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1. Introduction  

Cutaneous metastatic melanoma management has recently approached the age of 

individualized therapy (Romano et al., 2011). The discovery that the 1799T>A point 

mutation in the BRAF oncogene (BRAFV600E) occurs in ~50% of melanoma lesions and that 

melanoma cells bearing the mutation are oncogene addicted, i.e., strictly dependent upon 

BRAFV600E activity for growth and survival, have pointed to BRAFV600E as a promising 

target for therapy. Drugs targeting BRAF have been developed, and several clinical trials are 

currently ongoing. Phase I-II results recently reported remarkable tumor regression in the 

great majority of patients bearing disseminated BRAFV600E mutated melanoma disease 

after treatment with BRAFV600E-specific inhibitors. 

In these trials, BRAF mutational status is determined to select patients who may benefit 

from therapy. However, melanoma specimens are not always available to perform this 

analysis; moreover, a negative result in a single tumor biopsy may cover the presence of 

mutation-positive tumor lesions. Because blood has been proven to represent a valuable 

alternative source of tumor-derived cells as well as of tumor-derived DNA, several technical 

approaches have been studied to detect BRAFV600E in RNA/DNA extracted from blood-

derived circulating tumor cells and in circulating free DNA isolated from plasma or serum. 

For these reasons, circulating BRAFV600E has the potential as both a specific melanoma 

molecular marker and a monitoring factor to be used to evaluate clinical response. 

In this chapter, we summarize the clinical and biological features of BRAF mutation in 
melanoma. Furthermore, we report a new BRAFV600E detection assay developed in our lab 
that shows high sensitivity and specificity. 

2. BRAFV600E mutation in melanoma 

Among the genetic lesions that frequently occur in melanoma, BRAF gene mutation is the 
most common and is detected in about 50% of melanoma (Davies et al., 2002). The BRAF 
gene encodes a serine-threonine kinase belonging to the MAPK kinase pathway, also known 
as the RAS/RAF/MEK/ERK pathway. This signaling pathway regulates important cellular 
processes, including cell growth, proliferation and migration; in physiological conditions, 
the signaling is triggered by activated growth factor receptors, which act as binding sites for 
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adapter proteins that subsequently activate a cascade of kinases, including NRAS, BRAF, 
MEK and ERK, via phosphorylation. Activated ERK translocates to the cell nucleus, where it 
phosphorylates and activates many different substrates (Held et al., 2010; Poulikakos & 
Rosen, 2011; Young et al., 2009).  
BRAF mutations identified in melanoma are in the kinase domain, which is encoded by 
exons 11 and 15, and are somatic. Somatic BRAF point mutations have been also detected in 
approximately 8% of other tumor types, including 30-70% of papillary thyroid cancers and 
10% of colorectal cancers, and ovarian, breast and lung cancers (Cantwell-Dorris et al., 2011; 
Davies et al., 2002; Puzanov et al., 2011). No BRAF germline mutations have been found in 
familial or sporadic melanoma patients (Lang et al., 2003; Laud et al., 2003; Meyer et al., 
2003a), although germline mutations have been shown to occur in Noonan, LEOPARD and 
cardio-facio-cutaneous syndromes, which are developmental disorders with overlapping 
features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal 
and ectodermal anomalies and variable cognitive deficits (Sarkozy et al., 2009; Tidyman & 
Raouen, 2009). The relationship between BRAF germline polymorphisms and melanoma 
risk has also been investigated, and data obtained suggest that BRAF can be considered a 
low-risk susceptibility gene for melanoma (James et al., 2005; Meyer et al., 2003b). 
It has been reported that melanocortin 1 receptor (MC1R) variants increase the risk of 
melanoma with BRAF mutations (Fargnoli et al., 2008; Landi et al., 2006; Scherer et al., 2010). 
The MC1R gene, which has been identified as a low-risk melanoma susceptibility gene 
(Williams et al., 2010), encodes a seven-pass transmembrane G-protein receptor that binds 
alpha-melanocyte stimulating hormone and plays a key role in the pigmentation process 
(Palmer et al., 2000; Rees, 2004; Valverde et al., 1995). The MC1R gene is highly 
polymorphic, and gene variants determine a partial or complete loss in the ability of the 
receptor to transduce signals, thus impairing the switch from pheomelanin to eumelanin 
production in response to UV radiation exposure (Healy et al., 2000). Further studies are 
needed to elucidate the mechanisms causing MC1R variants to select for BRAF somatic 
mutations (Hacker & Hayward, 2008). 
BRAF mutations result in the constitutive activation of ERK, resulting in proliferation and 
growth advantage of melanoma cells. In 15-30% of melanoma, the RAS/RAF/MEK/ERK 
pathway is constitutively activated through NRAS mutation (Sekulic et al., 2008). As BRAF 
and NRAS mutations are mutually exclusive, hyperactivation of the MAPK pathway is very 
frequent in melanoma. Although the constitutive activation of the MAPK pathway is often 
required to promote the growth and proliferation of neoplastic cells, BRAF mutations are 
prevalent in melanoma, while mutations in tyrosine kinase receptors or in RAS genes are 
prevalent in other tumor types. Chromosomal rearrangements leading to the formation of 
BRAF fusion products, characterized by the lack of the BRAF auto-inhibitory domain and 
the aberrant activation of the MAPK pathway, have also been reported in pilocytic 
astrocytoma, thyroid, prostate and gastric cancer as well as melanoma (Ciampi et al., 2005; 
Cin et al., 2011; Dessars et al., 2007; Palanisamy et al., 2010). 
The substitution of a valine (V) for glutamic acid (E) at position 600 (V600E) accounts for 
>90% of BRAF mutations identified in melanoma. BRAF mutations in melanoma are an 
early event as they can be detected in nevi and in primary melanoma (Figure 1) (Rodolfo et 
al., 2004; Thomas et al., 2006). Even if 60-70% of benign and dysplastic nevi show the 
BRAFV600E mutation, most of them do not progress to melanoma, suggesting that further 
alterations are necessary to promote malignant progression. In particular, it has been 
proposed that BRAF mutations may induce senescence and that abrogation of the 
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mechanisms regulating this cellular process are required to induce tumor progression 
(Michaloglou et al., 2005). In primary melanoma, BRAFV600E mutation is rarely detected in 
lentigo maligna lesions which arise in chronically sun-exposed skin and show a high rate of 
RAS mutations, and in acral and mucosal melanoma that arise in non-exposed skin, which 
may show KIT gene mutation (Platz et al., 2008). Melanoma occurring in childhood and 
adolescence, as well as those occurring in patients with a family history of melanoma, show 
BRAFV600E mutation (Daniotti et al., 2009). Melanoma that arise in intermittently exposed 
body sites, in skin lacking signs of chronic sun-induced damage, and in younger people, 
show a >80% rate of BRAFV600E mutation (Curtin et al., 2005). BRAF mutation frequency 
appears higher in advanced lesions than primary tumors, and it does not seem to be related 
to the site of metastases. Moreover, different studies have reported that BRAF mutation is 
maintained during progression from primary tumor to metastatic lesions or is acquired 
during the development of metastases (Houben et al., 2004; Omholt et al., 2003; Shinozaki et 
al., 2004). These results suggested a possible direct link between mutated BRAF and the 
metastatic potential of melanoma cells. 
 

 

B: Benign nevi; B/S: Blue and Spitz nevi; D: Dysplastic nevi; SS: Superficial Spreading melanoma; N: 
Nodular melanoma; L: Lentigo maligna melanoma; A: Acral lentiginous melanoma; M: Mucosal 
melanoma; No: Nodal metastases; Cu: Cutaneous metastases; V: Visceral metastases; Ce: Cerebral 
metastases. 

Fig. 1. Frequency of BRAFV600E mutation in nevi and melanoma lesions. 

Several authors have studied the effects of BRAFV600E on global gene expression profiles of 

melanoma cells by microarray analysis and reported a BRAF mutation-associated gene 

expression signature (Pavey et al., 2004; Bloethner et al., 2005; Johansson et al., 2007). In 

particular, genes that encoded proteins involved in RAS/RAF/MEK/ERK signaling were 
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identified among the genes differentially expressed between melanoma cell lines with or 

without BRAF mutation (Bloethner et al., 2005). In addition, a classifier able to discriminate 

between BRAF mutant and BRAF wild-type melanoma with high accuracy was built, 

including genes encoding phosphates and other genes biologically related to melanoma 

progression (Pavey et al., 2004). On the contrary, Hoek et al. failed to find a BRAF signature 

but identified three sample cohorts that represented melanoma groups characterized by 

different metastatic potential (Hoek et al., 2004). This discrepancy could be explained by 

considering the methods used to perform the analysis of array data; in fact, when the data 

by Hoek were re-analyzed with another statistical approach, a BRAF signature could be 

identified in these data (Johansson et al., 2007). Taken together, these results support the 

presence of a gene expression profile associated with BRAF mutation in melanoma and 

point to the genes that are potentially novel therapeutic targets. 

3. BRAFV600E as a therapeutic target 

The frequency and specificity of BRAFV600E mutation, together with the strict dependence 
of melanoma cell growth and survival on BRAFV600E activity (a phenomenon called 
oncogene addiction), have pointed to BRAFV600E as a promising therapeutic target. 
Several BRAF inhibitors have been produced in the last years that have been or are currently 

being clinically tested (Sheperd et al., 2010). The first compound tested in clinical trials was 

Sorafenib (BAY43-9006), a multi-kinase inhibitor that targeted both wild-type and mutated 

BRAF, CRAF and other protein kinases, such as VEGFR2 and -3, PDGF, p38 MAPK, cKIT, 

FMS and RET (Wellbrock & Hurlstone, 2010). Sorafenib showed poor clinical activity when 

tested as a single agent, and in phase III trials in both front- and second-line therapies in 

combination with carboplatin and paclitaxol (Eisen et al., 2006; Hauschild et al., 2009). Other 

multi-kinase inhibitors that show a higher selectivity for BRAF than Sorafenib are currently 

under investigation in clinical trials (Dienstmann & Tabernero, 2011). 

Several compounds that selectively inhibit BRAF have also been developed. Among them, 

GSK2118436 (SB-590885) has been tested in a phase I-II clinical trial and shows clinical 

responses in 60% of melanoma patients with BRAFV600 tumors, including patients having 

BRAFV600K and BRAFV600G mutations, with good tolerability (Kefford et al., 2010). 

Moreover, treatment with GSK2118436 induced a 20-100% reduction in the size of central 

nervous system lesions in patients with previously untreated brain metastases (Long et al., 

2010).  

Recently, the results of a phase I-II study that tested a specific BRAFV600E inhibitor, 

PLX4032 (RO5185426), were reported. Treatment with PLX4032 induced a complete or 

partial tumor regression in 81% of patients who had melanoma with BRAFV600E mutation, 

including progression-free survival for more than 7 months and manageable side effects, 

while patients with BRAF wild-type tumors showed no evidence of tumor regression 

(Flaherty et al., 2010). As a side effect, 31% of patients treated with PLX4032 developed low-

grade squamous cell carcinomas, which were reported to occur also in patients treated with 

Sorafenib (Arnault et al., 2009). This side effect is possibly due to the selective mechanism of 

action of PLX4032 that shuts down only the activity of BRAFV600E while inducing the 

formation of BRAF-RAF1 heterodimers and RAF1-RAF1 homodimers, thus inducing hyper-

activation of the MAPK pathway in both tumor cells and normal skin cells with wild-type 

BRAF (Hatzivassiliou et al., 2010; Heidorn et al., 2010; Poulikakos et al., 2010). 
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4. Mechanisms of resistance to BRAF inhibitors 

Even if BRAFV600E tumors initially respond to PLX4032 treatment, the majority of patients 

relapsed within 2-18 months and developed resistance to the treatment. Furthermore, a subset 

of BRAFV600E tumors showed primary resistance as about 20% of patients did not respond to 

PLX4032 treatment (Flaherty et al., 2010). These findings indicate that the development of new 

therapeutic strategies using PLX4032 in combination with other targeted agents could be 

useful to prevent the acquisition of resistance. Several studies investigating the molecular 

mechanisms that promote resistance to RAF inhibitors have been recently reported. The 

restoration of MEK activity in BRAFV600E melanoma appears to be a crucial event in 

promoting the acquisition of resistance (Poulikakos & Rosen, 2011; Solit & Rosen, 2011; Solit & 

Sawyers, 2010; Tuma, 2011). In particular, MEK activity was restored by overexpressing other 

kinases such as RAF1 and COT/TPL2 (Johannessen et al., 2010) or by the de novo acquisition 

of a mutation in the NRAS gene (Nazarian et al., 2010). The COT gene was amplified in cell 

lines that showed intrinsic resistance to PLX4032 (Johannessen et al., 2010). Surprisingly, no 

secondary BRAF mutations were detected in tumors from patients with acquired resistance 

(Nazarian et al., 2010). Wagle et al. identified an activating mutation at codon 121 of MEK1 in 

the tumor from a patient who relapsed after developing resistance to PLX4032 treatment, thus 

demonstrating for the first time that resistance to PLX4032 is associated with the development 

of activating mutations in kinases downstream of BRAFV600E (Wagle et al., 2011). This 

discovery highlights the importance of establishing new combined therapies using MEK or 

ERK inhibitors with PLX4032 to overcome resistance. In fact, data obtained in preclinical 

studies demonstrated a synergism between BRAF and MEK inhibitors AZD6244 and 

GSK1120212 (Emery et al., 2009; Joseph et al., 2010; Paraiso et al., 2010). However, mechanisms 

that promote the acquisition of resistance independently of MEK activation have been 

described, including the increased activation of the receptor tyrosine kinases PDGFRβ 

(Nazarian et al., 2010) or IGF1R (Villaneuva et al., 2010), suggesting that the combination of 

receptor tyrosine kinase inhibitors with PLX4032 could be effective in the treatment of these 

patients. However in most patients, the mechanisms that promote the acquisition of resistance 

remain unclear (Nazarian et al., 2010).   

5. BRAFV600E as a circulating disease biomarker 

As blood has been proved to represent a valuable alternative source of tumor-derived cells 

and tumor-derived DNA/RNA, circulating BRAFV600E represents a potential circulating 

disease biomarker that could be useful when melanoma specimens are not available to test 

the BRAF mutational status for the selection of patients who will benefit from treatment 

with BRAF inhibitors. In addition, it could be used as a monitoring factor to evaluate clinical 

response. 

Several studies reported that BRAFV600E is detectable in DNA/RNA extracted from 

circulating melanoma cells (CMC) (Kitago et al., 2009; Oldenburg et al., 2008). The 

assessment of CMC for monitoring the efficacy of therapeutic treatment and for predicting 

the disease outcome of melanoma patients has been proposed. Currently, RT-PCR and 

quantitative real-time RT-PCR are the methods most frequently used to detect CMC in 

melanoma. Both techniques are used to amplify genes expressed in melanoma cells, such as 

tyrosinase, MART-1, MAGE-3A and MITF (Koyanagi et al., 2010). Detection of the mutated 
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BRAF variant in blood samples requires the efficient isolation of CMC (Kitago et al., 2009) or 

the development of extremely sensitive techniques to detect the mutant sequence in a large 

excess of wild-type BRAF forms (Oldenburg et al., 2008). 

Circulating free DNA (cfDNA) isolated from plasma or serum samples represents an 

alternative source of melanoma-derived DNA. Several studies reported the feasibility of 

detecting BRAFV600E mutation in the cfDNA from patients with melanoma (Board et al., 

2009; Daniotti et al., 2007; De Giorgi et al., 2010; Pinzani et al., 2010; Yancovitz et al., 2007). 

Interestingly, Shinozaki and coworkers reported that the detection of circulating BRAV600E 

in the serum of patients treated with biochemotherapy correlates with poorer outcomes due 

to absence of response to the treatment (Shinozaky et al., 2007). 

Some important limitations should be overcome to consider BRAFV600E as a reliable 

circulating disease biomarker. In fact, the studies previously mentioned demonstrated that 

BRAFV600E is detectable at stage IV and only in a few stage III melanoma patients, 

suggesting that it does not represent a marker for the detection of the disease in early-stage 

patients. Moreover, when matched plasma/serum and tumor samples from melanoma 

patients were tested for BRAFV600E, the concordance between the BRAF mutation rates of 

cfDNA and tumors showed some discrepancies, which could be due to a low sensitivity of 

the techniques used to perform the mutational analysis or to the heterogeneity of the tumor 

for the BRAFV600E mutation. For these reasons, different methods were developed to detect 

BRAFV600E mutation in high levels of BRAF wild-type DNA by increasing the specificity 

and sensitivity of the assays, as shown in Table 1, mainly through enriching the sample for 

the mutant variant or by selectively inhibiting the amplification of the BRAF wild-type form 

(Kitago et al., 2009; Oldenburg et al., 2008; Pinzani et al., 2011; Shinozaki et al., 2007; 

Yancovitz et al., 2007) 

 
Method Detection limit Samples Reference

Allele-Specific PCR 1:400 mut allele in wt alleles Plasma Daniotti et al., 2007

Mutant-specific PCR 0.1 ng of mut DNA in 100 ng of wt DNA Plasma Yancovitz et al., 2007

PNA/LNA clamp Real Time PCR 1X10-4 U mut DNA in 10 U of wt DNA Serum Shinozaki et al., 2007

PBAS-PCR 10 melanoma cells in 1ml of blood CMC Oldenburg et al., 2008

Real Time PCR 1-5 melanoma cells in 5X106 PBC CMC Kitago et al., 2009

ARMS allele-specific Real Time PCR 5 copies of mut DNA in 5000 copies of wt DNA Serum Board et al., 2009

LNA/allele-specific Real Time PCR 0.3% of mut alleles in wt alleles Plasma Pinzani et al., 2010

COLD PCR 3.1% of mut alleles in wt DNA FFPE tissue Pinzani et al., 2011
 

PNA: Peptide Nucleic Acid; LNA: Locked Nucleic Acid; PBAS: Primer-Blocking Allele-Specific; ARMS: 
Amplification Refractory Mutation System; COLD: CO-amplification at Lower Denaturation 
temperature; mut: mutated; wt: wild-type; 1U: amount of target DNA contained in 1 µg/ml of genomic 
DNA; PBC: Peripheral Blood Cells; FFPE: Formalin Fixed Paraffin Embedded 

Table 1. Methods developed to detect BRAFV600E. 

5.1 Other melanoma circulating biomarkers 
Melanoma serum markers that have significant potential both as prognostic indicators and 

for monitoring the treatment response include lactate dehydrogenases (LDH), S100 calcium 

binding protein B (S100B), and melanoma inhibitory activity (MIA) molecule. 
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LDH are cytochrome c- or NAD(P)-dependent enzymes that act on either D- or L-lactate. 
Serum LDH is the only circulating biomarker shown to have a prognostic relevance in 
melanoma. Several studies have shown that high levels of circulating LDH correlate with a 
poor prognosis in stage IV melanoma patients and in other neoplastic diseases (Balch et al., 
2009; Bedikian et al., 2008; Keilholz et al., 2002). For this reason, LDH was included in the 
current AJCC staging system, and its level is currently determined in melanoma patients 
having distant metastasis because patients with elevated LDH are assigned directly to the 
M1C category without considering the site of distant metastasis (Dickson & Gershenwald, 
2011).  
S100B is a protein that belongs to the S100 protein family and is mainly expressed by 
astrocytes, where it acts as a neurotrophic factor to promote neuronal survival. S100B is a 
well-characterized melanoma marker, and it is used as a diagnostic marker of melanocytic 
skin lesions in immunohistochemical staining. Several studies pointed out S100B as a 
prognostic marker of disease progression (Gogas et al., 2009; Jury et al., 2000) as increased 
serum levels in melanoma patients were predictive of disease progression. Even if not 
included in the AJCC staging system, Swiss and German guidelines recommend the 
determination of S100B serum levels in patients with Breslow thickness >1 mm every 3-6 
months (Dummer et al., 2005; Garbe et al., 2007; Garbe et al., 2008). 
MIA is a small protein secreted by malignant melanoma cells that exhibits an inhibitory 
effect on cell growth in vitro (Blesch et al., 1994). Even if a correlation between high MIA 
serum levels and metastatic melanoma progression has been reported (Bosserhoff et al., 
1997; Stahlecker et al., 2000), MIA was shown to have lower sensitivity and specificity as a 
melanoma marker than S100B and LDH (Krahn et al., 2001). 
Recently, microRNAs (miRNAs) have been proposed as a new class of potential circulating 
biomarkers that are detectable in various body fluids. miRNAs are non-coding RNAs 
consisting of 18-24 nucleotides that regulate mRNA and protein levels mainly by inducing 
mRNA degradation or by inhibiting translation (Ambros, 2004; Bartel, 2004). Recently, 
deregulation of a group of miRNAs was found in melanoma lesions in association with 
BRAF mutational status (Caramuta et al., 2010). miRNAs are also released into the 
extracellular space, where they can be found free or contained within vesicles such as 
microvesicles, exosomes, apoptotic vesicles and senescent bodies. The functional role of 
extracellular miRNAs as an intercellular communication system is poorly characterized 
(Reid et al., 2010). Extracellular miRNAs have been identified as ideal tumor circulating 
biomarkers because of their stability and easy quantification (Etheridge et al., 2010). For 
these reasons, circulating miRNAs have been investigated in many tumor types, including 
lung, colorectal, ovarian and pancreatic cancers, to evaluate their prognostic and diagnostic 
value (Reid et al., 2010). Few studies have assessed circulating miRNAs in the context of 
melanoma. Kanemaru et al. demonstrated that miRNA-221 serum levels are higher in 
melanoma patients than in healthy controls; in addition, miRNA-221 levels directly correlate 
with tumor thickness, staging and disease course (Kanemaru et al., 2011). In another study, 
16 miRNAs were identified deregulated in blood cells of melanoma patients by comparison 
of miRNA expression profiles in blood cells of healthy donors; moreover, they were 
sufficient to distinguish melanoma patients from healthy individuals with high accuracy 
(Leidinger et al., 2010). Taken together, these studies suggest that miRNAs potentially could 
be prognostic and diagnostic circulating markers in melanoma, although larger studies and 
the standardization of isolation and detection techniques are needed to confirm these 
results. 
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6. Allele-specific real-time PCR-based detection of circulating BRAFV600E 

It is possible to selectively eliminate the BRAF wild-type sequence and thus improve the 
sensitivity of the PCR performed to detect mutated circulating BRAF by taking advantage of 
the presence of a TspRI enzyme restriction site located at codon 600 of the BRAF wild-type 
sequence (Rimoldi et al., 2003). This restriction site is abrogated by BRAFV600E, and 
therefore it is possible to enrich for the BRAV600E allele by selectively eliminating wild-type 
sequences by performing TspRI digestion. We modified the experimental conditions 
described by Rimoldi et al. to improve sensitivity and specificity of an allele-specific 
TaqMan-based real-time method to detect BRAFV600E in colorectal cancer tissues (Benlloch 
et al., 2006). Figure 2 summarizes the steps of the assay developed to screen for BRAV600E 
mutation plasma or melanoma tissue biopsies. 
 

 

Fig. 2. Schematic representation of TaqMan-based Real-Time PCR method developed to 
detect few copies of BRAFV600E in a large amount of wild-type DNA. 

Experimental conditions of each step are reported in paragraph 6.1. 

6.1 Overview of the protocol 
A 224-bp fragment that includes codon 600 of the BRAF gene is amplified from 5 ng DNA in 
a final reaction volume of 50 µl (Figure 2A). Amplification was performed with a pre-cycling 
hold at 95°C for 7 min followed by 37 cycles of PCR (95°C for 1 min, 55°C for 1 min and 72°C 
for 1 min) and a final extension at 72°C for 7 min using primers for exon 15 amplification 
reported by Davies (Davies et al., 2002). Twenty microliters of the PCR product were mixed 
with 1X NEB Buffer 4 supplemented with 100 µg/ml BSA (New England Biolabs) and then 
subjected to restriction digestion at 65°C overnight with 15 U TspRI (New England Biolabs) 
in a final digestion mix volume of 50 µl to enrich samples for the BRAFV600E mutant allelic 
variant (Figure 2B). Two microliters of the digestion product were used to perform an allele-
specific TaqMan-based real-time PCR analysis (Figure 2C). The final reaction volume of 20 
µl contained 10 µl 2X of TaqMan Genotyping Master Mix (Applied Biosystems), 18 pmol of 
each primer (BRAF-51F and BRAF-176R) and 5 pmol of each probe (BRAFmut and 
BRAFwt). The primer and probe sequences were reported previously by Benlloch (Benlloch 
et al., 2006). Amplification and detection were performed with an ABI PRISM 7900HT 
(Applied Biosystems) using the standard thermal profile conditions of the Absolute 
Quantification protocol. Data analysis was performed using the SDS (Sequence Detection 
System) version 2.2.2 software. Each experiment was performed in duplicate.  

6.2 Results 
Specificity of the technique was tested by assaying dilutions of BRAF mutated DNA (5 
ng/µl) in wild-type DNA (5 ng/µl). The mutated DNA was obtained from a heterozygous 
melanoma cell line showing 2 copies of BRAF gene. Therefore, the allelic ratio was 
calculated considering one mutated allele out of 4 total alleles. Results obtained show that 1 
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copy of V600E allele can be detected when diluted in 8X105 copies of wild-type alleles. 
Sensitivity of the technique was assayed by testing progressive dilutions in water of the 
BRAF mutated DNA. Results obtained show that BRAFV600E mutation can be detected 
starting from 6.25X10-5 ng of DNA. 
This method showed an increase in both sensitivity and specificity when compared to the 

assays previously used in our lab to detect BRAFV600E (Daniotti et al., 2007). As shown in 

Figures 3 and 4, the selective elimination of the BRAF wild-type allele is a critical step 

required to increase both parameters. In fact, the BRAF mutated allele became detectable 

only when the wild-type allele was greatly reduced (Figure 3) or eliminated (Figure 4) after 

digestion with TsprRI. 

Taken together, these results indicate that the new assay has an improved sensitivity and 

specificity for detecting BRAFV600E when tested on genomic DNA from melanoma when 

diluted in an excess of wild-type DNA or when present in a few copies as in water dilutions. 

Preliminary results obtained by testing matched plasma and tissues samples indicate that 

more samples test positive for BRAFV600E compared to the previously described technique 

(Daniotti et al., 2007) and suggest a potential clinical application of this technique. 

 

 

Fig. 3. TspRI digestion increases the specificity of BRAFV600E allele-specific real-time PCR. 
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TspRI digestion reduces the excess of the wild-type allele that is detected 9 cycles later 
compared to the undigested sample and allows the detection of the BRAFV600E allele. The 
red line represents the threshold line. wt: wild-type. mut: mutated.  
 

 

Fig. 4. TspRI digestion increases the sensitivity of the BRAFV600E allele-specific real-time PCR. 

The amplification plot shows that the complete elimination of the BRAF wild-type template 
by TspRI digestion improves the sensitivity of mutated allele-specific PCR, anticipating its 
detection of about 14 cycles compared to undigested samples. The red line represents the 
threshold line. wt: wild-type. mut: mutated. 

7. Conclusion 

BRAFV600E currently represents the most specific circulating tumor marker available for 
cutaneous melanoma, although it will only detect about 50% of melanoma. Circulating 
BRAFV600E can be used to select patients to be treated with BRAF inhibitors when the 
tissue samples are not available for the analysis. In addition, detection methods for 
circulating BRAFV600E can be used to monitor the treatment response and evaluate disease 
relapse during follow-up. However, to use BRAFV600E as a blood marker, more sensitive 
technologies must be designed and validated to improve the sensitivity and specificity of 
the assays used to detect this mutation. 
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