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Valosin-Containing Protein (VCP) Disease 
and Familial Alzheimer’s Disease: 

Contrasts and Overlaps 

CD Smith2, M Badadani1, A Nalbandian1, E Dec1, J Vesa1, S Donkervoort1,  
B Martin2, GD Watts3, V Caiozzo4 and V Kimonis1* 

1. Introduction 

Contrasts between two entities may be illuminating because of the emphasis on what each is 

not. Here we describe two proteinopathies producing brain neurodegeneration in mature 

adults, autosomal dominant valosin-containing protein (VCP) disease and Familial 

Alzheimer’s disease (FAD) caused by presenillin-1 (PSEN1) mutations, illustrating both 

contrasting patterns of clinical presentation and known neuropathologic and imaging 

features, and points of congruence. 

Mutations primarily in the ubiquitin binding domain of the VCP gene cause frontotemporal 

dementia as part of a rare but important disorder that also encompasses inclusion body 

myopathy, Paget disease of bone, and in some cases, motor neuron disease. The VCP 

dementia has onset in the 50s, characterized by abulia, expressive language loss, and 

executive dysfunction. The pattern of degeneration generally is anterior, in frontal and 

temporal lobes, involving neuronal nuclear inclusions of ubiquitin and TAR DNA binding 

protein 43 (TDP-43), but not amyloid or tau. 

The most common mutations causing FAD occur in the PSEN1 gene. The associated 

dementia has onset in the late 40s, characterized by early memory loss and diffuse amyloid 

vasculopathy, and posteriorly distributed neuritic amyloid plaque and neurofibrillary tau 

pathology in medial temporal and parietal lobes, but not ubiquitin or TDP-43. Nonetheless, 

both VCP and PSEN1 pathologies have extensively documented abnormalities in similar 

protein processing pathways. 

2. VCP Disease – IBMPFD 

Hereditary inclusion body myopathy associated with Paget disease of bone and 
frontotemporal dementia (IBMPFD; OMIM 167320) is a unique and rare disorder associated 
with mutations primarily in the ubiquitin binding domain of the valosin-containing protein 
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(VCP) gene (Watts et al. 2003; Watts et al. 2004). VCP, a member of the AAA-ATPase super-
family, occupies the crossroads of many cellular functions including ubiquitin mediated 
protein degradation, cell cycle control, membrane fusion, and golgi reassembly (Kimonis 
and Watts 2005; Halawani and Latterich 2006). It is lethal as a homozygous deletion in mice 
(Muller et al. 2007), and an important regulator of neuronal and dendritic development 
(Rumpf et al. 2011). 
Current theories concerning the pathogenesis of VCP disease include altered protein 

degradation via the ubiquitin-protosomal system (Kakizuka 2008; Dai and Li 2001; Wojcik, 

Yano, and DeMartino 2004), generalized endoplasmic reticulum (ER) dysfunction with 

altered protein trafficking (Weihl et al. 2006; Wojcik et al. 2006; Poksay et al. 2011), and 

combined activation and failure of inhibition of cell death pathways (Braun and Zischka 

2008). Recently VCP has been implicated in the autophagy/lysosome process (Badadani et 

al. 2010; Ju et al. 2009; Ju et al. 2008; Ju and Weihl 2010a, 2010b; Tresse et al. 2010). These 

studies have suggested that VCP mutations cause failure of autophagosome fusion with 

lysosomes, resulting in accumulation of ubiquitin together with other autophagosome 

proteins LC3 and p62/sequestosome, in rimmed vacuoles, a hallmark of VCP muscle 

disease (Vesa et al. 2009, Ju et al. 2009; Tresse et al. 2010). 

Certain mutations are also suspected to interrupt the integrity of the hexomeric ring 

structure of the active VCP complex (Halawani et al. 2009), and its interaction with its 

adaptors, e.g. p47, gp78 and Npl4-Ufd1 (Alzayady et al. 2005), although this finding has not 

been universally replicated (Weihl et al. 2007). Our group has confirmed that mutant VCP 

protein exhibit strongly altered co-factor interactions suggesting that imbalanced co-factor 

binding to p97 is a key pathological feature of IBMPFD and potentially of other 

proteinopathies involving VCP (Fernandez-Saiz and Buchberger 2010). Elevated ATPase 

activity associated with cellular protein mislocalization (Manno et al. 2010) is associated 

with VCP mutations. Recently studies revealed significant reduction in ATP level in 

hs.TER94A229E and hs.TER94R188Q drosophila models which may contribute to the 

neurodegeneration phenotype (Chang et al. 2011, Ritson et al. 2010). 

The R155H VCP knock-in heterozygous mouse is a promising model demonstrating several 

typical clinical and molecular features of the disease including progressive weakness, 

vacuolization of myofibrils with centrally located nuclei, and cytoplasmic accumulation of 

TDP-43 and ubiquitin in brain as well as in myofibers (Badadani et al. 2010; Custer et al. 

2010). It may prove to be very useful in translational research studies seeking therapies for 

VCP disease.  Analysis of a Drosophila model has provided evidence that mutant VCP 

interacts abnormally with TDP-43 as a gain-of-function mechanism to cause redistribution 

of TDP-43 from its usual location in the nucleus to the cytoplasm (Ritson et al. 2010). These 

findings would be usefully replicated in the mouse model. 

The clinical disorder typically presents in the early 40s with progressive proximal muscle 

weakness or with Paget disease of bone (PDB). Weakness is associated with rimmed 

vacuoles and inclusions on muscle biopsy in the majority of individuals; PDB is present in 

approximately half of affected individuals. Frontotemporal dementia (Table 1) becomes 

symptomatic later in a third of affected at a mean age of 55 years (Kimonis and Watts 2007; 

Kimonis, Fulchiero et al. 2008; Kimonis, Mehta et al. 2008; Kimonis and Watts 2005; Kovach 

et al. 2001). A small percentage of individuals have been identified with motor neuron 

disease (MND) phenotype (Johnson et al. 2010), Parkinson’s disease (Johnson et al. 2010; 
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Rohrer et al. 2011), cardiomyopathy (Hubbers et al. 2007; Miller et al. 2009), liver disease 

(Guyant-Marechal et al. 2006), cataracts (Guyant-Marechal et al. 2006), hearing loss 

(Djamshidian et al. 2009), or corticospinal tract dysfunction (Kumar et al. 2010).  

The VCP disease-associated dementia typically presents with frontotemporal phenotypes, 

e.g., altered social behavior, abulia, executive dysfunction, altered expressive language, and 

loss of semantic knowledge (Table 1). However, different families carrying the same VCP 

mutation may have a wide variation in clinical phenotype. For example, some families 

carrying the R159H VCP mutation may have an apparent high penetrance for the dementia 

phenotype (frequency 75-100%; van der Zee et al. 2009) but different average ages of onset 

(46 ±2 vs. 62 ±1 years). Other families with R159H may express high penetrance of PDB and 

IBM phenotype (100%) but demonstrate relatively low dementia frequency (20%; 

Haubenberger et al. 2005). The presenting dementia phenotype in R155C VCP may be 

behavioral variant FTD, an AD-like memory loss, or a non-specific cognitive dysfunction 

across several domains (Guyant-Marechal et al. 2006). 

Some of this variability may have to do with the interest and specialty expertise of the clinics 

in which affected patients are seen, e.g., increasing the likely detection of FTD in a clinic 

dedicated to this sometimes difficult to diagnose disorder. The age at which the patient is 

seen and the length of follow-up will determine the presence and degree of cognitive and 

behavioral symptoms, and thus the likelihood of meeting criteria for a clinical diagnosis. 

Early memory symptoms may evolve into a more recognizable behavioral syndrome typical 

of FTD (Guyant-Marechal et al. 2006; Krause et al. 2007; van der Zee et al. 2009). Relative 

timing of the symptoms of FTD, PDB and IBM may also influence observed phenotypic 

frequencies – severe muscle disease with cardiomyopathy and respiratory failure might 

occur before dementia could be observed. Early dementia symptoms could be 

misinterpreted as a medical complication of severe respiratory or cardiac illness. 

Nonetheless a substantial biologic variability across and within families with the same 

mutation, and across mutations, is well documented in VCP dementia. Potential 

explanations for variability are modifier genes, epigenetic mechanisms, and environmental 

exposures, the latter two possibilities as yet unexplored. A possible modifier gene is 

apolipoprotein-E. Possession of one or more APOE4 alleles was found to be associated with 

dementia in VCP disease, and increases risk for sporadic FTD in a dose-dependent manner 

(Bernardi et al. 2006; Mehta et al. 2007; Rosso et al. 2002). Tau haplotype was not associated 

with VCP dementia (Mehta et al. 2007), and VCP polymorphisms have not been found to be 

increased in the general population of patients with sporadic FTD (Schumacher et al. 2009). 

Despite variability in clinical presentation, the qualitative pathologic changes are relatively 

uniform (Table 2). Post-mortem brains of individuals with VCP mutations reveal 75% have 

findings pathologically classified as frontotemporal lobar dementia ubiquitin type (FTLD-

U), with abundant intranuclear ubiquitinated protein inclusions, dystrophic neuritis and 

rare cytoplasmic ubiquitin-positive inclusions (Forman et al. 2006; Kimonis, Fulchiero et al. 

2008). Possible exception to this relative uniformity is the finding of vacuolar change in 

frontotemporal regions but not intranuclear ubiquitin pathology in three autopsies of R155C 

VCP mutation patients (Guyant-Marechal et al. 2006). This apparent anomaly may have a 

technical basis, since two of these subjects had increased frontal lobe ubiquitin 

immunoreactivity on Western blot. 

Intranuclear inclusions of ubiquitin co-localized with TDP-43 are widespread and numerous 
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Table 1. Dementia in VCP disease.  Columns (left to right):  1. Reporting 1st author, 2. 
Mutation,  3. Number with dementia/ total reported,  4. Average dementia onset age 
(number reported),  5. Clinical Dementia type (number of each reported),  6. Affected with 
muscle disease/ total affected,  7. Affected with Paget disease of Bone/ total affected,  8. 
Additional comments 

 

 

Table 2. Neuropathology in VCP Disease. Columns (left to right):  1. Reporting 1st author, 2. 
Number reported, 3. Mutation,  4 - 8. Intensity of regional pathology (subjective, relative, 
not quantitative); MT – medial temporal),  9-10. TDP-43 Pathology (Nu – intranuclear, Cyt – 
cytoplasmic), 11-12. VCP Pathology,  13. Ubiquitin staining, 14. Neurofilament staining, 15. 
Tau Pathology, 16. Alpha-synuclein staining (aSN), 17. Polyglutamine Pathology, 18. Beta-
amyloid staining, 19. Additional comments (AHC – anterior horn cell). 
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in cortical and basal ganglia, sometimes with a “cats-eye” curvilinear morphology 

(Neumann et al. 2007; Neumann, Tolnay, and Mackenzie 2009). Dystrophic neurites and  

cytoplasmic inclusions are relatively low in number in VCP disease brain and contain both 

proteins. TDP-43 appears to be depleted in normal neuronal nuclei (Neumann et al. 2007). 

The distribution of protein pathology and neuronal loss may be diffuse and include the 

occipital lobe, but when focal is predominant in the frontal and temporal regions, sometimes 

asymmetrically to right or left. The medial temporal lobe, particularly the dentate gyrus, is 

mostly spared. Occasional coexistent tau, alpha-synuclein, or amyloid pathology is 

detectible in some cases but this is not characteristic. Some authors have reported VCP 

within inclusions (Schroder et al. 2005), but others have found it only rarely in dystrophic 

neurites (Forman et al. 2006). Other pathologies, e.g., neurofiliment or polyglutamine, are 

absent. 

TDP-43 has also been identified as the major disease protein in the ubiquitin-positive 

inclusions of sporadic and familial FTLD-U, including patients with the MND phenotype 

(Cairns, Neumann et al. 2007). These pathologic features overlap with those of amyotrophic 

lateral sclerosis. Anterior horn cell loss has been observed on spinal cord examination in 

some affected subjects with VCP mutations (Liscic et al. 2008), and the MND phenotype has 

been described as a dominant feature in a family carrying the R191Q VCP mutation 

(Johnson et al. 2010). In VCP disease, the pathologic classification best fits the description of 

FTLD-U, type 4 (Sampathu et al. 2006), distinguished by the intracellular localization of the 

inclusions, relative rarity of cytoplasmic inclusions and dystrophic neurites, and sparing of 

the medial temporal lobe, particularly the dentate gyrus. The question of whether the 

neuropathologic features in VCP disease with MND phenotype most resemble FTLD-U type 

4 or FTLD-U types 2 and 3 associated with sporadic FTD with MND phenotype, 

characterized by abundant cytoplasmic inclusions, remains to be answered. Although rare, 

VCP disease may provide new insight into the molecular mechanism of TDP-43 

proteinopathies caused by more common genetic alterations. 

Imaging studies of the brain in VCP mutation carriers with cognitive alterations have also 

demonstrated variability (Table 3). However, few studies have been performed. The 

variability in part is due to use of differing imaging modalities: structural computed 

tomography and magnetic resonance imaging, and functional resting fluorodeoxyglucose 

positron emission tomography (regional glucose uptake; FDG-PET) and single photon 

emission tomography (regional perfusion; SPECT). These studies have been performed in 

different combinations and at different stages of cognitive impairment. 

Imaging performed in the presence of subtle cognitive changes thought to presage dementia 

demonstrates no structural change (Kalbe et al 2011; Djamshidian et al 2009; Watts et al.  

2007) and occasional subtle regions of glucose hypometabolism (Kalbe et al. 2011). In 

subjects with dementia, when present local cortical atrophies may be symmetric in the 

frontotemporal regions (Watts et al. 2007, Miller et al. 2009, Krause et l. 2007, Schroeder et al. 

2005, Rohrer et al. 2011, van der Zee et l. 2009) or lateralized to the right or left with an 

anterior temporal emphasis (Kim et a. 2011). Other structural studies may show only 

generalized atrophy (Gidaro et al. 2008, Watts et al. 2007, van der Zee et al. 2009, Guyant-

Marechal et al. 2006). Hypoperfusion (SPECT) and glucose hypometabolism (FDG-PET) 

generally correspond to the regions of greatest atrophy seen on structural imaging in the 

same patients. 
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Table 3. Imaging in VCP disease.  Columns (left to right):  1. Reporting 1st author, 2. 
Mutation,  3. Modality used,  4. Presence of focal atrophy, (number/ total images reported),  
5. Generalized/diffuse atrophy pattern (number/ total images reported),  6. Presence of 
white matter hyperintensities or other abnormalities (number/ total images reported), 8. 
Additional comments. 

3. Familial Alzheimer’s disease-PSEN1 

Autosomal dominant familial Alzheimer's disease (FAD; OMIM 104300) is usually of early 
onset (EOAD; age < 65 years) and has been known for many years (Janssen et al. 2003). 
Alzheimer's original case description was reported because of the observed early onset of 
disease at age 51; before then "senile dementia" was thought only to occur in the elderly 
(Maurer, Volk, and Gerbaldo 1997). Most cases of FAD are attributable to mutation of the 
PSEN1 gene on chromosome 14 (OMIM 104311; Campion et al. 1999). The remaining cases 
are found in rare families harboring mutations in amyloid precursor protein (APP) on 
chromosome 21, in presenillin-2 (PSEN2) on chromosome 1, or with a currently unknown 
genetic substrate, including overlap with a small part of the Bell curve continuous with late 
onset AD (LOAD; Brickell et al. 2006). 
Here the focus is on PSEN1-related FAD because it is by far the most frequent FAD type and 
hence more is known about these families. Presenilin-1 is an important component of the 
gamma-secretase that cleaves amyloid precursor protein (APP) and NOTCH. It is involved 
in adult neuronal stem cell differentiation (Gadadhar, Marr, and Lazarov 2011), early 
cortical development (De Gasperi et al. 2008; Wines-Samuelson and Shen 2005), 
endoplasmic reticulum calcium regulation (Coen and Annaert 2010), and autophagy (Lee et 
al. 2010). There are currently 194 known PSEN1 mutations (http://www.molgen.ua.ac.be 
/ADMutations). Nonetheless, wide phynotypic variability has been found across families 
with PSEN1 mutations, even those harboring an identical putative founder mutation 
(M146L; Bruni et al. 2010). Individuals with this mutation may demonstrate early memory 
loss or temporo-spatial disorientation typical of LOAD (58% of 50), but others present  
with apathy or executive dysfunction (42%). Regardless of clinical manifestations, 
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neuropathology consists of AD-typical neuritic plaques, neurofibrillary tangles, neuropil 
threads, and amyloid angiopathy, differing only in the regional distribution of this 
pathology, a distribution that determines phenotype, e.g., dysexecutive dysfunction is 
associated with dorsal frontal lobe pathology (Bruni et al. 2010). These observations suggest 
that a universal intrinsic pattern of molecular profile difference between, for example, 
frontal and parietal regions will not explain where or in what sequence AD pathology will 
manifest in persons with M146L PSEN1 mutations. 
The spectrum of phenotypic and neuropathologic variation is even wider when different 

mutations are considered. For example a variant with dementia associated with spastic 

paraparesis is associated with several PSEN1 mutations: deletion in exon 9, insertion in exon 

3, P436Q, R278K, G217R and L85P point mutations, and deletion of codons 83 and 84 in 

exon 4 (Verkkoniemi et al. 2000; Houlden et al. 2000; Moretti et al. 2004; Ataka et al. 2004; 

Assini et al. 2003; Smith et al. 2001; Norton et al. 2009). Neuropathology of these variants 

includes characteristic fluffy spheres of non-neuritic extraneuronal amyloid termed cotton-

wool plaques (Houlden et al. 2000). In one patient with a small deletion in PSEN1 exon 12, 

parkinsonism, spasticity and dementia were the clinical features and neuropathologic 

examination showed cotton-wool plaques, cortical and subcortical Lewy bodies, and 

extensive amyloid angiopathy (Ishikawa et al. 2005). Prominent periventricular white matter 

hyperintensities associated with spastic paraparesis have been observed on MRI in two 

E280G and in four P284S PSEN1 mutation carriers (O'Riordan et al. 2002; Marrosu et al. 

2006). Extensive amyloid angiopathy causing white matter ischemia could explain the 

paraparesis in these cases. 

Clinical studies of PSEN1 mutation kindreds have reported widely variable age of onset, 

e.g., 28 years in a de novo M233L mutation carrier (Portet et al. 2003) and a range of onset 

within the same H163T mutation family of 44-65 years (Axelman, Basun, and Lannfelt 1998). 

Clinical findings can also include, prominent psychiatric symptoms (S170F mutation (Piccini 

et al. 2007); L392P (Tedde et al. 2000)), a behavioral variant frontotemporal dementia 

syndrome (bvFTD; L113P(Raux et al. 2000)), anomia (R278I(Godbolt et al. 2004)), seizures 

and myoclonus (S170F(Snider et al. 2005), cerebellar ataxia, intention tremor, and 

dysdiadochokinesia. Neuropathologic findings are generally robust depositions in the form 

of A-beta1-42(3) and A-beta1-40 amyloid in vessels, sometimes extending into parenchyma and 

termed dyshoric vasculopathy, neuritic plaques, tau-laden neuropil threads, and 

hyperphosphorylated tau protein forming intraneuronal tangles within cortical neurons 

(Janssen et al. 2000; Janssen et al. 2001). Pathologic, brainstem and cortical Lewy bodies 

(Kaneko et al. 2007; Snider et al. 2005), and possibly Pick-type tauopathy has been found in 

carriers of the PSEN1 G183V and M146L mutations (Dermaut et al. 2004; Halliday et al. 

2005). TDP-43 and ubiquitin are not seen. 

A large kindred identified in Columbia, South America is the focus of an ongoing large scale 

study of AD in its earliest, pre-symptomatic stages, serving as a model for the much more 

frequent LOAD (>95% of all AD cases; Lopera et al. 1997; Acosta-Baena et al. 2011). The 

causative mutation is E280A. Onset age in the initial study was an average 47 years, but 

there was a wide range between 34 and 62 years. The average life span following diagnosis 

was 8 years (Lopera et al. 1997). Longitudinal follow-up has shown that the earliest 

detectible cognitive changes occur at average age 35 years, progressing through mild stages 

of impairment associated with memory complaints to dementia over approximately 15 

years. Time from dementia to death is now estimated as 10 years, likely due to improved 
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methods of early detection and diagnosis as the study has developed (Acosta-Baena et al. 

2011). Studies in this kindred using hexamethylpropyleneamine oxime SPECT has 

demonstrated decreased perfusion in hippocampus, posterior cingulate, and frontoparietal 

cortex in asymptomatic carriers (n=18) using t-scores based on a template derived from 200 

normal subjects. Carriers with diagnosed AD dementia (n=16) had decreased frontal and 

parietal perfusion compared to normal non-carriers from the same kindred (n=23). The clear 

major advantages for the study of this kindred is its large size (449 identified mutation 

carriers), a cognitive phenotype that parallels LOAD, and the very high predictability of 

dementia in PSEN1 carriers. In contrast, LOAD has no genetic profile or multivariate model 

that can approach the predictive power of an autosomal dominant mutation. 

4. Contrasts and overlaps 

At the most general level cortical regions most affected by VCP-associated pathology are 

connected by the anterior 60% of the corpus callosum and the anterior commissure – the 

prefrontal, orbitofrontal, premotor and anterior temporal cortices. Anterior horn cells and 

muscle share the ubiquitin/TDP-43 pathology. Long tract findings are exceptional. The 

clinical syndromes associated with cortical dysfunction in these regions fall broadly into the 

class of frontotemporal dementias, and encompass behavioral, dysexecutive, expressive 

language, and semantic access symptom cores. In brain the characteristic ubiquitin/TDP-43 

inclusions are neuronal intranuclear and rarely cytoplasmic or extracellular. The medial 

temporal lobe, particularly the dentate nucleus, is largely spared. Tau and amyloid 

pathology are not found. Imaging reveals commensurate frontotemporal atrophy, 

sometimes lateralized in correlation with the clinical syndrome, accompanied by 

hypometabolism and hypoperfusion in these anterior regions. 

In contrast, cortical regions most affected by FAD PSEN1-associated pathology are 

connected across the posterior 40% of the corpus callosum and posterior hippocampal 

commissure – the parietal, superior and inferior temporal lobes and medial temporal lobes 

but generally sparing the primary occipital region. Neuropathology is described as quite 

dense and parallels that found in LOAD, e.g., include extracellular neuritic plaques, 

cytoplasmic fibrillary tangles, neuropil threads and amyloid angiopathy. The temporal lobe, 

particularly the medial portion is heavily affected. Ubiquitin and TDP-43 are absent. In 

many cases a classic AD clinical sequence of early memory loss followed by declines in 

other cognitive domains is described, particularly well documented in PSEN1 E280A 

families. Variants include EOAD with spastic paraparesis, characteristic “cotton wool” 

extracellular amyloid plaques and dense amyloid angiopathy. Involvement of the lower 

motor neuron has not been reported. Structural imaging reveals atrophic changes in 

temporal and parietal lobes, with hypometabolism, particularly in posterior cingulate and 

other parietal areas. 

Both VCP disease and FAD PSEN1 are single-gene disorders producing dementia 

phenotypes similar to those seen much more frequently in sporadic disease. In both there is 

marked variation in phenotypic expression of the same mutation within and across families, 

and across mutations in the same gene, with overlapping presentations of the FTD or AD 

dementia phenotypes between genes in some cases. Both VCP and PSEN1 genes have dual 

roles in both CNS development and in maintenance of the mature nervous system, but 

produce neurologic dysfunction only in the adult associated with characteristic protein 
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accumulations. Finally both VCP and PSEN1 pathophysiologic alterations appear to overlap 

at several points within cellular protein processing and functional pathways, including 

protein trafficking in the trans-golgi apparatus, downstream in the ubiquitin-proteosome 

system, and autophagy (Table 4). 

 
IBMPFD Disease: VCP Gene Familial Alzheimer’s Disease: PSEN1 Gene

� Autosomal dominant IBMPFD (OMIM 167320) 

� Single-gene disorder produing dementia phenotype

� Marked variation of phenotypic expression of the same 

mutation within and across families 

� Mutation in the valosin-containing protein (VCP) gene 

� Currently over 20 known VCP mutations 

� Onset in the 50’s 

� Characterized by abulia, expressive language loss, and 

executive dysfunction 

� Anterior, frontal and temporal lobes pattern of 

degeneration 

� Neuronal nuclear inclusions of ubiquitin and TDP-43, 

but not amyloid or tau 

� Long tract findings are not described

� VCP plays a role in ubiquitin-mediated protein 

degradation, cell cycle control, membrane fusion, and 

gogi reassembly 

� VCP has been implicated in ubiquitin-proteasomal 

system, ER dysfunction, cell death and 

autophagy/lysosomal pathways 

� Cortical regions affected by VCP pathology are 

connected by the anterior 60% of the corpus callosum 

and anterior commissure 

� Imaging reveals commensurate frontotemporal atrophy 

accompanied by hypometabolism and hypoperfusion in 

anterior regions 

� Autosomal dominant FAD (OMIM 104300) 

� Single-gene disorder produing dementia phenotype 

� Marked variation of phenotypic expression of the same 

mutation within and across families 

� Mutation in the Presenillin1 (PSEN1) gene, an 

important component of gamma-secretase that cleaves 

amyloid precursor protein (APP) & NOTCH 

� Currently over 194 known PSEN1 mutations 

� Onset in the late 40’s 

� Characterized by early memory loss and diffuse 

amyloid vasculopathy

� Amyloid plaque and neurofibrillary tau pathology in 

temporal and parietal lobes, but not ubiquitin or TDP-

43 

� PSEN1 has been implicated in adult neuronal stem cell 

differentiation, cortical development, ER calcium 

regulation, and autophagy

� Cortical regions affected by FAD PSEN1 pathology are 

conncected across the posterior 40% of the corpus 

callosum and posterior hippocampal commissure

� Neuropathology includes extracellular neuritic plaques, 

cytoplasmic fibrillary tangles, neuropil threads and 

amyloid angiopathy

� Structural imaging reveals atrophic changes in temporal 

and parietal lobes 

 

Table 4. Neuropathologic Features and Points of Comparison: IBMPFD vs. FAD.  

5. Conclusion 

VCP disease and FAD PSEN1 appear to have commonalities at a fundamental level in that 
both involve altered polyfunctional proteins involved in specific overlapping functions, 
particularly autophagy, and have common downstream pathways, e.g., proteosomal. Yet 
the diseases are clearly distinct in most particulars, suggesting a principle of independent 
compartmentalization that may provide insights into both disorders. 
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