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1. Introduction 

The most formal and systematic tool to simplify a real-world phenomenon dealing with the 
interrelationships between organisms and their environment, including the interaction 
between each other is an ecological model. Of course, it is usually created for one or more 
purposes, for example, to gain system understanding, to forecast the future state of the system, 
and to develop new hypotheses. Not only that, a good model should also reach a balance 
between the complexities of the real-world system, which is too difficult to solve, and the need 
of simple formulation and valid analytic model, which can be explicitly solved. Ecological 
modeling has a long and rich history. So far many sophisticated ecological models have been 
developed in all fields of ecology such as the ecology of individuals including physiological 
ecology, the ecology of populations, and the study of ecosystems (classified by Hofbauer & 
Sigmund, 1988; Roughgarden, 1996). Ecological phenomenon can often be simplified by 
making some assumptions and studying it with suitable time scales and spatial interactions. It 
should be noted that a simple deterministic system could behave dramatically unlike when its 
time scale and its spatial interaction are changed. Therefore, the next coming sections aim to 
convince the significance of time scales and spatial interactions. 

2. The classical concept of ecological modelling 

The books on mathematical modeling in biology written by L. Edelstein-Keshet (1988), S. P. 
Ellner & J. Guckenheimer (2006), M. R. S. Kulenovic & O. Merino (2002), J. D. Murray (1993), 
and S. P. Otto & T. Day (2007) are the valuable teaching resources suitable for modelers who 
require theoretical concepts as well as desire mathematical and computational techniques to 
build and analyze models. In the early ecological models, their time scales were limited to 
either discrete or continuous. Usually, if populations of individuals have synchronized 
changes (i.e., reproduction, infection, recovery, migration, removal or mortality) at a regular 
time interval and no overlap between successive generations then the discrete time model is 
recommended. Otherwise, a continuous time model is preferred. Traditionally, a discrete 
time model is represented by using difference equation(s) whereas a continuous time model 
is constructed by using differential equation(s). Recently, the practical use of mathematical 
modeling is richly contributed. For example, L. J. S. Allen (1994), L. J. S. Allen & A. B. Burgin 
(2000), W. M. Getz & J. O. Lloyd-Smith (2006), and S. R.-J. Jang (2008) were interested in 
discrete epidemic models while K. Bunwong et al. (2009) studied nutrient removal process 
on a continuous time model.  
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According to spatial interactions, the early ecological models were based on the mass-action 
law, first coined in chemical reaction. Hence the system is homogenous and the spatial 

interaction neither exists nor plays an important role. Before the 1970s, mathematical 
modelers typically used ordinary differential equations, seeking equilibria and analyzing 

their stability (Neuhauser, 2001). Subsequently, exploring bifurcation diagrams and chaotic 
patterns has continuously received lots of attention, related articles were written by J. 

Awrejcewicz (1991), J. Awrejcewicz & C.-H. Lamarque (2003), and E. Ott (1993). In 1969, the 
implicit spatial model, known as metapopulation, was first introduced by R. Levins. He 

constructed a model to describe a population that consists of several sub-populations joined 
together with immigration and emigration. Levins's simple model was motivated by and 

applied to a pest control situation over a large region, within which local populations would 
fluctuate in asynchrony (Hanski & Gilpin, 1991). This new concept was closely linked with 

the processes of local extinctions and re-colonization. I. Hanski & M. Gilpin (1991) also 
provided a conceptual distinction between local, metapopulation, and geographical scales. 

Later on, I. Hanski (1999) applied this approach to conservation biology. However, the role 
of space at the individual level is still not directly mentioned.  

Throughout this chapter, an SIS epidemic model, well known disease transmission model, is 

considered. Of course, there are lots of diseases in this world. Here we focus on the disease 

that does not produce immunity, for example, some STD’s, the eye disease, and the common 

cold. Therefore, the main situation is that the population is divided into a susceptible (S) 

group and an infectious (I) group. The S group is infected by the I group while the I group 

recovers from the disease and returns to the S group. Consequently, we set ( )S t  and ( )I t  to 

represent the number of S and I individuals at time t , respectively. The total population size 

is assumed to be constant, ( ) ( )S t I t N  . Moreover, ( / ) ( ) ( )N S t I t  and ( )I t  represent the 

infection rate at which the S population contracts the disease and the total number of I 

individuals who recover per unit time at the time t , respectively. Then, the SIS epidemic 

model should contain two equations. With constant population size, it can be reduced to a 

single equation. For continuous time scale, it is 

 2( ) ( ) ( )
dS

S t S t N
dt N

       , 0( )S t  . (1) 

In this case, a solution of Equation (1) always behaves non-oscillatory. For discrete time 

scale, the SIS epidemic model becomes 

 21 1( ) ( ) ( ) ( )S t S t S t N
N

         . (2) 

In this case, the behavior of the endemic solution can be very complicated as it can tend to 

an equilibrium point, to limit cycles, or show chaos. Obviously, time scale makes system 

behavior amazing. In the next section, an SIS model is extended with more different time 

scales. Finally, the qualitative structures are investigated. 

3. The important of time scales 

In more complex situation, flu virus can spread continuously while in season, mostly 

disappear for some period of time, and spread again in a new season. According to Fig. 1, 
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the data shows periodic outbreaks of disease (the Influenza Division of Centers for Disease 

Control and Prevention, 2010). Obviously, the reasonable time scale for this model should be a 

combination of discrete and continuous scales. Thus the model either using difference 

equation(s) or differential equation(s) should be improper. Consequently, the calculus on time 

scales has been developed. S. Hilger first introduced this theory in order to unify continuous 

( ) and discrete ( ) analysis (Agarwal et al., 2002). Since then, the theory has been extended. 

Nowadays, time scales theory can be used to explain system dynamics not only for continuous 

and discrete times but also for other types of time such as period (  ) and discrete jump with 

fixed length ( h ). There are plenty of publications in theoretical results. For example, J. 

Hoffacker & C. C. Tisdell (2005) studied on stability and instability for dynamic equations 

while E. Akin et al. (2001), D. R. Anderson (2009), and Y. Xu & Z. Xu (2009) studied on 

oscillation and nonoscillation criteria for dynamic equations and dynamic systems. However, 

there are few articles in numerical results (Sae-jie & Bunwong, 2009; Siming et al., 2008). In 

addition, there are some applications in economics (Atici et al., 2006) and epidemiology (Sae-jie 

et al., 2010a, 2010b; Thomas et al., 2009). In order to contribute time scales concepts and 

techniques understandably, some useful notations and definition are introduced as follows. 
 

 

Fig. 1. The number of influenza-associated pediatric deaths. 

3.1 Notations and definitions 

A time scale,  , is an arbitrary nonempty closed subset of the real numbers. Forward and 

backward jump operators are defined by ( ) inf{ : }t s s t     and ( ) sup{ : }t s s t    , 
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respectively where inf sup   , sup inf   , and   denotes the empty set. A point 

t  is called left-dense if inft    and ( )t t  , right-dense if supt    and ( )t t  , left-

scattered if ( )t t  , right-scattered if ( )t t  , isolated if ( ) ( )t t t   , and dense if 

( ) ( )t t t   . Moreover, the set   is defined by \{ }m  if   has a left-scattered 

maximum m . Otherwise, it is  . Finally, the graininess function 0: [ , )    is defined 

by ( ) ( )t t t    (Bohner & Peterson, 2001). 

3.2 Calculus on time scales 

Traditionally, limits and continuity are key concepts for calculus development including 

calculus on time scales. A function :f    is said to be rd-continuous (right dense 

continuous) provided f  is continuous at right-dense points and left-hand limits exist and it 

is finite at left-dense points in  . Assume :f    is a function and t  . Then the 

following statements are equivalent: 

a. The (delta) derivative of :f    at point t  , ( )f t , exists.  
b. For all 0  , there is a neighborhood U of t  (i.e., ( , )U t t      for some 

0  ) such that  for all s U ,  

 ( ( )) ( ) ( )( ( ) ) ( )f t f s f t t s t s        . (3) 

c. 

0

0

( ) ( )
lim ( )

( )
( ( )) ( )

( ) .
( )

s t

f t f s
if t

t s
f t

f t f t
if t

t t










     
 

                                                                                (4) 

d. ( ( )) ( ) ( ) ( )f t f t t f t    .                                                                                                  (5) 

Apart from discrete and continuous time scales, there are two more interesting time domain 

(as visualized in Fig. 2) to introduce. The first one is the combination of continuous and 

discrete time scales, denoted by the symbol 
0

, : [ ( ), ( ) ]l h
k

k l h k l h l




       where 0,l h   

and 0k . For this period time scale, l is the fixed length of the continuous interval while h 

is the fixed length of the discrete jump. The second one is composed of points that are 

equally spaced in time. Suppose that the distant between two successive points is h. 

Therefore, the symbol of this time scale is 0{ : , }h hk k h       . Later on, forward and 

backward jump operators, graininess function, and (delta) derivative of function for each 

time scale are provided. 

 

 

Fig. 2. Examples of time scales. 

, 0h h 
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In the case   , we have 

 ( ) ( )t t t   , 0( )t  , ( ) ( )f t f t  . (6) 

In the case h  , we have  

 ( )t t h   , ( )t t h   , ( )t h  , 
( ) ( )

( )
f t h f t

f t
h

  
 . (7) 

In the case ,l h  , if 
0

[ ( ), ( ) )
k

L k l h k l h l




    ,  0

0

( )
k

H k l h l




   , and  1

1

( )
k

H k l h




   

then we have 

0

( )
t if t L

t
t h if t H




   
    

1

( )
t if t L

t
t h if t H




   
 

 

 
0

0
( )

if t L
t

h if t H



  

        
0

( )

( ) ( ( )) ( )

f t if t L

f t f t f t
if t H

h


 

 


. (8) 

For more details on time scales, we refer the reader to Bohner & Peterson (2001,2003)  

3.3 SIS epidemic model on time scales 

After replacing 
dS

dt
 in Equation (3) with ( )S t , we obtain the single equation of SIS 

epidemic model on time scales. Previously, one solution of continuous time model tends to 

one asymptotically stable equilibrium point while the solution of discrete time model 

displays various behaviors depending on parameter values. The following analyzes reveal 

system behavior on different time scale via two approaches. Firstly, we are interested in SIS 

epidemic model on h  , i.e.,  

 2 1( ( )) ( ) ( ) ( )S t S t S t N
N

         . (9) 

It should be pointed out that   and h  are equivalent from now on.   is not a graininess 

function. Obviously,    when 1h   and    when h tends to zero. Secondly, we 

change our focus to SIS epidemic model on ,l h  , i.e., 

 21 1 1 1 1(( )( )) ( ( ) ) ( ) ( ( ) )S k l S k l l S k l l N
N

                             (10) 

for 0t H . 

Then we explore the numerical results of previous dynamic equations individually. For 

h   time scale, we particularly investigate the system behavior when h or   vary. For 

,l h   time scale, we fix 1h  . Therefore,    when l approaches zero.  
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3.4 Numerical solution 

Since the numerical method for ordinary differential equation and difference equation are 

already well-known, this section contains only some additional algorithm for computing the 

numerical solution of dynamic system on four time scales (Sae-jie, & Bunwong, 2009). Before 

running the following program, the user must define the function F and G.  

INPUT:   A    : starting time  

 X, Y    : initial values 

 M    : number of step size (Case 2: M = l/H) 

 H    : step size for continuous interval 

Case 1:     
 FOR j = 0, 1, 2, ..., M DO 

         T = A + H*j 

         SAVE T, X, Y in the OUTPUT LIST 

         RUNGE-KUTTA-FEHLBERG METHOD 

 END FOR 

Case 2:  ,l h   
 P    : numbers of period 

 l    : length of continuous interval 

 h    : length of jump 

 DUM3 = A 

 FOR j = 0, 1, 2, ..., M DO 

         T = DUM3 + H*j 

         SAVE T, X, Y in the OUTPUT LIST 

         DUM1 = X 

         DUM2 = Y 

         RUNGE-KUTTA-FEHLBERG METHOD 

 END FOR 

 X = DUM1 + h*F(T, DUM1, DUM2) 

 Y = DUM2 + h*G(T, DUM1, DUM2) 

 FOR k = 1, 2, 3, ..., P DO 

         DUM3 = A + k*(l+h) 

         FOR j = 0, 1, 2, ..., M DO 

                 T = DUM3 + H*j 

                 SAVE T, X, Y in the OUTPUT LIST 

                 DUM1 = X 

                 DUM2 = Y 

                 RUNGE-KUTTA-FEHLBERG METHOD 

         END FOR 

         X = DUM1 + h*F(T, DUM1, DUM2) 

         Y = DUM2 + h*G(T, DUM1, DUM2) 

 END FOR 

Case 3:  h   
 DUM3 = A 

 FOR j = 0, 1, 2, ..., M DO 

         T = DUM3 + H*j 
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         SAVE T, X, Y in the OUTPUT LIST 

         DUM1 = X 
         DUM2 = Y 
         X = DUM1 + H*F(T, DUM1, DUM2) 
         Y = DUM2 + H*G(T, DUM1, DUM2) 
 END FOR 

F := X (T, X, Y) 

G := Y (T, X, Y) 

In the case h  , W. Sae-jie et al. (2010a) always fixed the following parameter values 

0 9.   and 100N  . For each value of  ,   was treated as the bifurcation parameter. 

When 2  , the dynamic behavior of continuous and discrete system are the same. For 

3 4.  , the solutions, however, appear as asymptotically stable, a period two cycle, a 

period four cycle when 0 1 0 9 1 0. , . , .  , respectively as shown in Fig. 3.  
 

 

Fig. 3. The time series solution of Equation (9) when 3 4.  . 

M. R. S. Kulenovic & O. Merino (2002) and L. Tien-yien & J. A. Yorke (1975) discovered that 

if there exists a period three cycle, then there exists chaotic behavior. For 3 6.  , the 

bifurcation diagram (as shown in Fig. 4) exhibits a period three cycle for 1 0476 1 0524( . , . ) . 

Consequently, dynamic equation (9) can generate chaotic pattern for a proper value of  . 

For more details, the non-oscillatory solution, the oscillating period two solution, and the 

chaos occur when 0 1.  , 0 8.  , and 1  , respectively. The last behavior is illustrated 

in Fig. 5. 

In the case ,l h  , this period time scale and a continuous time scale are equivalent when 

0h   . Thus, the result appears as a non-oscillatory solution. However, W. Sae-jie et al. 

(2010b) always fixed the length of discrete jump together with the following parameter 

values 3 6.  , 1h   , 0 9.  , and 100N   but varied the length of continuous interval, 

l. For sufficiently high value of l, the result (as shown in Fig. 6) appears as a non-oscillatory 

solution which is similar to the result in Fig. 3. for a continuous time scale. It disappears in 

some intervals because of the discrete time jump. When the length of the continuous interval 

decreases, a period two cycle with some continuous intervals appears as visualized in Fig. 7. 

If the length of the continuous interval is gradually reduced and closely zero, ,l h   is 

similar to a discrete time scale. 
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Fig. 4. The bifurcation diagram of   when 3 6.  . 

 

 

Fig. 5. The time series solution of Equation (9) when 3 6.  and 1  . 

4. The important of spatial interaction 

In contrast to a metapopulation model, space in an explicit model should be taken into 
account as another variable. As for non spatial models, the time scale, space, and population 
state for an explicit model can be either discrete or continuous. If all of them are continuous 
variables, a partial differential equation has been used (for example, Fisher, 1937). However, 
solving partial differential equations analytically is difficult. Consequently, analysis is based 
on computer simulation. Then we face another limitation because solving them numerically 
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Fig. 6. The time series solution of Equation (10) on time scale 1 1, . 

 

98 100 102 104 106 108 110
0

10

20

30

40

50

60
P(l,h) time scale: l = 0.1  h = 1  alpha value = 3.6  gamma value = 0.9

Time (t)

T
h
e
 n

u
m

b
e
r 

o
f 

s
u
s
c
e
p
ti
b
le

 i
n
d
iv

id
u
a
ls

 (
S

)

 

Fig. 7. The time series solution of Equation (10) on time scale 0 1 1. , . 

involves discretizing space and time. In principle, this reduces them to coupled map lattice 

model. On the other hand, if space is treated as discrete, a lattice model is proposed. With 

respect to state variables, lattice models can be divided into three subgroups, these are 

coupled map lattice (Morris, 1997), cellular automaton (Wolfram, 1986), and network model 

(Sole & Manrubia, 1996, 1997; Verdasca et al., 2005). A major problem with the lattice model 

is that analysis is often restricted to direct computer simulation which consumes expensive 

time when it is a stochastic model on a reasonably large lattice.  

Fortunately, in microscopic point of view, there is an alternative way, so-called pair 

approximation, that can help us not only to produce the numerical solutions of spatially 

explicit lattice models by using ordinarily numerical method but also to analyze them. The 

Japanese researchers were pioneers to apply this idea to ecological systems and have 

(1, 23.7578) 

(2, 27.1672) 
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continuously produced theoretical result and applications (Harada et al., 1995; Iwasa et al., 

1998; Kubo et al., 1996; Matsuda et al., 1992; Sato et al., 1994). They referred to the pair 

approximation as the doublet decoupling approximation and represent their system as 

coupled system of ordinary differential equation for the density of singletons and pairs. 

However, Rand’s colleagues (Bauch, 2000; Bunwong 2006; Keeling, 1995; Morris, 1997; van 

Baanlen & Rand, 1998) used pair approximation as a moment closure approximation where 

the number of pairs and the number of singletons are the only state variables. Higher order 

correlations are neglected. A more advantage of this method is that it keeps spatial 

correlations. There are varieties of applications in ecological interactions (Dieckmann et al., 

2000; Ellner, 2001; Ellner et al., 1998), epidemiology (Benoit et al., 2006; de Aguiar et al., 

2004 ; Dieckmann et al., 2002 ; Elliott et al., 2000 ; Joo & Lebowitz, 2004), and forest dynamics 

(Schlicht & Iwasa, 2007). However, the mathematical formulas are still limited. Thus, we 

attempt to broaden the pair approximation idea by calculating configuration averages. We 

call our method as a new approach and previous method as an original approach.  In order 

to contribute our techniques understandably, some useful notations and definition are 

introduced as follows. 

4.1 Notations and definitions 

Under a given configuration ( )k   where { , }k x e , the following Rand’s notations are 

defined (Rand, 1998). 

,x e    are the state of the site x  and the edge e , respectively, 

x i    is that the state of the individual x  is i ,  

e ij   is that one end of the edge e  is in state i , ie , while the other is in state j , 

je ,  

[ ],[ ],[ ]i ij ijk    are the number of sites, edges, and triples in state i , ij , and ijk , 

respectively,  

( ), ( )
jx eQ i Q i   are the number of i -state neighbors of the sites x  and ie , respectively, 

( )x x j
Q i    is the average value of the number of i -state neighbors of a j -state site,  

( )
je

e jk
Q i

 
 is the average value of the number of i -state neighbors of a j -state site in 

a jk -state edge, 

iq  equals [ ]/i N  where N  is the total population size, and 

|i jq  equals [ ] [ ]ij Q j  where Q  is the average number of neighbors. 

In this framework, space is represented by a network of sites. Each site can either be 

occupied by an individual or remains as an empty site that is still available for an individual 

to occupy. Two sites are neighbors when they regularly interact with each other. Joining 

these two neighboring sites performs an edge or pair. A line is used for this interaction. Fig. 

8 provides an example when the state of site x is i  and the state of site y  is j . Both sites 

are neighbors. Moreover, there is an edge e . 
 

 

Fig. 8. , ,x i y j e ij     . 

i j 

x y 
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4.2 SIS Master and correlation equations 

Our correlations are microcorrelations which can be measured on the scale of the 

interactions of individuals. After approximating higher order terms in master equations, we 

obtain a system of ordinary differential equation which composed of density of lower order 

terms, known as correlation equations. Moreover, the approximation technique is called the 

moment closure approximation. The differential equation for the single numbers involves 

pair numbers, triple numbers, etc. The differential equation for the pair numbers involves 

triple numbers, etc. So we get an infinite hierarchy of equations. However, we need to 

truncate the hierarchy at some point. For instant, pair approximation, the first order of 

moment closure approximation, truncates triples and higher order terms as functions of 

singletons and pairs only (Rand, 1998).  

Let f be a real-valued function of the state of the network at time t, which can be 

approximated as continuous. The equation f is derived by summing over all events in the 

population which affect f and the total change produced by those events is 

 ( )
events

df
r f

dt






    (11) 

where ( )r   is the rate of event   and f  is the change produced in f by event  . It is 

called the master equation.  

For our case study, the state of each site and edge will change over time as a consequence of 

two major types of events – infection and recovery. Infection changes the state e SI   of the 

edge e  into the state 'e II   at rate   and recovery changes the state x I   of a site x  

into the state 'x S   at rate  . Therefore, the SIS spatial model becomes 

 

[ ] [ ]
x I e SI

d S d I

dt dt  
 

      

[ ]
( ) ( ( ) ( )) ( )

S Sx e e xx I e SI x I

d SI
Q S Q S Q I Q I

dt     
  

        

2 2
[ ]

( ) ( )
Sx ex I e SI

d SS
Q S Q S

dt   
 

    

 2 2
[ ]

( ) ( )
Se xe SI x I

d II
Q I Q I

dt   
 

   . (12) 

If   and   are constant, the original approach of pair approximation is still valid. However, 

the real-world situation is more complicated. For example, the human-to-human transmission 

of Swine Flu occurs by inhalation of infectious droplets and droplet nuclei, and by direct 

contact, which is facilitated by air and land travel and social gatherings (Sinha, 2009). 

Therefore, the transmission rate and the recovery rate could vary depending on the 

surrounding infectious people. Consequently, we are able to assume that the infection rate and 

the recovery rate are 0 1 ( )
Seb b Q I    and 0 1 ( )xd d Q I   , respectively where 0 1 0 1, , ,b b d d  are 

constant. Then the formulation of pair approximation is in trouble. Using the fact that  
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 ( ) [ ] ( )x x x jx j
Q i j Q i  

  and ( ) [ ] ( )
j je ee jk e jk

Q i jk Q i  
  ,      (13) 

we, then, can use average forms instead of summation terms in the master equation as 
follows, 

0 1 0 1

[ ]
[ ] [ ] ( ) [ ] [ ] ( )

Sx ex I e SI

d S
d I d I Q I b SI b SI Q I

dt   
     

0 1 0

1 0 1

0 1

[ ]
[ ] ( ) [ ] ( ) ( ) [ ] ( )

[ ] ( ) ( ) [ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

S

S S S S S

x x x ex I x I e SI

e e e e ee SI e SI e SI

x x xx I x I

d SI
d I Q S d I Q I Q S b SI Q S

dt

b SI Q I Q S b SI Q I b SI Q I Q I

d I Q I d I Q I Q I

  

  

 

  

  

 

   

  

 

 

0 1 0

1

2 2 2

2

[ ]
[ ] ( ) [ ] ( ) ( ) [ ] ( )

[ ] ( ) ( )

S

S S

x x x ex I x I e SI

e e e SI

d SS
d I Q S d I Q I Q S b SI Q S

dt

b SI Q I Q S

  



  



  


 

 
0 1 0

1

2 2 2

2

[ ]
[ ] ( ) [ ] ( ) ( ) [ ] ( )

[ ] ( ) ( )

S S Se e e x x Ie SI e SI

x x x I

d II
b SI Q I b SI Q I Q I d I Q I

dt

d I Q I Q I

 



 



  


. (14) 

 

4.3 Calculating configuration averages 

It should be pointed out that there are two types of average values in this new approach. 

Previously, all mentioned average values are called space or population average value 

because they are averages of the quantity over subsets of population. Now we introduce 

another way to calculate an average value. That is the expected value with respect to 

probability distribution. This seems reasonable to assume that if population size is large 

enough, then the configuration averages approximate probability expectations. Under some 

necessary and sufficient conditions, the space average and probability average are identical. 

K. Bunwong (2006, 2010a, 2010b) developed more formulas under multinomial distribution 

with parameters Q  and ip  where |i i jp q  and Poisson distribution for coordination 

numbers, respectively. In this chapter, the SIS spatial model is based on the framework that 

each site connects to a fixed number of neighbors, Q . The following Bunwong’s formulas 

(2006) are used. 

[ ]
( )

[ ]
x x j

ij
Q i

j    

1 1

1 2

2
1 2

1 2

1 2

2

2

| |

| |

!
;

( )!
( ) ( )

!
;

( )!

i j i j

x x x j

i j i j

Q
Qq q i i

Q
Q i Q i

Q
q q i i

Q

 

    
 
 

 

www.intechopen.com



 
Numerical Simulation on Ecological Interactions in Time and Space 

 

133 

1

1 1

|

|

( ) ;
( )

( ) ;j

l j

e
e ij l j

Q q l i
Q l

Q q l i 

     
 

 
1 1

1 2

2
1 2

1 2

1 2

1
1

3

1

3

| |

| |

( )!
( ) ;

( )!
( ) ( )

( )!
;

( )!

j j

l j l j

e e
e ij

l j l j

Q
Q q q l l

Q
Q l Q l

Q
q q l l

Q

 

       
 

 (15) 

4.4 Numerical solution 

The numerical method for spatial model (14) is as same as for ordinary differential equation. 

Here, the number of pairs and the number of singletons are state variables. K. Bunwong 

(2010a) mainly investigated the density of infected individuals, defined by iq = [ ]/I N , 

along the time series. We always fixed 0 00 3 0 2. , .b d  . In case that the infection rate and 

the recovery rate are not affected by the surrounding infectious individuals ( 1 10 0,b d  ), 

Fig. 9 reveals that the more nearby neighbors, the higher density of infected individuals at 

the equilibrium point. Moreover, in case that only the infection rate is affected by the 

surrounding infectious individuals ( 1 10 0,b d  ), the stronger effect of the surrounding 

infectious individuals on the infection rate, the higher density of infected individuals at the 

equilibrium point. In case that only the recovery rate is affected by the surrounding 

infectious individuals ( 1 10 0,b d  ), the stronger effect of the surrounding infectious 

individuals on the recovery rate, the higher density of infected individuals at the 

equilibrium point. The illustrations can be seen in Bunwong (2010a). 
 
 
 

 

Fig. 9. Time evolution of the density of infected individuals iq . Parameters: 

0 1 0 10 3 0 0 2 0. , , . ,b b d d     and 8 4 2 1, , ,Q  (from top to bottom, respectively). 
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5. Conclusion 

Obviously, the assumption on timescale affects the system behavior. In order to simplify 
real-world correctly, choosing a suitable time scale is important for model formulation. Our 
example, SIS epidemic model, proves that if continuous time scale is used then two 
solutions of the system are asymptotically stable or unstable depending on parameter values 
and stable oscillating solutions have never existed. In contrast, if discrete time scale is 
applied then there are various types of solution behaviors such as equilibrium point 
solutions, period two cycles, period four cycles, period three cycles, and also chaotic 
solutions depending on parameter values as well. Consequently, the predicted behaviors 
from a model can be qualitatively very different for different time scales. The hard to answer 
question is “What is the proper model to understand observed data in a variety of time 
measurements?”. Of course, the observed data is usually discrete. Can we use differential 
equation(s)? With theory of time scales, the models are more varieties. Bifurcation diagram 
shows that the discrete jump and the continuous interval are essential. The differential 
equation(s) can be described observed data if the jump distant of data is sufficiently small. 
The distant also depends on other parameters. Moreover, numerical verification can 
visualize other interesting behavior pattern and guide other mathematician to consider 
theoretically. 
In recent years, the effect of spatial structure is often taken into account in ecological 
interactions. Pair approximation is one of the powerful tools to understand human to 
human interactions. We have developed the way to approximate higher order quantities 
and applied to ecological problems. Particularly, our new approach is suitable for a model 
evolving according to the transition rates affecting additionally by neighbors. For example, 
people infect flu virus easily from their nearby neighbors. The health organization usually 
suggests infectious people to have some rest and be away from public places. It implies that 
if we surrounding with more infectious people, then we have higher chance to infected 
and/or lower chance to recover as shown in the numerical results.  
Further studies on time scales should involve more numerical techniques and applications 
while future works on spatial interaction should concern development of formulation. 
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