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1. Introduction

Control engineers have been aware of non-minimum phase systems showing either
undershoot or time-delay characteristics for some considerable time (Linoya & Altpeter, 1962;
Mita & Yoshida, 1981; Vidyasagar, 1986; Waller & Nygardas, 1975). A number of researchers
that addressed this problem from a predictive control point of view mainly followed one
of two approaches: a classical (non-optimal) predictive approach or a modern optimisation
based predictive approach (Johnson & Moradi, 2005). The common characteristic of all these
approaches is that they are model-based. Predictive control allows the controller to predict
future changes in the output signal and to use this prediction to generate a desirable control
variable. The classical predictive controllers that are most widely considered include the
Smith predictor structure and the internal model control (IMC) structure (Katebi & Moradi,
2001; Morari & Zafiriou, 1989; Tan et al., 2001). Modern predictive controllers consider
generalised predictive control (GPC) or model-based predictive control (MPC) structures
(Johnson & Moradi, 2005; Miller et al., 1999; Moradi et al., 2001; Sato, 2010).
The performance of a PID controller degrades for plants exhibiting non-minimum phase
characteristics. In order for a PID controller to deal with non-minimum phase behaviour, some
kind of predictive control is required (Hägglund, 1992). Normally the derivative component
of the PID controller can be considered as a predictive mechanism, however this kind of
prediction is not appropriate when addressing non-minimum phase systems. In such a case
the PI control part is retained and the prediction is performed by an internal simulation of
plant inside the controller.
This chapter starts with a quick review of the system-theoretic concept of a pole and zero and
then draws the relationship to non-minimum phase behaviour. The relationship between the
undershoot response and time-delay response will be discussed using Padé approximations.
Classical and modern predictive PID control approaches are considered with accompanying
examples. The main contribution of the chapter is to illustrate the context and categories of
predictive PID control strategies applied to non-minimum phase systems by:

• Considering the history of predictive PID control;

• The use of models in predictive control design;

• Exploring recent advances in predictive PID control where GPC (Generalised Predictive
Control) algorithms play a prominent role;
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2 PID Control

• Appreciating the control improvements achieved using predictive strategies.

2. The influence of poles and zeros on system dynamics

When considering the compensation of systems it is of great importance to first understand
the system-theoretic concept of a system pole and zero in the realm of system dynamics and
control theory. Consider a continuous-time single-input, single-output (SISO) system

Ẋ(t) = AX(t) + Bu(t), (1)

y(t) = CX(t) + Du(t), (2)

where u(t) and y(t) are the scalar-valued input and output respectively. The column vector
X(t) is called the state of the system and comprises n elements for an nth-order system. The
n× n matrix A is called the system matrix and represents the dynamics of the system. The n×
1 column vector B represents the effect of the actuator and the 1 × n row vector C represents
the response of the sensor. D is a scalar value called the direct transmission term. If D = 0, it
is assumed that the input u(t) cannot affect the output y(t) directly.
If X(0) = 0 and D = 0 (in the case where the output is not directly influenced by the input),
then the system transfer function G(s) is given by

G(s) =
Y(s)

U(s)
= C(sI − A)−1B. (3)

The poles and zeros can be determined by writing G(s) as

G(s) =
N(s)

D(s)
, (4)

where the numerator polynomial is

N(s) � det

[

sI − A −B

C 0

]

, (5)

and the denominator polynomial is

D(s) � det(sI − A). (6)

Then the roots of N(s) and D(s) are defined as the zeros and poles of G(s) respectively (Franklin
et al., 2010; Hag & Bernstein, 2007). This holds only in the case where N(s) and D(s) do not
have common roots.
The poles of G(s) can be used to determine damping and natural frequencies of the system, as
well as determining if the system is stable or unstable. As can be seen from Eq. (6) the poles
depend only on the system matrix A, but the zeros depend on matrices A, B and C. This leads
to the question as to how the zeros influence the dynamic response of a system?
Consider a normalised transfer function of a system with two complex poles and one zero
(Franklin et al., 2010):

T(s) =
(s/aζωn) + 1

s2/ω2
n + 2ζ(s/ωn) + 1

. (7)

4 Advances in PID Control
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The zero is therefore located at s = −aζωn. By replacing the s/ωn with s results in a frequency
normalising effect and also a time normalising effect in the corresponding step response.
Therefore the normalised version of Eq.(7) can be rewritten as

Tn(s) =
s/aζ + 1

s2 + 2ζs + 1
. (8)

The normalised transfer function can be written as the sum of two terms

Tn(s) = T1(s) + T2(s), (9)

=
1

s2 + 2ζs + 1
+

1

aζ

s

s2 + 2ζs + 1
, (10)

where T1(s) can be viewed as the original term with no added zeros, and T2(s) is introduced
by the zero. Since the Laplace transform of a derivative dy/dt is sY(s), the step response of
Tn(s) can be written as

yn(t) = y1(t) + y2(t) = y1(t) +
1

aζ
ẏ1(t) (11)

where y1 and y2 are the step responses of T1(s) and T2(s) respectively. The step responses for
the case when a > 0 (introduction of a left half plane zero, a = 1.1, ζ = 0.5) are plotted in
Fig. 1(a). The derivative term y2 introduced by the zero lifts up the total response of Tn(s)
to produce increased overshoot. The step responses for the case when a < 0 (introduction of
a right half plane zero, a = −1.1, ζ = 0.5) are plotted in Fig. 1(b). In this case the right half
plane zero, also called a non-minimum phase zero causes the response of Tn(s) to produce an
initial undershoot.
In general a substantial amount of literature discusses the dynamic effects of poles, but less is
available on the dynamic effects of zeros.

3. A closer look at non-minimum phase zeros

Before a formal definition of non-minimum phase zeros can be given, some definitions and
assumptions are given. In this chapter only proper transfer functions will be considered. Eq.
(4) may be expanded so that

G(s) =
N(s)

D(s)
=

bmsm + bm−1sm−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
. (12)

G(s) is strictly proper if the order of the polynomial D(s) is greater than that of N(s) (i.e. n > m)
and exactly proper if n = m (Kuo & Golnaraghi, 2010). If G(s) is asymptotically stable, that is,
when the roots of D(s) are all in the left half plane, each zero has a specific effect on the system
for specific inputs. The roots of N(s) (the zeros) can either be real or complex.
In general, a zero near a pole reduces the effect of that term in the total response. This can be
shown by assuming that the poles, pi, are real or complex but distinct and G(s) can be written
as a partial fraction expansion

G(s) =
C1

s − p1
+

C2

s − p2
+ · · ·+

Cn

s − pn
. (13)

5Predictive PID Control of Non-Minimum Phase Systems
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(b) Effect of a right half plane zero

Fig. 1. Step response of Tn(s)

When considering Eq. (13), and the equation for the coefficient C1 given by

C1 = (s − p1)G(s)|s=p1 , (14)

it can be seen that in the case where G(s) has an left half plane zero near the pole at s =
p1, the value of C1 will decrease. This means that the coefficient C1, which determines the
contribution of the specific term in the response will be small. From this observation it can
also be said that in general, each zero in the left half plane blocks a specific input signal (Hag
& Bernstein, 2007). The question is what happens in the case of a right half plane zero?
(Hag & Bernstein, 2007) illustrated this by looking at the response of a transfer function to
an unbounded input signal such as u(t) = et. Fig. 2 shows the responses of two transfer
functions, G1(s) = 2(s + 1)/(s + 1)(s + 2) and G2(s) = 2(s − 1)/(s + 1)(s + 2). It can be seen
that what distinguishes a right half plane zero is the fact that it blocked the unbounded signal.
With a better understanding of the character of right half plane zeros, a formal definition of a
non-minimum phase system will be given. Interesting enough, a non-minimum phase system
is defined as a system having either a zero or a pole in the right-half s-plane (Kuo & Golnaraghi,
2010). (Morari & Zafiriou, 1989) defined a non-minimum phase system as having a transfer
function that contains zeros in the right half plane or time delays or both.

6 Advances in PID Control
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Fig. 2. Responses due to an unbounded input signal u(t) = et

In this chapter the focus is on non-minimum phase systems showing either inverse response
(undershoot) or time-delays. Undershoot refers to an initial response in the opposite direction
from the steady state. According to (Bernardo & Leon de la Barra, 1994) continuous systems
having an odd number of real open right half plane zeros are characterised by an initial inverse
response to a step input.
Systems having a time-delay characteristic is a special case of non-minimum phase systems
(Waller & Nygardas, 1975). The Padé approximation is often used to approximate a time delay
by a rational transfer function. Consider a first-order system with time-delay given by

G(s) =
K

1 + sτ
e−sT . (15)

K represents the gain constant, τ the time constant, and T the time-delay of the system. The
Padé approximation for the term e−sT is given by

e−sT ∼=
Nr(sT)

Dr(sT)
(16)

7Predictive PID Control of Non-Minimum Phase Systems
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6 PID Control

where

Nr(sT) =
r

∑
k=0

(2r − k)!

k!(r − k)!
(−sT)k (17)

Dr(sT) =
r

∑
k=0

(2r − k)!

k!(r − k)!
(sT)k (18)

and r is the order of the approximation (Silva et al., 2005).
Consider the function G(s) = 2e−s/(s + 1)(s + 2). The time-delay term can be approximated
by a first order Padé approximation given by

e−s ∼=
2T − s

2T + s
=

2 − s

2 + s
, (19)

and therefore the rational approximated version of G(s) is given by

Gr(s) =
2(−s + 2)

(s + 1)(s + 2)(s + 2)
. (20)

Fig. 3 plots the step responses of G and Gr and it is interesting to note that the response of Gr

exhibits an initial inverse response. This also demonstrates a link between time delay-systems
and inverse response systems.
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Fig. 3. First order Padé approximation of a time-delay system

4. Practical systems exhibiting non-minimum phase characteristics

Control engineers are often confronted with practical systems exhibiting an inverse response
or a time-delay. An inverse response is found in boiler level control systems. An inverse
response occurs when the flow rate of the feed water is increased by a step change, and the
total volume of boiling water decreases for a short period (Astrom & Hägglund, 1995; Linoya
& Altpeter, 1962). The same effect occurs in some aircraft regarding the step response of the
elevator deflection to pitch angle (Franklin et al., 2010). In some high temperature gas-cooled
reactors (HTGRs) such as the pebble bed modular reactor (PBMR) the power output also
shows undershoot phenomena when helium is injected at the low-pressure side of the power
conversion unit (PCU) (Uren et al., 2010).

8 Advances in PID Control
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5. Predictive PID controllers

5.1 Classical predictive approaches

Considering industrial applications, the simplicity and effectiveness of a control structure are
vital attributes. This consideration can be more important than trying to implement more
complex control structures. Therefore the basic structure of PID control is still considered,
but with some enhancing adjustments. Like the Zielger-Nichols PID tuning rules, the Smith
predictor concept have been around since the late 1950s (Bahill, 1983; Meyer et al., 1976; Smith,
1957; 1958). The internal model control (IMC) method which will also be discussed can be
viewed as an extension of the Smith predictor (Astrom & Hägglund, 1995; Rivera et al., 1986)

5.1.1 Smith predictor structure

The undesirable effect of time-delays in feedback control loops are well known. One of
the most popular ways to control systems with time delays effectively is by using a Smith
predictor. The goal of the Smith predictor is mainly to eliminate the time delay from the
characteristic equation and consequently allowing a larger controller gain to be used. The
control structure of the Smith predictor is shown in Fig. 4. Let the plant be represented by

Gp(s) = G(s)e−Ts, (21)

where T > 0 is the time-delay. Along with the controller Gc(s) an internal loop is added that
simulates the plant dynamics. The plant model is given by

Gm(s) = Ĝ(s)e−T̂s. (22)

Fig. 4. Smith predictor control structure

Considering Fig. 4 the feedback signal, Yf (s) is given by

Yf (s) = Ĝ(s)U(s) + (G(s)e−Ts − Ĝ(s)e−T̂s)U(s) (23)

If a "perfect" model of the plant is considered then

G(s) = Ĝ(s), (24)

T = T̂. (25)

This means that the feedback is only dependent on the model of the plant, that is

Yf (s) = Ĝ(s)U(s). (26)

9Predictive PID Control of Non-Minimum Phase Systems
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8 PID Control

The relationship between the control variable and the system output is

U(s) =
1

G(s)e−Ts
Y(s), (27)

and since G(s) = Ĝ(s), Eq.(26) becomes

Yf (s) = Ĝ(s)
1

G(s)e−Ts
Y(s) = eTsY(s). (28)

This shows that the internal loop containing the plant model feeds back a signal that is a
prediction of the output, since eTs represents a prediction y(t + T) in the time domain. The
closed loop transfer function of the system can be determined by using

Y(s) = G(s)e−TsU(s), (29)

U(s) = Gc(s)(R(s)− Yf (s)), (30)

and Eq. (26) to obtain

Y(s)

R(s)
=

G(s)e−TsGc(s)

1 + G(s)Gc(s)
. (31)

According to (Dorf & Bishop, 2011) the sensitivity expression in this case can be defined as

S(s) =
1

1 + G(s)Gc(s)
. (32)

As can be seen, the controller can now be designed without considering the effect of the
time delay. (Hägglund, 1992; 1996) combined the properties of the Smith predictor with a
PI controller to control a first order plant with a time delay. The transfer function of the plant
is given by

Gp(s) =
Ke−Ts

τs + 1
, (33)

where K > 0 is the plant gain, τ the time constant and T the time-delay of the plant. The PI
controller is given by

Gc(s) = Kp

(

1 +
1

τis

)

, (34)

where the Kp is the proportional gain, and τi is the integral time constant. The control structure
is given in Fig. 5
The time delay can be approximated by a first order Padé approximation with the time delay
T̂ > 0. This control structure results in five parameters that need tuning (Kp, τi, K̂, τ̂, T̂).

Example

Consider the following first order plant with a time-delay of two seconds

Gp(s) = G(s)Gd(s) =
2

2s + 1
e−2s, (35)

10 Advances in PID Control
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Fig. 5. PI with Smith predictor control structure

where Gd(s) represents the time-delay dynamics. Let the model of the plant be given by

Gm(s) = Ĝ(s)Ĝd(s) =
2

2s + 1

(−2s + 2)

(2s + 2)
, (36)

where Ĝd(s) represents the Padé approximation of the time-delay. The PI control constants
are set to Kp = 1 and τi = 1.67, resulting in the following PI controller

Gc(s) = (1 +
0.6

s
). (37)

A predictive PID controller C(s) as shown in Fig. 6 needs to be derived based on the predictive
properties of the Smith predictor. PID controllers are sometimes augmented with a filter F(s)
to improve stability and dynamic response. By comparing the system transfer functions of the

Fig. 6. PID controller based on Smith predictor characteristics

PI with Smith predictor control structure in Fig. 5 and the PID control structure in Fig. 6 a PID
controller can be derived based on the Smith predictor qualities:

TSmith(s) = TPID(s), (38)

Ĝ(s)Ĝd(s)Gc(s)

1 + Ĝd(s)Gc(s)
=

C(s)Ĝ(s)Ĝd

1 + C(s)Ĝ(s)Ĝd

, (39)

C(s) =
Gc(s)

1 + Ĝ(s)Gc(s)− Ĝ(s)Gc(s)Ĝd(s)
(40)

C(s) can therefore be considered as a predictive PID controller. Substituting the numerical
values leads to

C(s) =
4s4 + 14.4s3 + 16.2s2 + 7.4s + 1.2

4s4 + 20s3 + 17.8s2 + 4.4s
. (41)

11Predictive PID Control of Non-Minimum Phase Systems
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Applying model reduction techniques C(s) reduces to a PID control structure which is a
second order transfer function

C(s) =
1.002s2 + 2.601s + 1.098

s(s + 4.025)
, (42)

where Kd = 1.002, Kp = 2.601, Ki = 1.098 and F(s) = 1/(s + 4.025). Fig. 7 shows the
time response of the system output along with the control variable. It can be seen that the
control signal acts immediately and not after the occurrence of the time-delay, demonstrating
the predictive properties of the PID controller. Fig. 8 shows the time response of the
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Fig. 7. Time response of system with predictive PID controller C(s) based on Smith predictor

system for larger time-delays. It can be seen that the control performance deteriorates as the
time-delay increases. This is due to the limited approximation capabilities of the first order
Padé approximation.
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Fig. 8. Time responses of control system based on Smith predictor for different time-delays

5.1.2 Internal model control

The internal model control (IMC) design method starts with the assumption that a model
of the system is available that allows the prediction of the system output response due to a
output of the controller. In this discussion it is also assumed that the model is a "perfect"
representation of the plant. The basic structure of IMC is given in Fig. 9 (Brosilow & Joseph,
2002; Garcia & Morari, 1982). The transfer functions of the plant, the IMC controller and plant
model is given by Gp(s, ε), GIMC(s) and Gm(s) respectively. In the case when the model is not

12 Advances in PID Control
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a perfect representation of the actual plant the tuning parameter ε is used to compensate for
modelling errors.

Fig. 9. Internal model control structure

The structure of Fig. 9 can be rearranged into a classical PID structure as shown in Fig. 10.
This allows the PID controller to have predictive properties derived from the IMC design.

Fig. 10. Classical feedback representation of the IMC structure

The transfer function of the classical controller C(s) is given by

C(s) =
U(s)

E(s)
=

GIMC(s, ε)

1 − Gm(s)GIMC(s, ε)
, (43)

and the transfer function of the system is given by

T(s) =
Y(s)

R(s)
=

Gp(s)C(s)

1 + Gp(s)C(s)
. (44)

A "perfect" controller C(s) would drive the output Y(s) of the system to track the reference
input Y(s) instantaneously, that is

Y(s) = R(s), (45)

and this requires that

GIMC(s, ε)Gp(s) = 1, (46)

Gm(s) = Gp(s). (47)

To have a "perfect" controller, a "perfect" model is needed. Unfortunately it is not possible to
model the dynamics of the plant perfectly. However, depending on the controller design
method, the controller can come close to show the inverse response of the plant model.
Usually the design method incorporates a tuning parameter to accommodate modelling
errors.

13Predictive PID Control of Non-Minimum Phase Systems
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12 PID Control

The plant considered is a non-minimum phase system of the following form

Gp(s) =
N(s)

D(s)
e−Ts =

N−(s)N+(s)

D(s)
e−Ts, (48)

where N−(s) represents a polynomial containing only left half plane zeros, and N+(s) a
polynomial containing only right half plane zeros. The IMC controller of the plant in Eq.(48)
is given by

GIMC(s, ε) =
D(s)

N−(s)N+(−s)(εs + 1)r
, (49)

where the zeros of N+(−s) are all in the left half plane and are the mirror images of the zeros of
N+(s). The filter constant ε is a tuning parameter that can be used to avoid noise amplification
and to accommodate modelling errors; and r is the relative order of N(s)/D(s) (Brosilow &
Joseph, 2002).

Example

Consider the following non-minimum phase system

Gp(s) =
2(−2s + 2)

(2s + 1)(2s + 2)
. (50)

The IMC controller can be derived by using Eq.(49), but in order to ensure zero offset for step
inputs Gp(s) is adapted as follows

Gp(s) =
2(−2s + 2)

2(2s + 1)(2s + 2)
. (51)

Then

GIMC(s) =
(2s + 1)(s + 1)

(s + 1)(εs + 1)r
, (52)

and let ε = 1 and r = 1 then

GIMC(s) =
(2s + 1)(s + 1)

(s + 1)(s + 1)
. (53)

The classical controller for this case is given by

C(s) =
GIMC(s)

1 − Gp(s)GIMC(s)
=

1

2

(2s + 1)(s + 1)

s2 + 3s
=

s2 + 1.5s + 0.5

s(s + 3)
. (54)

The form of C(s) corresponds to the form of a PID controller (Dorf & Bishop, 2011):

CPID(s) =
Kd(s

2 + as + b)

s
(55)

where a = Kp/Kd and b = Ki/Kd. The IMC-based controller, Eq.(54), is therefore a PID
controller augmented with a filter F(s) = 1/(εs + 1)r and is called and IMC-PID controller
(Lee et al., 2008). Fig.11 shows the time response of the system output along with the control
variable.

14 Advances in PID Control
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Fig. 11. Time response of control system based on IMC

5.2 Modern predictive approaches

One of the most successful developments in modern control engineering is the area of model
predictive control (MPC). It is an optimal control structure utilising a receding horizon
principle. This method have found wide-spread application in process industries and research
in the field is very active (Wang, 2009). In MPC the control law is computed via optimisation
of a quadratic cost function and a plant model is used to predict the future output response to
possible future control trajectories. These predictions are computed for a finite time horizons,
but only the first value of the optimal control trajectory is used at each sample instant.
Following a model predictive approach for the design of PID controllers is a challenging
task. Two routes can be followed namely a restricted model approach or a control signal matching
approach (Johnson & Moradi, 2005; Tan et al., 2000; 2002). In this section the restricted model
approach will be considered. This approach formulates the control problem in terms the
generalised predictive control (GPC) algorithm. The model used by the controller is restricted
to second order such that the predictive control law that emerges has a PID structure. The
following control algorithm is discussed in discrete-time since it offers a more natural setting
for the derivation of predictive control techniques. It also simplifies the description of the
design process and has a strong relevance to industrial applications when presented in
discrete-time (Wang, 2009).

5.2.1 The GPC-based algorithm

Augmented state space model

The main idea is to derive an MPC control law equivalent to the second order control law
of a PID controller. This can be done by developing an MPC control law, but considering
a second-order general plant (Tan et al., 2000; 2002). Consider a single-input, single-output
model of a plant described by:

Xm(k + 1) = AmXm(k) + Bmu(k), (56)

y(k) = CmXm(k), (57)

where u(k) is the input variable and y(k) is the output variable; and Xm is the state variable
vector of dimension n = 2, since a second order plant is considered. Note that the plant
model has u(k) as its input. This needs to be altered since a predictive controller needs to be
designed. A common first step is to augment the model with an integrator (Wang, 2009). By
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taking the difference operation on both sides of Eq.(56) the following is obtained

Xm(k + 1)− Xm(k) = Am(Xm(k)− Xm(k − 1)) + B(u(k)− u(k − 1)). (58)

The difference of the state variables and output is given by

∆Xm(k + 1) = Xm(k + 1)− Xm(k), (59)

∆Xm(k) = Xm(k)− Xm(k − 1), (60)

∆u(k) = u(k)− u(k − 1). (61)

The integrating effect is obtained by connecting ∆Xm(k) to the output y(k). To do so the new
augmented state vector is chosen to be

X(k) =
[

∆Xm(k)T y(k)
]T

. (62)

where the superscript T indicates the matrix transpose. The state equation can then be written
as

∆Xm(k + 1) = Am∆Xm(k) + Bm∆u(k), (63)

and the output equation becomes

y(k + 1)− y(k) = Cm(Xm(k + 1)− Xm(k)) = Cm∆Xm(k + 1) (64)

= CmAm∆Xm(k) + CmBm∆u(k). (65)

Eqs. (63) and (64) can be written in state space form where

[

∆Xm(k + 1)
y(k + 1)

]

=

[

Am OT
m

CmAm 1

] [

∆Xm(k)
y(k)

]

+

[

Bm

CmBm

]

∆u(k), (66)

y(k) =
[

Om 1
]

[

∆Xm(k)
y(k)

]

, (67)

where Om =
[

0 0 · · · 0
]

is a 1 × n vector, and n = 2 in the predictive PID case. This
augmented model will be used in the GPC-based predictive PID control design.

Prediction

The next step in the predictive PID control design is to predict the second order plant output
with the future control variable as the adjustable parameter. This prediction is done within
one optimisation window. Let k > 0 be the sampling instant. Then the future control trajectory
is denoted by

∆u(k), ∆u(k + 1), · · · , ∆u(k + Nc − 1), (68)

where Nc is called the control horizon. The future state variables are denoted by

X(k + 1|k), X(k + 2|k), · · · , X(k + m|k), · · · , X(k + Np|k), (69)

where Np is the length of the optimisation window and X(k + m|k) is the predicted state
variables at k + m with given current plant information X(k) and Nc ≤ Np.
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The future states of the plant are calculated by using the plant state space model:

X(k + 1|k) = AmX(k) + Bm∆u(k),

X(k + 2|k) = AmX(k + 1|k) + Bm∆u(k + 1),

= A2
mX(k) + AmBm∆u(k) + Bm∆u(k + 1),

...

X(k + Np|k) = A
Np
m X(k) + A

Np−1
m Bm∆u(k) + A

Np−2
m Bm∆u(k + 1)

+ · · · + A
Np−Nc
m Bm∆u(k + Nc − 1).

The predicted output variables are as follows:

y(k + 1|k) = CmAmX(k) + CmBm∆u(k),

y(k + 2|k) = CmA2
mX(k) + CmAmBm∆u(k) + CmBm∆u(k + 1),

y(k + 3|k) = CmA3
mX(k) + CmA2

mBm∆u(k) + CmAmBm∆u(k + 1)

+ CmBm∆u(k + 2),

...

y(k + Np|k) = CmA
Np
m X(k) + CmA

Np−1
m Bm∆u(k) + CmA

Np−2
m Bm∆u(k + 1)

+ · · ·+ CmA
Np−Nc
m Bm∆u(k + Nc − 1).

The equations above can now be ordered in matrix form as

Y = FX(k) + Φ∆U, (70)

where
Y =

[

y(k + 1|k) y(k + 2|k) y(k + 3|k) . . . y(k + Np|k)
]T

, (71)

∆U = [∆u(k) ∆u(k + 1) ∆u(k + 3) . . . ∆u(k + Nc − 1)]T , (72)

and

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CmAm

CmA2
m

CmA3
m

...

CmA
Np
m

⎤

⎥

⎥

⎥

⎥

⎥

⎥



, (73)

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CmBm 0 0 . . . 0
CmAmBm CmBm 0 . . . 0

CmA2
mBm CmAmBm CmBm . . . 0
...

CmA
Np−1
m Bm CmA

Np−2
m Bm CmA

Np−3
m Bm . . . CmA

Np−Nc
m Bm

⎤

⎥

⎥

⎥

⎥

⎥

⎥



. (74)
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Optimisation and control design

Let r(k) be the set-point signal at sample time k. The idea behind the predictive PID control
methodology is to drive the predicted output signal as close as possible to the set-point signal.
It is assumed that the set-point signal remains constant during the optimisation window, Np.
Consider the following quadratic cost function which is very similar to the one obtained by
(Tan et al., 2002)

J = (r − y)T(r − y) + ∆UTR∆U, (75)

where the set-point information is given by

rT =
[

1 1 . . . 1
]

× r(k), (76)

and the dimension of r is Np × 1. The cost function, Eq.(75) comprises two parts, the first part
focus on minimising the errors between the reference and the output; the second part focus
on minimising the control effort. R is a diagonal weight matrix given by

R = rw × I (77)

where I is an Nc × Nc identity matrix and the weight rw ≥ 0 is used to tune the closed-loop
response. The optimisation problem is defined such that an optimal ∆U can be found that
minimises the cost function J. Substituting Eq.(70) into Eq.(75), J is expressed as

J = (r − FX(k))T(r − FX(k))− 2∆UTΦT(r − FX(k)) + ∆UT(ΦTΦ + R)∆U. (78)

The solution that minimises the cost function J can be obtained by solving

∂J

∂∆U
= 2ΦT(r − FX(k)) + 2(ΦTΦ + R)∆U = 0. (79)

Therefore, the optimal control law is given as

∆U = (ΦTΦ + R)−1ΦT(r − FX(k)) (80)

or
∆U = (ΦTΦ + R)−1ΦTe(k) (81)

where e(k) represents the errors at sample k.

Emerging predictive control with PID structure

The discrete configuration of a PID controller has the following form (Huang et al., 2002;
Phillips & Nagle, 1995):

u(k) = Kpe(k) + Ki

k

∑
n=1

e(n) + Kd(e(k)− e(k − 1)), (82)

or

u(z) =
q0 + q1z−1 + q2z−2

1 − z−1
e(z), (83)
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where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively, and

q0 = Kp + Ki + Kd, (84)

q1 = −Kp − 2Kd, (85)

q2 = Kd. (86)

By taking the difference on both sides of Eq.(82), the velocity form of the PID control law is
obtained:

∆u(k) = Kp[e(k)− e(k − 1)] + Kie(k) + Kd[e(k)− 2e(k − 1) + e(k − 2)]. (87)

This equation can be written in matrix form as (Katebi & Moradi, 2001):

∆U(k) = Ke(k) = K[r(k)− y(k)] (88)

where

K =
[

Kp Ki Kd

]

⎡

⎣

0 −1 1
0 0 1
1 −2 1

⎤

 , (89)

and

y(k) =
[

y(k − 2) y(k − 1) y(k)
]T

(90)

e(k) =
[

e(k − 2) e(k − 1) e(k)
]T

(91)

r(k) =
[

r(k − 2) r(k − 1) r(k)
]T

. (92)

By equating Eq.(81) to Eq.(88 )the following is obtained

∆U(k) = (ΦTΦ + R)−1ΦTe(k) = KTe(k) (93)

and therefore the predictive PID controller constants are given by

KT = (ΦTΦ + R)−1ΦT , (94)

or
[

Kd (−2Kd − Kp) (Kd + Ki + Kp)
]T

= (ΦTΦ + R)−1ΦT . (95)

Example

Consider the following discrete-time state space model of a non-minimum phase system

Ẋ(k) =

[

−0.0217 −0.3141
0.3141 0.7636

]

X(k) +

[

0.3141
0.2364

]

u(k), (96)

y(k) =
[

−1 2
]

X(k). (97)

The first step is to create the augmented model for the MPC design, and choose the values of
the prediction and control horizon. In this example the control horizon is selected to be Nc = 3
and the prediction horizon is Np = 20. Also the sampling period in this case is chosen as 1
second and a 100 samples is considered. Then the predicted output is given by Eq. 70 where
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F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.6500 1.8413 1.0000
1.2143 3.0432 1.0000
1.5796 3.7836 1.0000

...
...

...
2.1515 4.9290 1.0000
2.1516 4.9292 1.0000
2.1517 4.9294 1.0000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



, Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1587 0 0
0.7982 0.1587 0
1.2595 0.7982 0.1587

...
...

...
1.9996 1.9993 1.9989
1.9998 1.9996 1.9993
1.9998 1.9998 1.9996

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



, (98)

are matrices having 20 rows and 3 columns. By choosing a weight rw = 0.9 the optimal control
law (Eq. (81)) is given by

∆U =

⎡

⎣

0.0628 0.2602 0.2108 · · · −0.0144 −0.0144 −0.0145
−0.0554 −0.1681 0.0617 · · · 0.0035 0.0035 0.0035
−0.0085 −0.0976 −0.2766 · · · 0.0452 0.0453 0.0453

⎤

 e(k), (99)

where the matrix multiplied with the error vector has 3 rows and 20 columns.
Fig. 12 shows the closed loop response of the system output along with the control variable.
It can be seen that the control variable acts immediately and not after the occurrence of the
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Fig. 12. Closed loop response of a system with an MPC controller having a PID control
structure

time-delay. This shows that the MPC controller with a PID structure demonstrates predictive
properties. An improvement in the control performance can be seen compared to the previous
classical predictive controllers. This is due to the fact that the control law is computed via the
optimisation of a quadratic cost function.

6. Conclusions

In this chapter both classical and modern predictive control methods for non-minimum phase
systems were considered. Two popular methods considered in the classical approach were the
Smith predictor and internal model control (IMC). These two methods utilise a plant model
to predict the future output of the plant. This results in a control law that acts immediately
on the reference input avoiding instability and sluggish control. In the classical approach the
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Smith predictor and IMC structures were used to derive the predictive PID control constants.
The predictive PID controller can effectively deal with the non-minimum phase effect.
A modern approach to predictive PID control features a different methodology. A generalised
predictive control algorithm was considered. In this approach the model predictive controller
is reduced to the same structure as a PID controller for second-order systems (Eq. (87)). In
this case the equivalent PID constants changes at every sample since an optimisation routine
using a cost function (Eq. (78)) is followed at each sample. The controller structure can further
be adapted to be used as a design method to derive optimal values of PID gains (Eq. (95)).
The novelty of this method lies in the fact that time-delays are incorporated without any need
for approximation.
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