos sin cos sinw w            , and by taking this into account, the last 

expression can be simplified to the following expression: 

 

~
~

( ) sgn[ cos( )] ( )f w i w f w

  


 

   , (69) 

 

where the filter property of the Dirac delta function and the slice Fourier theorem have been 

applied. Calculating the inverse Fourier transform for both sides of the equation, 

          1
sgn cos sgn cosf p f p f p

p

     



 
  

            , (70) 
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where it has been assumed that the relationship      sgn cos sgn sgn cosw w              

is satisfied. Therefore, the projection of the Hilbert transform of the slice function  ,f x y  

along the direction indicated by   is identical to a Hilbert transform of the projection at an 

angle   mediated by a sign factor by the cosine of the projection angle and the director angle. 

It is important to note that when 2  , Eq. (70) is reduced to the particular case stated in Eq. 

(65). Expressing the last expression in terms of operators, 

          , sgn cos ,H f x y H f x y
         , (71) 

i. e., the Radon transform of the directional Hilbert transform of the slice function is 
identical to the Hilbert transform of the projection mediated by the signum function of the 
cosine of the projection angle and the angle that is indicated by the operation. 
 

 

Fig. 6. Reconstruction of the directional Hilbert transform of the slice function. Two 

examples of slices are presented: (a) phatom of Shepp-Logan, (b) sinograms, (c, e, g) Hilbert-

sinograms of irradiance with 0, 4 , 2   , respectively, (d, f, g); direction reconstruction 

of the Hilbert-sinograms of (c, e, g). 

Fig. 6 presents a numerical simulation of directional edge-enhancement tomography for two 
slice functions and three particular directions. In column (a) slice functions, Shepp-Logan 
(upper image) and a rectangle (lower image) are shown. It is important to mention that the 
first row shows everything related with the Shepp-Logan, while the second row presents 
everything that is related to the rectangle. The column (b) shows the sinograms for each one 
of the slices indicated in (a); in the columns (d), (f), and (h), there are reconstructions of the 
Hilbert-sinograms shown in (c), (e), and (f). In this simulation, the reconstruction of the 
directional Hilbert transform of the slice function is obtained, just in the manner stated 
above. 

5.3 Optical tomography of edge-enhancement 

When the diffraction and refraction effects are significant, it becomes impossible to predict 
the path of a ray. If the algebraic techniques are applied under these conditions, it is very 
common to obtain insignificant results. If the refraction and diffraction effects are small (in 
inhomogeneous media, they are less than 2 for the 3% of the average value and the 
correlation width for these inhomogeneities is much greater that the wavelength), in some 
cases it is possible to combine algebraic techniques with digital ray tracing [Andersen & 
Kak, 1982], who designed iterative procedures that first construct the corresponding 
transmittance and receive the positions using this distribution, and finally use these rays to 
construct a more exact series of algebraic equations. Experimentally, this iterative procedure 
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has been verified for low refraction objects. In particular, when a light beam crosses an 
object and only suffers phase changes, it is considered as a phase object. In the study of these 
kinds of objects, in terms of optical tomography, a minimum refraction is assumed 
(refractional limits). In this approximation, the light rays travel in straight lines and cross the 
object without changing their path, so it is possible to not to take into account the changes of 
diffraction, dispersion, polarization, refraction, etc. 
In the last section, the theory required for reconstructing the directional Hilbert transform of 
the slice function was stated, instead of only the slice function, which was proved with a 
numerical simulation and taking tomographic images with edge enhancement. In this 
section, we will present how this idea can be implemented in an experiment applied to 
optics. In particular, thin phase objects will be presented, where well described analytic 
relations are obtained, and an approximated description for the case of non-thin phase 
objects will be stated, in which there is an isotropic enhancement instead of the directional 
enhancement. This experimental implementation is based on obtaining the Hilbert 
transform in the optical field, which is done through the implementation of an optical 
correlator or a 4f image forming system of a double Fourier transform. 

5.3.1 Hilbert transform using a 4f system 

It is well known that the implementation of the Hilbert transform using an optical system 

can be efficiently implemented employing a double Fourier transform 4f image system, also 

known as an optical correlator. Its functioning is based on the optical Fourier theory. There 

are several proposals to optically implement the two-dimensional Hilbert transform. Some 

have proposed to obtain the transform under a rectangular system [Davis et. al., 2000] with a 

sign filter and others say that it is possible to find the radial Hilbert transform with a spiral 

step filter [Davis et. al., 2000]. There are also others who suggest the implementation of a 

fractional Hilbert transform in rectangular coordinates with a variable phase step filter 

[Davis et. al., 2002]. It has already been proven that the Hilbert transform of the optical field 

shows an edge enhancement in terms of the image, and it is noteworthy to state that this fact 

has been used in optical image processing. In the implementation discussed here, a phase 

step filter of   radians will be used to obtain the partial Hilbert transform respect to the 

projection coordinate, and to obtain the one-dimensional Hilbert transform of the field that 

goes out of the object at a height z. On the other hand, it is important to mention that the 

implementation of the 4f system to obtain the partial Hilbert transform of the field will 

constitute the bases to construct an optical tomographer used to get tomographic images 

with experimental edge-enhancement. 

5.3.1.1 Statement of the problem 

In order to begin the discussion, let us assume that there is a homogeneous plane wave 

without slope and with amplitude A, linearly polarized, which propagates in the positive 

direction of p , whose spatial part is described by  ,At p z A . If this wave crosses the 

phase object described in a right-handed coordinate system, whose refraction index is a 

point of the sample denoted by  , ,f x y z , then the wave that exits the object is given by 

    2
, exp ,A p z A i f p z 




 
  

 
, (72) 
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where   is the wavelength of the light used and  ,f p z


 is the accumulated optical path of 

the light ray that exits the object at a height z, which in general can be described by [Deans, 
1983] 

    , , ,
C

f p z f x y z dl


  . (73) 

Under the minimum refraction approximation, the path C described by a light ray would be 

very similar to a straight line, as can be seen in Fig. 71, and it is noteworthy to state that this 

situation can be obtained if the object is submerged in oil [Goodman, 1985]. In this case, the 

optical path can be interpreted as the parallel projection at an angle   as described in Eq. 

(73): 

      , , , cos sinf p z f x y z p x y dxdy   
 

 

    , (74) 

where z is constant and indicates the height at which the cut is done, or the plane that 
defines the slice of the object that will be reconstructed. 
In order to obtain the projection from the optical field (Eq. 72), it is necessary to apply an 

indirect method because an optical detector such as a CCD camera would observe 

something proportional to the square module of the amplitude of the field, being the 

phase undetectable, so the projection would also be undetectable. There are several 

proposals to obtain a projection of the optic filed, such as the interferometric techniques, 

which basically consist in making an interference of the field that exits the object with a 

reference wave, from which an interference pattern is obtained. The phase information is 

obtained from this pattern with some phase extraction technique, such as the phase 

shifting interferometry introduced by Brunning [Bruning et. al., 1974] or by the Fourier 

transform suggested by Takeda [Takeda et al., 1982], among others [Meneses-Fabian et. al., 

2011]. This type of technique is known as interferometric tomography, and has been 

applied in the study of temperature gradients in flames [Braslavsky et al., 1998], in 

radiators and electronic chips [Wu & He, 1999] or in the measurement of concentration 

profiles in layers formed in the boundaries of cathodes in an electrolytic cell of ZnCl2 

[Kujawinska & Kniazewski, 2006], and in the study of phase objects, such as glasses, oils, 

acetates [Philipp et al., 1992]. Nevertheless, image processing was always necessary to 

increase the processing quantity and the retrieval time of the image. Moreover, with these 

methods, it is possible to only retrieve the information related with the slice function of 

the object, but not of any operation over it. An alternative to retrieve some operation of 

the slice function has been proposed by finding the angular derivative, being made using 

an ESPI system which is sensible out of the plane to obtain the difference between two 

adjacent projections [Meneses-Fabian et. al., 2003]. There are also other proposals, such as 

the use of a 4f system to obtain the directional derivative of the slice function, using a 

square root filter to obtain the semi derivative of the field, and by using it, to obtain 

something proportional to the derivative of the parallel projection [Rodríguez-Zurita et al., 

1997]. In this article, the proposal consists in using the 4f system to obtain the Hilbert 

transform of the field to detect information of the phase and the parallel projection. 
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Fig. 7. Phase objects crossed by a plane wave, with a rotated reference system: (a) 3D object 
rotated around the z axis to generate the projection angle and (b) the slice of the object with z 
constant. 

5.3.1.2 The Hilbert transform from the optical point of view 

In this section, a tomographic system is proposed to detect the projection data from the 

irradiance, where the detection time for each projection data is reduced in time and cost. 

Moreover, not only are the projection data detected, but it is also possible to do an edge 

enhancement on the projection data emerging from the objects under study, and to 

retrieve the slice function of the object enhancing its characteristics, which cannot be 

detected with the unaided eye. 

If the field that exits the object is considered as a function of the input transmittance of the 

image forming optical system, as schematically presented in Fig. 8, the field at the exit of the 

system is altered. The optical correlator consists of three planes and two lenses with the 

same focal distance f. As can be seen in Fig. 8, the distance between one lens and the 

adjacent plane is the focal distance of the lens f. The input plane is known as the object 

plane. The first lens finds the optical Fourier transform of the input field and this 

distribution is obtained in the Fourier plane. The second lens finds the optical Fourier 

transform in the Fourier plane, and distributes it in the output plane, known as the image 

plane. Then, at the exit of the system, we have the transform of the Fourier transform of the 

input transmittance function, which is the same function as the input, but inverted. Since it 

has also been convened that it is necessary to invert the axes in the image plane, the second 

lens makes the inverse Fourier transform. If a pupil function is placed on the Fourier plane, 

also known as frequency space filter, the exit function is the convolution of the input 

function with the result of the impulse of the filter [Abhilash, 2006]. In this case, the filtered 

used is a phase step of   radians, which is made depositing over one half of a slide a thin 

metallic layer calculating its thickness to provoke an expected delay for the wavelength 

used. The filter can be modeled by the signum function, and without loss of generality, the 

filter function can be written as 

    
~

, sgnh w i w    , (75) 

where   is the spatial frequency variable of z. In this manner, the optical field at the exit of 

the system can be mathematically described as 
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      , ,
z

A p z A p z
p

 




  , (76) 

which is the partial Hilbert transform respect to p of the input transmittance function, where 

it has been assumed that the relation     1 sgnz p i w      is the response of the 

system. In what respects to the detection of the field, it is only possible to observe its 

irradiance, because an optical detector such as a CCD camera is used, 

              
2

*, , , ,
z z z

I p z A p z A p z A p z
p p p

   
  
  

 
     

 
, (77) 

the symbol “*” indicates the complex conjugate. In the following sections, it will be shown 
how this intensity can be used to obtain the Hilbert transform of the projection data under 
the approximation of thin phase objects, and in the case of thick phase objects, it will be 
shown that this irradiance is taken directly as projection data, to reconstruct tomographic 
images with directional and isotropic edge-enhancement, respectively. 
 

 

Fig. 8. Optical 4f image forming system 

5.3.2 Edge-enhancement in optical tomography 

5.3.2.1 Thin phase objects 

In the thin phase object approximation, the exponential in Eq. (72) expresses the optical field 
that exits the object, and it is approximately equal to the initial terms of the Taylor series 
[Zernike, 1955], which is given by 

    2
, 1 ,A p z i f p z 





  , (78) 

where for the sake of simplicity, the amplitude of the field A has been approximated to 1. 
Substituting Eq. (72) in Eq. (78), the field exiting the system is given by: 

    0 02 2
( , ) 1 , ,A p z H i f p z i f p z 

 
 


  

   
 

, (79) 
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where it has been assumed that {1} 0H  . This equation indicates that the Hilbert transform 

of the field that is exiting the object is proportional to the Hilbert transform of the projection 

data for every height z, while its irradiance is expressed by: 

    

2

2
0

2

4
, ,I p z f p z 





 

 
  

 
 

. (80) 

In this manner, it is possible to obtain the module of the Hilbert transform of the projection, 
using: 

    0 , ,
2

f p z I p z 






 , (81) 

where the bars indicate absolute value. It is important to mention that the field at the exit of 

the system is proportional to the directional Hilbert transform of the input field with respect to 

p. Once a slice with height z has been selected, the Hilbert transform of the parallel projection 

at an angle   is given. If this modified projection were extracted from the image plane, the 

reconstruction obtained would be extracted with the theory that is presented in section 5. But 

since this field is observed with a detector such as a CCD camera, then the result obtained 

would be proportional to the module of the Hilbert transform of the projection. 
In order to validate the data indicated in Eq. (81) as projection data, it is necessary to use 
two properties of the Radon transform. In the case of the symmetry property, 

          
 

0 0 0, , ,
z z

f p z f p z f p z
p p

    
 
 


  

      


, (82) 

where it has been substituted in the symmetry property of the projection (Eq. 1). The first 
negative sign on the right-handed side of this equation can be eliminated for the sake of 
convenience due to the presence of the bars, so  

      
   0 0 0, , ,

z
f p z f p z f p z

p
   




 
  

     


, (83) 

which proves this property. For the zero momentum property, it is possible to state that 

      
 

0 0, ,
z

dp f p z dp f p z
p

 




  

 

   . (84) 

What lies in the parallel bars is the Hilbert transform of the projection for any height z. 

Nevertheless, it has been proved in section 6.2 that the zero momentum for this function is 
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null (Eq. 61). Therefore, in general, the area under the curve in the ranges in which the 

function is greater or equal to zero is identical to the area under the curve for the ranges in 

which the function is negative. This means that the positive area is equal to the negative, 

being the total area equal to zero. An intuitive proof of the fact that the areas in Eq. (84) 

remains constant, independently of how the projection angle is oriented, in the sense o the 

energy captured by the detector. Since the filter used in the Fourier plane of the 4f system 

has only one phase, this implies that there is no change in the energy of the light wave at the 

exit in the image plane when compared with the input in the object plane. Therefore, the 

irradiance in both the object plane, as well as in the image plane, is conservative. Hence, it is 

possible to intuitively conclude that the zero momentum of the Radon transform is satisfied 

for the projection that was obtained from the absolute value of the Hilbert transform of the 

projection. A more formal demonstration of this property remains beyond the purpose of 

this chapter. 

Let us suppose that the slice function  ,f x y  with a rectangular domain in the way defined 

in Fig. 4a is shown in Fig. 9a1. The accumulated optical path of a light beam that crosses this 

slice  f p


 is calculated using the projection integral for different angles in the range

(0,2 )  , in the way explained in section 6.3.1.1. The image obtained is shown in Fig. 9a2. 

The column (b) of this figure shows the optical field ( )A p  that exits the slice of the object

 ,f x y . The real and imaginary parts are shown in Fig. 8b1 and 8b2, respectively. The 

column (c) present the Hilbert transform of the field that exits the slice of the object. The real 

and imaginary parts are in Fig. 9c1 and 9c2, respectively. The upper row of the following 

column show the irradiance of ( , )A p z


, which is considered as a modified sinogram: a 

Hilbert-sinogram of the irradiance. In Fig. 9d2, the zero momentum of the Radon for the HIS 

is presented. It is important to note that the symmetry property and the zero momentum of 

the Radon transform are demonstrated, as was expected. Under the filtered retroprojection 

algorithm, the tomographic reconstruction is obtained. Fig. 9e shows the reconstruction 

obtained in 2D and 3D. In this algorithm, the rectangular filter is used, while the impulse 

response to this filter is used to filter the projection data using a numerical convolution. 

 

 

Fig. 9. Numerical simulation: (a) slice of the object (1) and sinogram (2); (b) field exiting the 
slice of the object: real (1) and imaginary (2); (c) Hilbert transform exiting the slice of the 
object, (d) Hilbert-sinogram of the irradiance (1) zero momentum of the Radon transform 
(2); and (e) reconstruction of the edge enhancement: en 2D (1) and 3D (2). 
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5.3.2.2 Thick phase objects 

In the last section, the application of the tomographic theory of edge enhancement to thin 
phase objects was presented, where the first two terms in the Taylor series were used. In this 
section, the thick phase objects are considered, in which the field that exits the object cannot 
be approximated with only a few terms of the series. In this case, the irradiance of the partial 
Hilbert transform respect to p of the field that goes out of the object is considered as the 
projection data and it is proven that these data satisfies the two properties of the Radon 
transform required for the reconstruction of a slice function. 
As was mentioned before, a CCD camera would observe the irradiance of the field existent 
in the image plane of the 4f system, as indicated in Eq. (80), which is now considered as the 
projection data: 

        
2 *

, , , ,I p z A p z A p z A p z  

  
  . (85) 

which satisfies the symmetry property. Now, let us verify this in the image plane, where the 
field is described by Eq. (76): 

            , , , ,
z z

A p z A p z A p z A p z
p p

    
 
 

 
         . (87) 

The negative sign in the last term indicates that the partial Hilbert transform respect to p of 
the field at the exit of the object does not satisfy the property. Similarly, for the conjugated 
amplitude, it is possible to prove it: 

    
* *

, ,A p z A p z  
 

    . (88) 

Finally, for the irradiance in the image plane (Eq. 85), we have 

            
* *

, , , , , ,I p z A p z A p z A p z A p z I p z       

   
 

  
         

    
, (89) 

which proves the property. For the zero momentum of the Radon transform, 

      
*

, , ,dpI p z dp A p z A p z 

   

 

  . (90) 

Applying Parseval’s theorem, 

             
*~ ~

*~ ~

, , , sgn , sgn ,dpI p z dw A w z A w z dw i w A w z i w A w z   

   

  

  
     

    
   , (91) 

 

where it has been assumed that      
~

~

, sgn ,A w z i w A w z 


   is the partial Fourier transform 

respect to p of the field in the image plane of the 4f system, and     
~

, ,A w z A p z    is the 

partial Fourier transform respect to p of the field that exits the object. Accepting the identity

 2sgn 1w  , it is possible to simplify this expression, resulting in: 
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      
*~ ~

, , ,dpI p z dw A w z A w z 

 

 

  , (92) 

and by using again Parseval’s theorem, Eq. (92) can be written in the following way: 

 *( , ) ( , ) ( , )dpI p z dpA p z A p z  

 

 

  . (93) 

This expression states that the intensity of the object plane and in the image plane are the 

same, which is consistent, due to the fact that the filter used has only one phase. Now, if Eq. 

(72) is substituted in Eq. (93), the following expression is finally obtained: 

    
/2

2

/2

2 2
( , ) exp , exp ,dpI p z dpA i f p z A i f p z A  

 
 

  

 

   
      

   
  , (94) 

where   is the width of the detector, where the irradiance is zero outside of this width. 

Considering the irradiance in the image plane as the projection data, the zero momentum of 

the Radon transform is the total energy in the finite detector, and is independent of . 

Therefore, the symmetry property and the zero momentum of the Radon transform have been 

proved in a satisfactory way, so the irradiance in the image plane can be considered as the 

projection data, and thus, the tomographic reconstruction must present a consistent image. 
In Fig. 10, there are two examples: in the row 1, a uniform ring is considered as the slice of 

the object, and in row 2, a non-symmetrical slice of the object is considered as the slice of the 

object. In column (a), we present the slices of the object. The set of data in the image plane 

for every possible projection angle form a modified sinogram known here as a Hilbert-

sinogram of the irradiance (HIS) is displayed in column (b). In column (c), the zero 

momentum of the Radon transform is displayed, and finally, in columns (d) and (e), both of 

the reconstructions in 2D and 3D are presented, respectively. 

 

 

Fig. 10. Numerical simulation: (a) Two test slices: a uniform ring and a non-uniform object, 
(b) HIS; (c) the zero momentum of the Radon transform (2); (d, e) the reconstruction of the 
edge enhancement in 2D (1) and 3D (2). 
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The irradiance in the image plane of the 4f optical system using a phase filter of   radians 

has been considered as the projection data in optical tomography of phase objects, and this 

has been mathematically demonstrated, that the irradiance satisfies the symmetry property, 

as well as with the zero momentum of the Radon transform. It has been proven that for 

every possible projection angle, it is possible to obtain a modified sinogram, which is called 

a Hilbert-sinogram of the irradiance. As a consequence of the direct use of this HIS, the 

reconstruction obtained consists of images that show an isotropic edge enhancement for the 

numerical simulation. Thus, the filtered Hilbert transform not only serves to detect the 

phase projections, but it also is capable to reinforce tomographic images as an additional 

characteristic. 

 

 
 

Fig. 11. Experimental results: (a1) a rectangular piece, (a2) pipette, both made of Pyrex, with 
a refraction index of 1.52; (b) their respective Hilbert-sinogram of irradiance obtained 
experimentally; and (c) the reconstruction of a slice of the object, respectively for each of the 
objects under study, where the slice is indicated by the dotted line in (a). 

5.3.2.3 Experimental results 

In this section, the experimental results for the tomography of phase objects with an 

isotropic edge enhancement are presented. The 4f system shown in Fig. 8 is a telecentric 

system that can be implemented in laboratory table, in order to achieve the optical phase 

object tomography. In the experimental implementation, the lenses used have a focal 

distance of 479Lf mm ; the step filter of   radians was found adequate for the wavelength 

used of 632.8nm  . In the experimental setup, the object under study is submerged on one 

of its ends in a liquid opening with immersion oil. This oil has a nominal index of 1.515. In 

this manner, the refractional limit condition is satisfied, while the other end is suspended by 

the axis of a step-wise motor, with a resolution of 1.8o for every step, which is controlled by 

a program designed in LabVIEW with an interface for a PC, which also controls the CCD 

camera, and selects the line of interest in the object, defining the slice of the object. 
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With this experimental array, and with the control managed from the PC, it is possible to 

place the sample at the desired projection angle. In the initial position of the sample, it is 

considered in a rectangular coordinate system, which rotates around the z axis, and where 

  is the azimuthal rotation angle respect to the x axis, for z constant. In order to 

experimentally obtain the Hilbert-sinogram of the irradiance, the CCD camera is placed in 

the image plane of the 4f system and is controlled through the visual interface, 

synchronizing the acquisition of the projection data. In order to obtain the retroprojection 

data that will form the Hilbert sinogram of the irradiance, it is necessary to select a data line, 

and it is maintained fixed during the acquisition of all the projections. In the initial position 

of the object, it is considered that 0   as the first projection angle. The data observed in 

this row in the image plane using the CCD camera are placed in the new image where the 

Hilbert-sinogram of the irradiance will be constructed. Once these procedure has been 

finished, the step-wise motor rotates the sample one step of 1.8o, generating a second 

projection angle, and it is noteworthy to state that due to this rotation, the distribution of the 

field has been modified. Once again, the same row of data is selected to be observed by the 

CCD camera and they are arranged in the second row of the image where the Hilbert-

sinogram of the irradiance is being constructed. Repeating this for each one of the angular 

steps of the motor until a complete rotation of 360o has been accomplished, the Hilbert-

sinogram of irradiance has been completely constructed for one slice of the object, so this 

will have 200 rows. The reconstruction of the slice with an isotropic edge-enhancement is 

obtained submitting the HIS to data processing, using the filtered retroprojection. It is 

important to state that due to the symmetry property of the parallel projections, it was only 

necessary to use the projections that lie in the range 0 0 '(0 ,180 ) . 

In Fig. 11, there are experimental results for two phase objects. Fig. 11a presents the 

photographs of the transparent objects that were studied. The sample number 1 is an object 

that is a rectangular piece of 1x3x20 mm, (1) a pipette of 5.6 mm of external diameter and 

0.25 mm of thickness. Both objects are made of Pyrex glass with a nominal refraction index 

of 1.52. Fig. 11b show the HIS experimentally obtained of a slice of each one of the objects. 

The slices that were selected for each one of the objects are shown in Fig. 11a by a dotted 

line. Fig. 11c presents their respective tomographic reconstruction using the filtered 

retroprojection algorithm. The tomographic images that were obtained show edge 

enhancement. These enhancements are related principally to the refraction index over some 

slice in particular. 

6. Conclusions 

In this chapter, there was a discussion of the mathematical fundamentals of parallel 

projection tomography, and there was also a demonstration of the mathematical method for 

directional edge-enhancement tomography. It is important to state that this technique is 

possible thanks to the mathematical relationship existent between the Radon transform and 

the Hilbert transform. Numerical simulations were done, and it was proven how this 

technique can be applied in phase object tomography, presenting reconstructed images with 

isotropic edge enhancement. Note that an analytic proof of the isotropic edge enhancement 

continues being an open problem. 
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Three conditions were required in order to make possible the implementation of the edge-
enhancement tomography: 
1. The existence of a relationship between the Hilbert transform and the Radon transform. 

2. The verification of the symmetry property and the zero momentum of the Radon 

transform of the Hilbert transform of the projections. 

3. The possibility of an experimental implementation of the Hilbert transform 

Due to its analytic form, the third one can be implemented in an invariant and linear system 

because the spectrum is the product of two functions in Fourier-space, where one of the 

functions can be interpreted as the filter function. This is why the optical implementation of 

the Hilbert transform is possible, where the step phase filter is used because it is modeled 

through the signum function. Moreover, in terms of detection, this method is more direct 

and faster than the usual methods used in interferometric tomography, because there is no 

data preprocessing implied in the obtaining of the projection data. 

Speaking in general terms, this same detection method could be extended using another 

type of filter that can make edge-enhancement, such as the full or fractional directional 

derivative. This technique could be employed using another type of probe that can make 

possible the implementation of a linear and invariant system. We think that the tomography 

through electric capacitance can be done in this way, because it is possible to implement a 

system of this type, in the way done in communication systems. 
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