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1. Introduction

Transportation of heat through porous media has been a subject of many studies due to the
increasing need for a better understanding of the associated transport processes. There are
numerous practical applications which can be modeled or can be approximated as transport
through porous media such as grain storage, packed sphere beds, high performance insulation
for buildings, migration of moisture through the air contained in fibrous insulations, heat
exchange between soil and atmosphere sensible heat storage beds and beds of fossil fuels and
geothermal energy systems, among other areas. Double diffusive is driven by buoyancy due
to temperature and concentration gradients.
Magnetohydrodynamic flows have many applications in solar physics, cosmic fluid
dynamics, geophysics and in the motion of earth’s core as well as in chemical engineering and
electronics. Huges and Young (1996) gave an excellent summary of applications. Soret and
Dufour effects become significant when species are introduced at a surface in fluid domain,
with different (lower) density than the surrounding fluid. When heat and mass transfer occur
simultaneously in a moving fluid, the relations between the fluxes and the driving potentials
are more intricate in nature. It is now known that an energy flux can be generated not only by
temperature gradients but by composition gradients as well. This type of energy flux is called
the Dufour or diffusion-thermo effect. We also have mass fluxes being created by temperature
gradients and this is called the Soret or thermal-diffusion. The effect of chemical reaction
depends on whether the reaction is heterogenous or homogenous.
Motivated by previous works Abreu (et al. 2006) - Alam & Rahman (2006), Don & Solomonoff
(1995) - Shateyi (2008) and many possible industrial and engineering applications, we
aim in this chapter to analyze steady two-dimensional hydromagnetic flow of a viscous
incompressible, electrically conducting and viscous dissipating fluid past a semi-infinite
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2 Mass Transfer

moving permeable plate embedded in a porous medium in the presence of a reacting chemical
species, Dufour and Soret effects.
The resultant non-dimensional ordinary differential equations are then solved numerically by
the Successive Linearization Method (SLM). The effects of various significant parameters such
as Hartmann, chemical reaction parameter, Soret number, Dufour number, Eckert number,
permeability parameter and Grashof numbers on the velocity, temperature, concentration, are
depicted in figures and then discussed.
The governing equations are transformed into a system of nonlinear ordinary differential
equations by using suitable local similarity transf. This chapter is arranged into five major
sections as follows. Section 1 gives an account of previous related works as well as definitions
to important terms. In section 2 we give the mathematical formulation of the problem and its
analysis. A brief description of the method used in this chapter is presented in section 3. In
section 4 we provide the results and their discussion. Lastly the conclusion to the chapter is
presented in section 5.

2. Mathematical formulation

We consider a steady two-dimensional hydromagnetic flow of a viscous incompressible,
electrically conducting and viscous dissipating fluid past a semi-infinite moving permeable
plate embedded in a porous medium. We assume the flow to be in the x− direction, which
is taken along the semi-infinite plate and the y− axis to be normal to it. The plate is
maintained at a constant temperature Tw, which is higher than the free stream temperature
T∞ of the surrounding fluid and a constant concentration Cw which is greater than the
constant concentration C∞ of the surrounding fluid. A uniform magnetic field of strength B0
is applied normal to the plate, which produces magnetic effect in the x− direction. The fluid
is assumed to be slightly conducting, so that the magnetic Reynolds number is very small
and the induced magnetic field is negligible in comparison with the applied magnetic field.
We also assumed that there is no applied voltage, so that electric field is absent. All the fluid
properties are assumed to be constant except that of the influence of the density variation
with temperature and concentration in the body force term. A first-order homogeneous
chemical reaction is assumed to take place in the flow. With the usual boundary layer and
Boussinesq approximations the conservation equations for the problem under consideration
can be written as

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 + gβt(T − T∞) + gβc(C − C∞)−
σB2

0
ρ

u −
µ

ρk∗
u, (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 +
Dkt

cscp

∂2C

∂y2 + µ

(

∂u

∂y

)2
, (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 +
Dkt

Tm

∂2T

∂y2 − kc(C − C∞). (4)

The boundary conditions for the present problem are

u(x, 0) = U0, v(x, 0) = Vw(x), T(x, 0) = Tw, C(x, 0) = Cw,

u(x, ∞) = 0 , T(x, ∞) = T∞, C(x, ∞) = C∞, (5)
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where U0 is the uniform velocity of the plate and Vw(x) is the suction velocity at the
plate. u, v are the velocity components in the x, y directions, respectively, T and C are
the fluid temperature and concentration respectively. ν is the kinematic viscosity, µ is the
dynamic viscosity, g is the gravitational force due to acceleration, ρ is the density, βt is the
volumetric coefficient of thermal expansion, βc is the volumetric coefficient of expansion with
concentration, α is the thermal diffusivity, B0 is the magnetic field of constant strength, D is
the coefficient of mass diffusivity, cp is the specific heat at constant pressure, Tm is the mean
fluid temperature, kt is the thermal diffusion ratio, k∗ is the permeability, σ is the electrical
conductivity of the fluid, kc is the chemical reaction parameter and cs is the concentration
susceptibility.
It is well known that boundary layer flows have a predominant flow direction and boundary
layer thickness is small compared to a typical length in the main flow direction. Boundary
layer thickness usually increases with increasing downstream distance, the basic equations
are transformed, as such, in order to make the transformed boundary layer thickness a slowly
varying function of x, with this objective, the governing partial differential equations (2) - (4)
are transformed by means of the following non-dimensional quantities

η = y

√

U0

2νx
, ψ =

√

νxU0 f (η), T = T∞ + (Tw − T∞)θ(η), C = C∞ + (Cw − C∞)φ(η), (6)

where ψ(x, y) is the physical stream function, defined as u = ∂ψ/∂y and v = −∂ψ/∂x, so
that the continuity equation is automatically satisfied, θ is the non-dimensional temperature
function, φ is the non-dimensional concentration, f (η) is the dimensionless stream function
and η is the similarity variable.
Upon substituting the above transformation (6) into the governing equations (2) - (4) we get
the following non-dimensional form

f ′′′ + f f ′′ − ( f ′)2 + Grθ + Gmφ − (M + Ω) f ′ = 0, (7)
1

Pr
θ′′ + f θ′ + Duφ′′ + Ec f ′′2 = 0, (8)

1
Sc

φ′′ + f φ′ + Srθ′′ − γφ = 0, (9)

where the primes denote differentiation with respect to η. M =
2σB2

0x

ρU0
is the magnetic

parameter, Pr =
νρcp

α is the Prandtl number, Sc = ν
D is the Schmidt number, Sr =

Dkt(Tw−T∞)
νTm(Cw−C∞)

is the Soret number, Du = Dkt(Cw−C∞)
νTm(Tw−T∞)

is the Dufour number, Gr =
gβt(Tw−T∞)2x

U2
0

is the local

Grashof number, Gm =
gβc(Cw−C∞)2x

U2
0

is the local modified Grashof number, γ = kcδ2

ν is the

chemical reaction parameter, Ec =
U2

0
cp(Tw−T∞)

is the Eckert number, Ω is the permeability

parameter, Re = xU0
ν , is the Reynolds number. In view of the similarity transformations,

the boundary conditions transform into:

f (0) = fw, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞) = 0, T(∞) = 0, C(∞) = 0, (10)
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4 Mass Transfer

where fw = −Vw

√

2x
νU0

is the mass transfer coefficient such that fw > 0 indicates suction and
fw < 0 indicates blowing at the surface.

3. Successive Linearisation Method (SLM): Nonlinear systems of BVPs

In this section we describe the basic idea behind the proposed method of successive
linearisation method (SLM). We consider a general n-order non-linear system of ordinary
differential equations which is represented by the non-linear boundary value problem of the
form

L[Y(x), Y′(x), Y′′(x), . . . , Y(n)(x)] + N[Y(x), Y′(x), Y′′(x), . . . , Y(n)(x)] = 0, (11)

where Y(x) is a vector of unknown functions, x is an independent variable and the primes
denote ordinary differentiation with respect to x. The functions L and N are vector functions
which represent the linear and non-linear components of the governing system of equations,
respectively, defined by

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L1

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

L2

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

...

Lk

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N1

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

N2

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

...

Nk

(

y1, y2, . . . , yk; y′1, y′2, . . . , y′k; . . . ; y
(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

Y(x) =

⎡

⎢

⎢

⎢

⎣

y1(x)
y2(x)

...
yk(x)

⎤

⎥

⎥

⎥

⎦

, (14)

where y1, y2, . . . , yk are the unknown functions. We define an initial guess Y0(x) of the solution
of (11) as

Y0(x) =

⎡

⎢

⎢

⎢

⎣

y1,0(x)
y2,0(x)

...
yk,0(x)

⎤

⎥

⎥

⎥

⎦

. (15)

For illustrative purposes, we assume that equation (11) is to be solved for x ∈ [a, b] subject to
the boundary conditions

Y(a) = Ya, Y(b) = Yb (16)

where Ya and Yb are given constants. As a guide to choosing the appropriate initial guess we
consider functions that satisfy the governing boundary conditions of equation (11).
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Define a function Z1(x) to represent the vertical difference between Y(x) and the initial guess
Y0(x), that is

Z1(x) = Y(x)− Y0(x), or Y(x) = Y0(x) + Z1(x). (17)

For example, the vertical displacement between the variable y1(x) and its corresponding
initial guess y1,0(x) is z1,1 = y1(x)− y1,0(x). This is shown in Figure 1.

z1,1

y1
= y1,0(

x)

y1 = y1(x)

a b

Fig. 1. Geometric representation of the function z1,1(x)

Substituting equation (17) in (11) gives

L[Z1, Z′
1, Z′′

1 , . . . , Z
(n)
1 ]+N[Y0+Z1, Y′

0+Z′
1, Y′′

0 +Z′′
1 , . . . , Y

(n)
0 + Z

(n)
1 ]=−L[Y0, Y′

0, Y′′
0 , . . . , Y

(n)
0 ].
(18)

Since Y0(x) is an known function, solving equation (18) would yield an exact solution for
Z1(x). However, since the equation is non-linear, it may not be possible to find an exact
solution. We therefore look for an approximate solution which is obtained by solving the
linear part of the equation assuming that Z1 and its derivatives are small. This assumption
enables us to use the Taylor series method to linearise the equation. If Z1(x) is the solution
of the full equation (18) we let Y1(x) denote the solution of the linearised version of (18).
Expanding (18) using Taylor series (assuming Z1(x) ≈ Y1(x)) and neglecting higher order
terms gives

L[Y1, Y′
1, Y′′

1 , . . . , Y
(n)
1 ] +

[

∂N

∂Y1

]

(Y0,Y′
0,Y′′

0 ,...,Y(n)
0 )

Y1 +

[

∂N

∂Y′
1

]

(Y0,Y′
0,Y′′

0 ,...,Y(n)
0 )

Y′
1

+

[

∂N

∂Y′′
1

]

(Y0,Y′
0,Y′′

0 ,...,Y(n)
0 )

Y′′
1 + . . . +

[

∂N

∂Y
(n)
1

]

(Y0,Y′
0,Y′′

0 ,...,Y(n)
0 )

Y
(n)
1

= −L[Y0, Y′
0, Y′′

0 , . . . , Y
(n)
0 ]− N[Y0, Y′

0, Y′′
0 , . . . , Y

(n)
0 ]. (19)
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6 Mass Transfer

The partial derivatives inside square brackets in equation (19) represent Jacobian matrices of
size k × k, defined as

[

∂N

∂Yi

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂N1

∂y1,i

∂N1

∂y2,i
· · ·

∂N1

∂yk,i
∂N2

∂y1,i

∂N2

∂y2,i
· · ·

∂N2

∂yk,i
...

...
...

∂Nk

∂y1,i

∂Nk

∂y2,i
· · ·

∂Nk

∂yk,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎣

∂N

∂Y
(p)
i

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂N1

∂y
(p)
1,i

∂N1

∂y
(p)
2,i

· · ·
∂N1

∂y
(p)
k,i

∂N2

∂y
(p)
1,i

∂N2

∂y
(p)
2,i

· · ·
∂N2

∂y
(p)
k,i

...
...

...
∂Nk

∂y
(p)
1,i

∂Nk

∂y
(p)
2,i

· · ·
∂Nk

∂y
(p)
k,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

where i = 1 and p is the order of the derivatives.
Since the right hand side of equation (19) is known and the left hand side is linear, the equation
can be solved for Y1(x). Assuming that the solution of the linear part (19) is close to the
solution of the equation (18), that is Z1(x) ≈ Y1(x), the current estimate (1st order) of the
solution Y(x) is

Y(x) ≈ Y0(x) + Y1(x). (21)

To improve on this solution, we define a slack function, Z2(x), which when added to Y1(x)
gives Z1(x) (see Figure 2 for example), that is

Z1(x) = Z2(x) + Y1(x). (22)

z2,1

y1,1

y = y1,0(
x)

y1 = y1(x)

a b

Fig. 2. Geometric representation of the functions z2,1

Since Y1(x) is now known (as a solution of equation 19), we substitute equation (22) in
equation (18) to obtain
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L[Z2, Z′
2, Z′′

2 , . . . , Z
(n)
2 ] + N[Y0 + Y1 + Z2+, Y′

0 + Y′
1 + Z′

2, . . . , Y
(n)
0 + Y

(n)
1 + Z

(n)
2 ]

= −L[Y0 + Y1, Y′
0 + Y′

1, Y′′
0 + Y′′

1 , . . . , Y
(n)
0 + Y

(n)
1 ]. (23)

Solving equation (23) would result in an exact solution for Z2(x). But since the equation is
non-linear, it may not be possible to find an exact solution. We therefore linearise the equation
using Taylor series expansion and solve the resulting linear equation. We denote the solution
of the linear version of equation (23) by Y2(x), such that Z2(x) ≈ Y2(x). Setting Z2(x) = Y2(x)
and expanding equation (23), for small Y2(x) and its derivatives gives

L[Y2, Y′
2, . . . , Y

(n)
2 ] +

[

∂N

∂Y2

]

(Y0+Y1,Y′
0+Y′

1,...,Y(n)
0 +Y

(n)
1 )

Y2 +

[

∂N

∂Y′
2

]

(Y0+Y1,Y′
0+Y′

1,...,Y(n)
0 +Y

(n)
1 )

Y′
2

+

[

∂N

∂Y′′
2

]

(Y0+Y1,Y′
0+Y′

1,...,Y(n)
0 +Y

(n)
1 )

Y′′
2 + . . . +

[

∂N

∂Y
(n)
2

]

(Y0+Y1,Y′
0+Y′

1,...,Y(n)
0 +Y

(n)
1 )

Y
(n)
1

= −L[Y0 + Y1, Y′
0 + Y′

1, . . . , Y
(n)
0 + Y

(n)
1 ]− N[Y0 + Y1, Y′

0 + Y′
1, . . . , Y

(n)
0 + Y

(n)
1 ] (24)

where the partial derivatives inside square brackets in equation (24) represent Jacobian
matrices defined as in equation (20) with i = 2.
After solving (24), the current (2nd order) estimate of the solution Y(x) is

Y(x) ≈ Y0(x) + Y1(x) + Y2(x). (25)

Next we define Z3(x) (see Figure 3) such that

Z2(x) = Z3(x) + Y2(x). (26)

Equation (26) is substituted in the non-linear equation (23) and the linearisation process
described above is repeated. This process is repeated for m = 3, 4, 5, . . . , i. In general, we
have

Zi(x) = Zi+1(x) + Yi(x). (27)

Thus, Y(x) is obtained as

Y(x) = Z1(x) + Y0(x), (28)

= Z2(x) + Y1(x) + Y0(x), (29)

= Z3(x) + Y2(x) + Y1(x) + Y0(x), (30)

...

= Zi+1(x) + Yi(x) + . . . + Y3(x) + Y2(x) + Y1(x) + Y0(x), (31)

= Zi+1(x) +
i

∑
m=0

Ym(x). (32)

The procedure for obtaining each Zi(x) is illustrated in Figures 1, 2 and 3 respectively for
i = 1, 2, 3.
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8 Mass Transfer

z3,1

y1,1

y2,1

y1
= y1,0(

x)

y1 = y1(x)

a b

Fig. 3. Geometric representation of the functions z3,1

We note that when i becomes large, Zi+1 becomes increasingly smaller. Thus, for large i, we
can approximate the ith order solution of Y(x) by

Y(x) =
i

∑
m=0

Ym(x) = Yi(x) +
i−1

∑
m=0

Ym(x). (33)

Starting from a known initial guess Y0(x), the solutions for Yi(x) can be obtained by
successively linearising the governing equation (11) and solving the resulting linear equation
for Yi(x) given that the previous guess Yi−1(x) is known. The general form of the linearised
equation that is successively solved for Yi(x) is given by

L[Yi, Y′
i , Y′′

i , . . . , Y
(n)
i ] + a0,i−1Y

(n)
i + a1,i−1Y

(n−1)
i + . . . + an−1,i−1Y′

i + an,i−1Yi = Ri−1(x),
(34)

where

a0,i−1(x) =

⎡

⎣

∂N

∂Y
(n)
i

⎤

⎦

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

(35)

a1,i−1(x) =

⎡

⎣

∂N

∂Y
(n−1)
i

⎤

⎦

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

(36)

an−1,i−1(x) =

[

∂N

∂Y′
i

]

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

(37)
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an,i−1(x) =

[

∂N

∂Yi

]

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

(38)

Ri−1(x) = −L

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

−N

(

i−1

∑
m=0

Ym,
i−1

∑
m=0

Y′
m,

i−1

∑
m=0

Y′′
m, . . . ,

i−1

∑
m=0

Y
(n)
m

)

. (39)

4. Numerical solution

In this section we solve the governing equations (7 - 9) using the SLM method described in
the last section. We begin by writing the governing equations (7 - 9) as a sum of the linear and
nonlinear components as

− L[ f , f ′, f ′′, f ′′′, θ, θ′, θ′′, φ, φ′, φ′′] + N[ f , f ′, f ′′, f ′′′, θ, θ′, θ′′, φ, φ′, φ′′] = 0, (40)

where the primes denote differentiation with respect to η and

L[ f , f ′, f ′′, f ′′′, θ, θ′, θ′′, φ, φ′, φ′′] =

⎡

⎣

L1
L2
L3

⎤

⎦ =

⎡

⎣

f ′′′ − (M + Ω) f ′ + Grθ + Gmφ
1

Pr θ′′ + Duφ′′

1
Sc φ′′ + Srθ′′ − γφ

⎤

⎦ (41)

N[ f , f ′, f ′′, f ′′′, θ, θ′, θ′′, φ, φ′, φ′′] =

⎡

⎣

N1
N2
N3

⎤

⎦ =

⎡

⎣

f f ′′ − ( f ′)2

f θ′ + Ec( f ′′)2

f φ′

⎤

⎦ . (42)

Using equation (34), the general equation to be solved for Yi, where

Yi =

⎡

⎣

f
θ
φ

⎤

⎦ , (43)

is
L[Yi, Y′

i , Y′′
i , Y′′′

i ] + a0,i−1Y′′′
i + a1,i−1Y′′

i + a2,i−1Y′
i + a3,i−1Yi = Ri−1(η), (44)

subject to the boundary conditions

fi(0) = f ′i (0) = θi(0) = φi(0) = f ′i (∞) = θi(∞) = φi(∞) = 0. (45)

where

a0,i−1 =

⎡

⎢

⎢

⎣

∂N1
∂ f ′′′

∂N1
∂θ ′′′

∂N1
∂φ′′′

∂N2
∂ f ′′′

∂N2
∂θ ′′′

∂N2
∂φ′′′

∂N3
∂ f ′′′

∂N3
∂θ ′′′

∂N3
∂φ′′′

⎤

⎥

⎥

⎦

=

⎡

⎣

0 0 0
0 0 0
0 0 0

⎤

⎦ (46)

a1,i−1 =

⎡

⎢

⎢

⎣

∂N1
∂ f ′′

∂N1
∂θ ′′

∂N1
∂φ′′

∂N2
∂ f ′′

∂N2
∂θ ′′

∂N2
∂φ′′

∂N3
∂ f ′′

∂N3
∂θ ′′

∂N3
∂φ′′

⎤

⎥

⎥

⎦

=

⎡

⎣

∑ fm 0 0
2Ec ∑ f ′′m 0 0

0 0 0

⎤

⎦ (47)
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a2,i−1 =

⎡

⎢

⎢

⎣

∂N1
∂ f ′

∂N1
∂θ ′

∂N1
∂φ′

∂N2
∂ f ′

∂N2
∂θ ′

∂N2
∂φ′

∂N3
∂ f ′

∂N3
∂θ ′

∂N3
∂φ′

⎤

⎥

⎥

⎦

=

⎡

⎣

−2 ∑ f ′m 0 0
0 ∑ fm 0
0 0 ∑ fm

⎤

⎦ (48)

a3,i−1 =

⎡

⎢

⎢

⎣

∂N1
∂ f

∂N1
∂θ

∂N1
∂φ

∂N2
∂ f

∂N2
∂θ

∂N2
∂φ

∂N3
∂ f

∂N3
∂θ

∂N3
∂φ

⎤

⎥

⎥

⎦

=

⎡

⎣

∑ f ′′m 0 0
∑ θ′m 0 0
∑ φ′

m 0 0

⎤

⎦ (49)

Ri−1 =

⎡

⎣

r1,i−1
r2,i−1
r3,i−1

⎤

⎦

r1,i−1 = −

[

∑ f ′′′m − (M + Ω)∑ f ′m + Gr ∑ θm + Gm ∑ φm + ∑ fm ∑ f ′′m −
(

∑ f ′m
)2
]

(50)

r2,i−1 = −

[

1
Pr ∑ θ′′m + Du ∑ φ′′

m + ∑ fm ∑ θ′m + Ec
(

∑ f ′′m

)2
]

(51)

r3,i−1 = −

[

1
Sc ∑ φ′′

m + Sr ∑ θ′′m − γ ∑ φm + ∑ fm ∑ φ′
m

]

(52)

and the sums in equation (46 - 52) denote ∑ =
i−1

∑
m=0

. Once each solution for fi, θi, φi (i ≥ 1) has

been found from iteratively solving equations (44 - 45), the approximate solutions for f (η),
θ(η) and φ(η) are obtained as

f (η) ≈
i

∑
m=0

fm(η), (53)

θ(η) ≈
i

∑
m=0

θm(η), (54)

φ(η) ≈
i

∑
m=0

φm(η), (55)

where i is the order of SLM approximation. Since the coefficient parameters and the right
hand side of equations (44), for i = 1, 2, 3, . . ., are known (from previous iterations). The
equation system can easily be solved using numerical methods such as finite differences,
finite elements, Runge-Kutta based shooting methods or collocation methods. In this work,
equations (44) are solved using the Chebyshev spectral collocation method. This method is
based on approximating the unknown functions by the Chebyshev interpolating polynomials
in such a way that they are collocated at the Gauss-Lobatto points defined as

ξ j = cos
π j

N
, j = 0, 1, . . . , N, (56)

where N + 1 is the number of collocation points used (see for example Canuto et al. (1988);
Don & Solomonoff (1995); Trefethen (2000)). In order to implement the method, the physical
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region [0, ∞) is transformed into the region [−1, 1] using the domain truncation technique in
which the problem is solved on the interval [0, L] instead of [0, ∞). This leads to the mapping

η

L
=

ξ + 1
2

, −1 ≤ ξ ≤ 1 (57)

where L is the scaling parameter used to invoke the boundary condition at infinity. The
unknown functions fi, θi and φi are approximated at the collocation points by

fi(ξ) ≈
N

∑
k=0

fi(ξk)Tk(ξ j), (58)

θi(ξ) ≈
N

∑
k=0

θi(ξk)Tk(ξ j), (59)

φi(ξ) ≈
N

∑
k=0

φi(ξk)Tk(ξ j), (60)

j = 0, 1, . . . , N, (61)

where Tk is the kth Chebyshev polynomial defined as

Tk(ξ) = cos[k cos−1(ξ)]. (62)

The derivatives of the variables at the collocation points are represented as

da fi

dηa
=

N

∑
k=0

D
a
kj fi(ξk),

daθi

dηa
=

N

∑
k=0

D
a
kjθi(ξk),

daφi

dηa
=

N

∑
k=0

D
a
kjφi(ξk), j = 0, 1, . . . , N (63)

where a is the order of differentiation and D = 2
LD with D being the Chebyshev spectral

differentiation matrix (see for example, Canuto et al. (1988); Trefethen (2000)). Substituting
equations (57 - 63) in (44) - (45) leads to the matrix equation given as

Mi−1Yi = Ri−1, (64)

subject to the boundary conditions

fi(ξN) =
N

∑
k=0

D0k fi(ξk) =
N

∑
k=0

DNk fi(ξk) = θi(ξN) = θi(ξ0) = φi(ξN) = φi(ξ0) = 0 (65)

where
Mi−1 = A + a1,i−1D̄

2 + a2,i−1D̄ + a3,i−1 (66)

A =

⎡

⎣

D
3 − (M + Ω)D GrI GmI

O
1

Pr D
2 DuD

2

O SrD
2 1

Sc D
2 − γI

⎤

⎦ (67)

D̄ =

⎡

⎣

D O O

O D O

O O D

⎤

⎦ (68)
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and Yi and Ri−1 are (3N + 1)× 1 column vectors defined by

Yi =

⎡

⎣

Fi

Θi

Φi

⎤

⎦ , Ri−1 =

⎡

⎣

r1,i−1
r2,i−1
r3,i−1

⎤

⎦ , (69)

where

Fi = [ fi(ξ0), fi(ξ1), . . . , fi(ξN−1), fi(ξN)]
T, (70)

Θi = [θi(ξ0), θi(ξ1), . . . , θi(ξN−1), θi(ξN)]T, (71)

Φi = [φi(ξ0), φi(ξ1), . . . , φi(ξN−1), φi(ξN)]T, (72)

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), . . . , r1,i−1(ξN−1), r1,i−1(ξN)]
T, (73)

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), . . . , r2,i−1(ξN−1), r2,i−1(ξN)]
T, (74)

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), . . . , r3,i−1(ξN−1), r3,i−1(ξN)]
T, (75)

In the above definitions, ak,i−1, (k = 1, 2, 3) are now diagonal matrices of size 3(N + 1) ×
3(N + 1) and the superscript T is the transpose.
To impose the boundary conditions (65) on equation (64) we begin by splitting the matrix M

in equation (64) into 9 blocks each of size (N + 1)× (N + 1) in such a way that M takes the
form

Mi−1 =

⎡

⎣

M11 M12 M13
M21 A22 M23
M31 M32 M33

⎤

⎦ (76)

We then modify the first and last rows of Mmn (m, n = 1, 2, 3) and rm,i−1 and the N − 1th row
of M1,1, M1,2, M1,3 in such a way that the modified matrices Mi−1 and Ri−1 take the form;

Mi−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

D0,0 D0,1 · · · D0,N−1 D0,N 0 0 · · · 0 0 0 0 · · · 0 0

M11 M12 M13

DN,0 DN,1 · · · DN,N−1 DN,N 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 1 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0 0 0 · · · 0 0

M21 M22 M23

0 0 · · · 0 0 0 0 · · · 0 1 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0 1 0 · · · 0 0

M31 M32 M33

0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



, (77)
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Ri−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
r1,i−1(ξ1)

...
r1,i−1(ξN−2)

0
0
0

r2,i−1(ξ1)
...

r2,i−1(ξN−2)
r2,i−1(ξN−1)

0
0

r3,i−1(ξ1)
...

r3,i−1(ξN−2)
r3,i−1(ξN−1)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



(78)

After modifying the matrix system (64) to incorporate boundary conditions, the solution is
obtained as

Yi = M
−1
i−1Ri−1. (79)

5. Results and discussion

In this section we present numerical calculations for different values of M, Gr, Gm, γ, Du,
and fw for fixed values of Ω = 1, and Re = 1 to obtain a clear insight of the physical
problem. In computing the numerical results presented in this paper, unless otherwise stated,
the following values of physical parameters were used: M = 1, Ω = 1, Gr = 1, Gm = 1,
Pr = 0.71, Sc = 0.6, Sr = 0.1, γ = 1, Ec = 1, fw = 0, Du = 0.1. The numerical results are
displayed graphically. The effect of the Hartmann number M on the dimensionless velocity
f ′(η), temperature θ(η) and concentration φ(η) profiles are respectively represented in Figs
(a), (b) and (c). It is observed in these Figs, that the velocity decreases with the increase of
the magnetic parameter, the value of the temperature profiles increase with the magnetic
parameter. The concentration of the fluid have a small increase with the increase of the
magnetic parameter. The effects of a transverse magnetic field give rise to a resistive-type
force called the Lorentz force. This force has the tendency to slow down the motion of the
fluid flow and to increase its thermal boundary layer hence increasing the temperature of the
fluid flow.
Figure (d), (e) and (f) depict the effects of varying the local thermal free convection (Gr) with
increasing η on the dimensionless velocity, temperature and concentration. It is observed in
Fig (d) that the increase of the Grashof number leads to the increase of the velocity of the fluid.
This is because the increase of Gr results in the increase of temperature gradients (T∞ − T∞),
leads to the enhancement of the velocity due to the enhanced convection. From Fig (e) we
observe that the effect of increasing the values of thermal free convection is to reduce the
temperature profiles (θ). We also observe in Fig (f) that the concentration profiles decrease
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(a) Plot of f ′(η) for varying M
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(b) Plot of θ(η) for varying M
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(c) Plot of φ(η) for varying M

as the Grashof number increases. It can be clearly seen that the effect of Grashof number
(Gr) is to decrease the concentration distribution as the concentration distribution species is
dispersed away largely due to increased temperature gradient. The modified Grashof number
Gm has the same effect as the local Grashof number (Gr) on the flow properties as depicted
in Figs (g), (h) and (i).
Figs (j)-(l) depict the effects of the chemical reaction parameter γ on the dimensionless velocity,
temperature and concentration distributions. The effect of chemical reaction parameter is
very important in the concentration field. Chemical reaction increases the rate of interfacial
mass transfer. Reaction reduces the local concentration, thus increases its concentration
gradient and its flux. Figs (m)- (o) show the influence of the Eckert number Ec, on the
velocity, temperature and concentration profiles, respectively. By analyzing these Figs, it
is clearly revealed that the effect of Eckert number is to increase both the velocity and the
temperature distributions in the flow region. This is due to the fact that the heat energy is
stored in liquid due to the frictional heating. Thus the effect of increasing Ec is to enhance
the temperature at any point as well as the velocity. However, the Eckert number Ec has
no significant effect on the concentration within the flow region. Figs (p) - (r) depict the
influence of the Dufour parameter (Du) on the dimensionless velocity, temperature and
concentration distributions. It can be clearly seen from Fig (p) that as the Dufour effects
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(d) Plot of f ′(η) for varying Gr
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(e) Plot of θ(η) for varying Gr
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(f) Plot of φ(η) for varying Gr

increase, the velocity of the flow increases. It is observed in Fig (q) that diffusion thermal
effects greatly affect the fluid temperature. As the values of the Dufour parameter increase, the
fluid temperature temperature also increases. We also observe in Fig (r) that increasing values
of the Dufour parameter (Du) reduce the concentration in the fluid flow. Figs (s) - (u) show the
effects the Soret parameter Sr on the dimensionless velocity, temperature and concentration
distributions. We observe that the fluid velocity increases with increasing values of the Soret
parameter Sr. As expected the effect of the Soret number on the temperature is quite opposite
to that of the Dufour parameter. It is obvious from these Figs that increasing the Soret number
(Sr) increases the boundary layer thickness for the concentration. Figs (v) - (x) depict the
influence of the suction ( fw > 0) and injection ( fw < 0) on the velocity, temperature and
concentration profiles. We see that the effect of suction is to reduce the velocity profiles
f ′(η). While stronger suction is provided, the heated fluid is sucked through the wall
where buoyancy forces act to decelerate the flow with more influence of viscosity. Sucking
decelerated fluid particles through the porous wall reduce growth of the fluid boundary layer
as well as thermal and concentration boundary layers. From these Figs, it is clear that the
dimensionless temperature and concentration decrease due to fluid suction but they increase
due to injection.
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(h) Plot of θ(η) for varying Gm
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(i) Plot of φ(η) for varying Gm
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(j) Plot of f ′(η) for varying γ
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(k) Plot of θ(η) for varying γ
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(l) Plot of φ(η) for varying γ
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(m) Plot of f ′(η) for varying Ec
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(n) Plot of θ(η) for varying Ec
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(o) Plot of φ(η) for varying Ec

342 Evaporation, Condensation and Heat Transfer

www.intechopen.com



Soret and Dufour Effects on Steady MHD Natural Convection Flow Past a Semi-Infinite Moving Vertical Plate in a Porous Medium with Viscous Dissipation in the Presence of

a Chemical Reaction 19

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f
′
(η

)

 

 

Du = 0

Du = 2

Du = 4

(p) Plot of f ′(η) for varying Du
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(q) Plot of θ(η) for varying Du
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(r) Plot of φ(η) for varying Du
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6. Conclusion

In this chapter, a new numerical technique to solve the problem of steady
magnetohydrodynamic convective heat and mass transfer past a semi-infinite moving
permeable vertical plate in a porous medium with Soret and Dufour effects in the presence of
viscous dissipation and a chemical reaction. The non-linear momentum, energy and species
boundary layer equations are transformed into ordinary differential equations using suitable
local similarity equations. We then applied the successive linearization method coupled with
the Chebyshev spectral collocation method. The effects of various physical parameters like
the Hartmann number, Grashof numbers, chemical reaction parameter, Soret and Dufour
numbers. We found out that wall suction stabilizes the fluid flow and that the boundary flow
attain minimum velocity for large Hartmann numbers. In this chapter, the fluid temperature
was found to increase as the Dufour parameter, magnetic strength, surface permeability
increase and to decrease as the Soret effects increase. The concentration decreases as the
Dufour number and chemical reaction parameter increase and decrease as the Soret effect,
magnetic strength and surface permeability increase.
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