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1. Introduction 

Adult stem cells are defined as clonogenic, self-renewing progenitor cells that reside in adult 
tissues and can generate one or more specialized types of cells required for the function of 
that tissue. The majority of adult tissues contain their own stem/ progenitor cells that are 
capable of maintaining, generating, and replacing terminally differentiated cells within the 
tissue in response to physiologic cell turnover or tissue damage resulting from injury. Stem 
cell populations in the bone marrow were the first adult stem cell populations to be 
described, but in recent years adult stem populations have been demonstrated in the brain,1, 

2 skin, 3 and muscle 4, hair follicle  and the gastrointestinal tract. Adult stem cells, especially 
hematopoietic stem cells, are the best understood cell type in stem cell biology 5, yet they 
remain an area of intense study, as their potential for therapy may be applicable to a myriad 
of degenerative disorders. These cells are a particularly attractive option for cell therapy and 
tissue engineering applications because they can be used in autologous therapies, thus 
avoiding any complications associated with immune rejection. 
Research into adult stem cells has progressed slowly in the past, mainly because true stem 
cells are present in extremely low numbers in adult tissue6-8, and because adult non-
mesenchymal stem cells have been challenging to isolate, expand and maintain in culture. 
Some cells, such as those of the liver, pancreas and nerve, have very low proliferative 
capacity in vitro, and the functionality of some cell types is reduced after the cells are 
cultivated. These issues have limited the use of adult stem cells in tissue engineering and 
cell therapy research. However, the discovery of native targeted progenitor cells has 
allowed some of these limitations to be overcome. Native targeted progenitor cells are tissue 
specific unipotent cells derived from most organs. These cells are already programmed to 
become a specific cell type, and as with adult stem cells, native progenitor cells can be 
obtained from the specific organ to be regenerated, expanded, and used in the same patient 
without rejection, in an autologous manner 9-26. By studying the niche in which the 
progenitor cells reside, as well as by exploring conditions that promote the differentiation of 
these cells, it has been possible to overcome some of the problems facing cell expansion in 
vitro. Major advances in cell culture techniques have been made within the past decade, and 
these techniques make the use of autologous cells possible for clinical application. In this 
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chapter, we will focus on the use of autologous cells for regeneration and/or repair of the 
urinary tract.  

2. Stem / progenitor cells derived from the genitourinary tract 

Bladder 

Adult human stem/progenitor cells from urinary tract system have been recently described 
and characterized 6,27. It has been shown experimentally that the bladder neck and trigone 
area have a higher density of urothelial progenitor cells 28, and these cells are localized in the 
basal region 29. In the past, it was possible to grow urothelial cells in the laboratory setting, 
but only with limited success. However, several protocols have been developed over the last 
two decades that have improved urothelial growth and expansion by enhancing culture 
conditions to support proliferation and differentiation of urothelial progenitor cells 17, 30-32. It 
is now possible to expand a urothelial strain from a single surgical specimen that initially 
covers a surface area of 1 cm2 to one covering a surface area of 4202 m2 (the equivalent area 
of one football field) within 8 weeks17. Now, normal human bladder epithelial and muscle 
cells can be efficiently harvested from surgical material, extensively expanded in culture, 
and their differentiation characteristics, growth requirements, and other biologic properties 
can be studied 17, 19, 20, 31-40. In addition, human urothelial and muscle cells can attach and 
form sheets of cells when seeded onto polymer scaffolds. The cell-polymer scaffold can then 
be implanted for repairing urological tissue defects. Histological analysis indicates that, 
within the cell-polymer construct, viable cells are able to self assemble back into their 
respective tissue types, and they retain their native phenotype 11.  
To determine whether these engineered tissues could be implanted in continuity with the 
urinary tract, large animal models of bladder augmentation were used 22. Partial 
cystectomies were performed in dogs and the animals were divided into 2 experimental 
groups. In one group, the bladder was augmented with a non-seeded bladder-derived 
collagen matrix, and in the second group, the bladder was augmented with a cell-seeded 
construct. The bladders augmented with seeded matrices demonstrated a 100% increase in 
capacity compared with bladders augmented with cell-free matrices, which only generated 
a 30% increase in capacity.  
It has been known for a number of years that the bladder is able to regenerate generously 
over cell-free scaffolds, because urothelium has a high reparative capacity 41. However, 
bladder muscle tissue is less likely to regenerate in the same fashion as urothelium, which 
leads to contracture or resorption of the graft. In addition, the inflammatory response 
toward the materials used to form the graft matrix may contribute to the resorption of cell-
free grafts as well. The dog study demonstrated a major difference between matrices used 
with autologous cells (tissue-engineered matrices) and those used without cells 22. The 
matrices seeded with cells prior to use in bladder augmentation retained most of their 
implanted diameter, as opposed to the matrices implanted without cells, in which graft 
contraction and shrinkage occurred. As in previous studies, the histomorphology 
demonstrated a lack of muscle cells and a more aggressive inflammatory reaction in the 
unseeded matrices. 
The results of initial studies showed that the creation of tissue engineered bladders using 
autologous urothelial and smooth muscle cells could be achieved; however, it could not be 
determined whether the improvement in functional parameters noted was due to the 
implanted segment or to the remaining native bladder tissue. To better address the 
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functional parameters of tissue-engineered bladders, additional animal model of subtotal 
cystectomy with subsequent replacement with a tissue-engineered organ was created25. In 
this model cystectomy-only and non-seeded controls maintained average capacities of 22% 
and 46% of preoperative values, respectively. An average bladder capacity of 95% of the 
original precystectomy volume was achieved with the cell-seeded tissue engineered bladder 
replacements. These findings were confirmed radiographically. The subtotal cystectomy 
reservoirs that were not reconstructed and the reservoirs reconstructed with unseeded grafts 
showed a marked decrease in bladder compliance (10% and 42% total compliance, 
respectively). In contrast, the compliance of the tissue-engineered bladders showed almost 
no difference from preoperative values (106%). Histologically, the non-seeded scaffolds 
resulted in a structure composed of normal urothelial cells with a thickened fibrotic 
submucosa and a thin layer of muscle fibers. The retrieved tissue-engineered bladders showed 
a normal cellular organization, consisting of a trilayer of urothelium, submucosa, and muscle. 
Immunocytochemical analyses confirmed the muscle and urothelial phenotypes, and 
indicated the presence of neural structures 25. These studies, performed with polyglocolic acid 
based-scaffolds, have been repeated by other investigators, showing similar results in large 
numbers of animals long-term 42, 43. Subsequent studies indicated that biodegradable scaffolds 
seeded with cells can be used without concerns for local or systemic toxicity 44.  
Bladder tissue engineered using autologous cells has been used clinically. A small clinical 
study was conducted starting in 1998. Seven patients were treated using a collagen scaffold 
seeded with cells taken from biopsies of their own bladders,  either with or without omental 
coverage, or a combined PGA-collagen scaffold seeded with cells and omental coverage. The 
patients reconstructed with the engineered bladder tissue created with the PGA-collagen 
cell-seeded scaffolds with omental coverage showed increased compliance, decreased end-
filling pressures, increased capacities and longer dry periods over time 45. It is clear from 
this small study that the engineered bladders continued their improvement with time, 
suggesting continued development in vivo. Although the experience is promising, it is just a 
start and the technology is not yet ready for wide dissemination, as further experimental 
and clinical studies are required.  

Kidney 

Kidney has long been considered an organ that is incapable of true regeneration. 
Furthermore, the question of whether or not the kidney contains adult stem cells remains 
controversial. However, increasing evidence of a regenerative response in the kidney has 
been observed following the injury resulting from both toxic and ischemic insults. These 
observations include evidence of renal progenitors of specific cell types involved in the 
formation of new renal tubular cells and the recovery of renal function recovery after 
ischemic injury. The presence of injured or dead cells following ischemia causes denudation 
of the tubular basement membrane, and sloughed cells and cellular debris fills tubular 
lumens. The kidney responds to the ischemic injury with a prompt regenerative response, 
resulting in regenerating tubules and improving kidney function.  Although they remain 
elusive, the cells participating in renal regeneration are likely from pools of both exogenous 
and endogenous stem cells. The exogenous stem cells are probably largely derived from 
bone marrow, and may be both hematopoietic and mesenchymal stem cells. In some studies, 
these cells appear to home to damaged sites in the injured kidney and form tubular 
epithelial cells following acute renal injury 46-49. These MSC might also produce growth 
factors such as IGF-1 to promote renal repair 50. The endogenous stem cells are resident 
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kidney stem cells found in the renal tubules and the papilla51, 52. They are inactivated under 
physiological conditions. These stem cells posses the capacity to give rise renal tubule cells 
following injury repair 53, 54. A recent study showed that repopulation of damaged renal 
tubules occurs primarily from proliferation of tubular epithelial cells and resident renal-
specific stem cells, with some contribution of paracrine factors from bone marrow-derived 
mesenchymal stem cells 55-56.  

Testis 

Primordial germ cells (PGC) are the embryonic progenitor cells of the gametes 
(spermatogonial stem cells and ova). In vivo, PGC colonize the gonadal ridge during early 
embryonic development and are then restricted to producing the gametes. However, if PGC 
are cultured in vitro in the presence of specific growth factors, they are able to form 
pluripotent embryonic germ cells (EGC) through a process that is relatively similar to that of 
nuclear reprogramming and generation of induced pluripotent (iPS) cells in the laboratory 
(discussed later in this review) 57. These cells can contribute to all cellular lineages in 
chimeric embryos, including the germline. They also form teratomas when injected into 
immunocompromised animals.  
For regenerative medicine purposes, PGC are not ideal, because they are derived from 
embryos and there are a number of controversial ethical issues surrounding the 
manipulation of human embryos. However, there has been much interest in isolating and 
describing spermatogonial stem cells (SSC) in recent years. The presence of SSC, which are 
derived from PGC in the testis, was originally inferred from the presence of ongoing 
spermatogenesis in the adult male.  Recently, the cells believed to be the actual SSC were 
isolated from the adult testis of both mice and humans through selection of the markers 
STRA-8, GPR125, CD49fm, CD133 and others58, 59 60. Interestingly, when SSC from both mice 
and humans are cultured in specified media containing growth factors known to be 
required for maintenance of pluripotency of other types of stem cells, such as leukemia 
inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), they appear to 
convert to an embryonic stem (ES) cell like state.60  These converted cells have been termed 
adult germline stem cells (aGSC) and they can differentiate into a number somatic cell types 
encompassing all three embryonic germ layers when they are exposed to the same 
conditions used to differentiate ES cells. They also form teratomas when implanted in vivo. 
These results suggest that SSC, which can be obtained through a small testicular biopsy, 
may be useful for the development of cell-based, autologous organ regeneration strategies. 
However, more research is required to overcome additional hurdles before this technology 
can be used clinically. In addition, since autologous regeneration strategies based on SSC 
would only benefit males, researchers are working to identify and describe similar 
pluripotent cells that may reside in an ovarian niche for use in females. 

Urine   

We recently demonstrated that it is possible to isolate and expand stem/progenitor cells 
from human urine6. Approximately, 0.2% of cells collected from urine express markers 
characteristic of mesenchymal stem cells (MSC), can expand extensively in culture, and can 
differentiate towards multiple bladder cell lineages as identified by the expression of 
urothelial, smooth muscle, endothelial and interstitial cell markers. We initially referred to 
these cells as urine progenitor cells. However, our more recent experiments indicated that 
urine-derived cells can give rise to additional specialized types, including osteocytes, 
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chondrocytes, and adipocytes. Furthermore, these cells have self-renewal capability 
consistent with stem cells. There is now sufficient evidence to provisionally designate them 
as urine-derived stem cells (USC). 
Three types of cells exist in urine: differentiated, differentiating and progenitor cells. Most 
cells in urine are fully differentiated. They do not attach to tissue culture plates. About 0.1% 
of cells in urine are differentiating cells, which do attach to plates and display the 
morphology and protein markers of various bladder cell lineages. However, these cells do not 
expand further after subculture. About 0.2% of the cells in urine have a phenotype consistent 
with multipotent stem cells. USC are easily cultured, appear genetically stable after a number 
of passages, and maintain the ability to give rise to more differentiated progeny.  
USC comprise an average of about 7 cells/100ml urine (from 5 to 10 cells/100 ml urine). We 
have shown that, a few days after being placed in a tissue culture well, a single cell forms a 
cluster of cells which appeared small, compact and uniform. A consistently high yield of 
cells was achieved from each of these clonal lines. The cells reached confluence in about two 
weeks when placed in a 3-cm diameter well at passage one. At passage 2, cells were plated 
in 10 cm culture dishes and a cell number of approximately one million was reached in 3.5 
weeks. Finally, in six to seven weeks, the cultures expanded to approximately 100 million 
cells at passage four. These cells displayed normal exponential cell growth patterns, with a 
steady increase in cell numbers during a 10-day culture period. The average population 
doubling time was 31.3 hours in mixed media. These urine-derived cells also showed the 
ability to differentiate into various cell lineages as described below, and were capable of 
growing for at least 14 passages in vitro.  
Cells from human urine specimens could be consistently cultured long-term using a 
medium that we originally developed for culture of rat urothelium61. However, the 
phenotype of the cultured human urine-derived cells was not that of primary urothelial 
cells. The primary cultures from urine did not show expression of the cytokeratins (CK7, 
CK13, and CK19/20), which are characteristic of epithelial cells, nor did the cells express the 
urothelial-specific protein uroplakin. After growth in medium containing higher levels of 
epidermal growth factor (EGF), the cells were induced efficiently to express the cytokeratin 
proteins and uroplakin6. However, after growth in myogenic medium, the cultured cells 
expressed markers consistent with smooth muscle, including alpha-smooth muscle actin (┙-
SM actin), desmin, calponin, and myosin6. This led us to conclude that the urine-derived 
cells were progenitors (initially designated UPC) capable of giving rise to both urothelium 
and bladder smooth muscle. Furthermore, we found that the cells displayed a surface 
marker phenotype consistent with mesenchymal stem cells (MSC). Specifically, they 
expressed CD 44, CD73, CD90, CD105, and CD 146, and they were negative for both 
hematopoietic markers and endothelial markers including CD45, CD34, and CD31. We 
concluded that the urine-derived progenitors were at least bipotential for the major bladder 
cell types. This result was surprising, because it was generally believed that muscle and 
epithelial cells in bladder represent separate cell lineages derived from mesoderm and 
endoderm, respectively. We have recently observed that the urine-derived cells express 
markers typical of mesenchymal stem cells (MSC) and pericytes, and that they can 
differentiate to yield the characteristic cell lineages obtained from MSC, namely, osteocytes, 
adipocytes and chondrocytes 62.  
In our recent study, USC clones could be obtained from 85% of urine sample tested. Fresh 

urine gave the highest rate of colony formation (67%) and urine stored at 4° C the lowest 
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(30%). Urine from volunteers aged 13-40 gave the highest rate of clone recovery. 
Catheterization significantly enhanced the number of USC in urine compared to 
spontaneously voided urine, possibly because catheterization resulted in cells being scraped 
off the inner bladder wall. Collecting triple urine samples increased the rate of clone 
formation. 
There are many potential advantages to using USC as a cell source for urological tissue 
engineering. First, cells can be easily harvested and grown in culture. USC do not require 
enzyme digestion or culture on a layer of feeder cells to support cell growth. Second, since 
invasive surgical biopsy procedures are not necessary to harvest cells from urine, patient 
morbidity and potential complications, such as urethral or bladder trauma and urinary tract 
infections, are avoided. As USC are autologous somatic cells, no ethical issues are involved 
in their use for tissue reconstruction, and no immune reaction to engineered implants 
should occur.  
The quality of cells obtained from urine is similar to that of the biopsy-derived cells 
described above. When differentiated, USC express all proteins characteristic of the various 
bladder cell lineages. Karyotype analysis has demonstrated that these cells are genetically 
stable. Importantly, there is a major cost advantage to using USC – it costs about $50 to 
obtain cells from urine, versus about $5,000 to isolate cells from a biopsy procedure6. About 
1.4 x109 urothelial and smooth muscle cells (SMC) are required for bladder tissue 
regeneration63. We estimate that 3-4 urine samples (about 40-45 USC/600 ml urine) 
expanded for 4-5 weeks would yield a sufficient quantity of low passage, healthy cells for 
clinical tissue engineering applications. This time frame is comparable to that required for 
expansion from a tissue biopsy (7-8 weeks)64. USC and the cells obtained through urological 
tissue biopsies come from the same urinary tract systems and have similar biological 
features. Therefore, collecting cells from urine could be an attractive alternative to the 
standard urological tissue biopsies currently used in cell therapy and tissue engineering.  

3. Stem/progenitor cells derived from non-urological tissues 

Despite the convenience of using differentiated cells in tissue engineering applications, these 
cells have several shortcomings. These cells have a limited ability to grow in culture and they 
tend to dedifferentiate in vitro, which may lead to insufficient numbers of cells. In addition, 
autologous bladder cells cannot be taken from patients with urinary tract malignancies. One 
solution to these problems is to prepare engineered tissues using stem cells from various 
sources. These types of stem/progenitor cells from non-urological tissue have been studied as 
cell sources for bladder regeneration and cell therapy for stress urinary incontinence.  

Mesenchymal stem cells  

Mesenchymal stem cells (MSC), isolated from bone marrow, skeletal muscle, and adipose 
tissue, possess the capacity to differentiate into cells of connective tissue lineages, including 
muscle. Isolation and characterization of MSC, and control of their myogenic differentiation 
derived from both pre-clinical and clinical studies have attracted attention to their potential 
use in urological regenerative medicine and tissue engineering. 
Currently, the most effectively characterized types of multipotent stem cells are from bone 
marrow. Bone marrow stem cells (BMSC) have been shown to differentiate into specialized 
cells, including hepatocytes65-67, neural cells68-71 and mainly mesodermal derivatives such as 
bone, cartilage, cardiac muscles, skeletal muscle, and fat. If BMSC are placed on a proper 
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bio-degradable scaffold and implanted, they can act as anti-fibrotic, angiogenic, anti-
apoptotic, and mitotic agents. Recently, BMSC were evaluated as an alternative cell type for 
use in replacement of bladder SMC when native bladder muscle tissue is unavailable. The 
potential of BMSC to differentiate into cells with bladder SMC characteristics was assessed 
in vitro72 and in different animal models 73-78. Kanematsu et al75  showed that in vitro, both 
supernatants from cultured rat bladder cells (conditioned media) or media containing TGF-
┚ and VEGF induced bone marrow cells to adopt a SMC phenotype. Recently, we have 
investigated the impacts of soluble growth factors, bladder extracellular matrix (ECM), and 
3D dynamic culture on cell proliferation and differentiation of human BMSC into smooth 
muscle cells (SMC)72. Myogenic growth factors (PDGF-BB and TGF-β1) alone, or combined 
either with bladder ECM or dynamic cultures, induced BMSC to express smooth muscle 
specific genes and proteins. Either ECM or the dynamic culture alone promoted cell 
proliferation but did not induce myogenic differentiation of BMSC. A highly porous 
nanofibrous poly-L-lactic acid (PLLA) scaffold provided a 3D structure for maximizing the 
cell-matrix penetration, maintained myogenic differentiation of the induced BMSC, and 
promoted tissue remolding with rich capillary formation in vivo. This study demonstrates 
that myogenic-differentiated BMSC seeded on a nanofibrous PLLA scaffold can be used for 
cell-based tissue engineering for bladder cancer patients requiring cystoplasty. 
In order to test this in vivo, bone marrow cells expressing green fluorescent protein were 
transplanted into lethally irradiated rats. Eight weeks following transplantation, bladder 
domes were replaced with acellular matrix grafts. Two weeks after the graft procedure, GFP 
expression in the matrices indicated that the transplanted marrow cells had repopulated the 
graft. By 12 weeks, these cells reconstituted the smooth muscle layer, with native SMC also 
infiltrating the graft. In another rat study74, rapid regeneration of bladder SMC and 
urothelium occurred on BMSC seeded collagen matrices, whereas fibrotic changes were 
observed in the non-seeded matrix group 3 months after bladder augmentation. In a large 
animal study73, BMSC proliferated at the same rate as primary cultured bladder SMC in 
vitro, and they had a similar histological appearance and contractile phenotype as primary 
cultured bladder SMC. BMSC had a significant contractile response to calcium-ionophore in 
vitro, and this response was similar to that seen in bladder SMC but markedly different from 
fibroblasts. Immunohistochemical staining and Western blotting indicated that BMSC 
expressed ┙ -smooth muscle actin, but did not express desmin or myosin. In vivo, small 
intestinal submucosa (SIS) grafts seeded with BMSC developed solid smooth-muscle bundle 
formations throughout the grafts, as did bladder cell-seeded SIS grafts. However, bladder 
tissue regeneration did not occur in animals that received cell-free scaffolding. These results 
indicate that BMSC may provide an alternative cell source for bladder tissue engineering. 
This is relevant for patients with bladder malignancies who require bladder augmentation 
or replacement but do not have enough normal, non-malignant bladder cells to use in tissue 
engineering applications.  
Other MSC such as skeletal muscle-derived progenitor cells 79-88 89-92 and adipose stem 
cells80, 90, 91, 93-98 have been investigated as potential candidates for cell-based tissue 
engineering and injection therapy stress urinary incontinence (SUI), and these studies are 
further described in Section 5.  

Induced pluripotent stem cells  

iPS cells are a type of pluripotent stem cell that is artificially derived from a patient’s own 
somatic cells (a non-pluripotent cell) by inducing a "forced" expression of certain genes. iPS 
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cells were first produced in 2006 from mouse cells and then in 2007 from human cells. iPS 
cells are typically derived by transfecting stem cell-associated genes into non-pluripotent 
cells, such as adult fibroblasts. Transfection is typically achieved through viral vectors, such 
as retroviruses. Transfected genes include the master transcriptional regulators Oct-3/4 
(Pouf51) and Sox2, although it is suggested that other genes may enhance the efficiency of 
induction. After 3–4 weeks, small numbers of transfected cells begin to become 
morphologically and biochemically similar to pluripotent stem cells, and these cells are 
typically isolated through morphological selection or through a reporter gene and/or 
antibiotic selection. This has been cited as an important advancement in stem cell 
research, as it may allow researchers to obtain pluripotent stem cells, which are important 
in research and potentially have therapeutic uses in urology, without the controversial use 
of embryos. 
iPS cells are believed to be similar to natural pluripotent stem cells, such as embryonic stem 
(ES) cells in many respects, including expression of certain stem cell genes and proteins, 
chromatin methylation patterns, doubling time, embryoid body formation, teratoma 
formation, viable chimera formation, potency and differentiability, but the full extent of 
their relation to natural pluripotent stem cells is still being assessed. 
However, depending on the methods used, reprogramming of adult cells to obtain iPS cells 
may pose significant risks that currently limit the use of this technique in human therapy. 
For example, if viruses are used to genetically alter the cells, expression of oncogenes may 
potentially be triggered. In February 2008, a report published in the journal Cell announced 
the discovery of a technique that removed the need for oncogenes such as c-myc in 
induction of pluripotency, thereby increasing the potential use of iPS cells in human 
diseases. Even more recently, in April 2009, Sheng Ding in La Jolla, California, showed that 
the generation of iPS cells was possible without any genetic alteration of the adult cell 99. 
Repeated treatment of the cells with certain proteins channeled into the cells via poly-
arginine anchors was sufficient to induce pluripotency. The cells generated by this process 
are known as protein-induced pluripotent stem cells (piPS cells). 

Human Amniotic Fluid Stem Cells  

Human amniotic fluid cells are commonly used clinically as a diagnostic tool for the 
prenatal diagnosis of fetal genetic anomalies. Recently, increasing evidence demonstrated 
that fetal-derived stem cells can be isolated from amniotic fluid. These cells represent a 
novel class of pluripotent stem cells with intermediate characteristics between embryonic 
and adult stem cells, as they are capable of giving rise to lineages representative of all three 
germ layers but do not form teratomas when implanted in vivo100. These features, in addition 
to the absence of ethical concerns about their use, indicate that amniotic fluid stem (AFS) 
cells might be a promising cell source for tissue engineering and stem cell therapy. Perin et 
al 101-103 have recently reported that AFS cells may be useful for kidney regeneration. In a 
series of studies, this group demonstrated that these pluripotent cells are able to 
differentiate into de novo kidney structures during organogenesis in vitro. Human male 
amniotic fluid cells were isolated between 12 and 18 weeks of gestation. AFS cells were 
isolated from these cultures and labeled with green fluorescent protein and Lac-Z protein. 
Labeled human AFS cells were then microinjected into murine embryonic kidneys (12.5–18 
days gestation) and these were maintained in a co-culture system for 10 days. Histological 
analysis revealed that human AFS cells were able to contribute to the development of 
elemental kidney structures including renal vesicles, and C- and S-shaped bodies. 
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Expression of the early kidney markers zona occludens-1, glial-derived neurotrophic factor 
and claudin were confirmed by RT-PCR. Therefore, it is possible that amniotic fluid stem 
cells represent a potential cell source for future renal cell therapies. 

4. Approaches for inducing myogenic differentiation of stem cells 

When stem cells are used as a cell source for urological tissue engineering and regeneration, 
they can be used three ways: 1)  stem cells can be induced to differentiate into the target 
cells/tissue–like cells in vitro before cell implantation; 2) stem cells are implanted directly 
into the tissues where repair is needed, and the surrounding cell- and tissue-based signals 
induce the stem cells to differentiate into the specific cells required for regeneration, and  3) 
a cell-free scaffold is implanted and recruits  the host’s own stem/progenitor cells, which 
then differentiate into the proper cell type required for tissue repair.  
Current research tends to focus largely on the first strategy described above to allow control 
over the signals that the cells receive so that differentiation into the tissue type required 
progresses without problems. For this strategy, it is necessary to mimic the physiological 
conditions that guide stem cells to differentiate into the desired target cells before 
implantation. For example, several factors have been shown to enhance autologous adult 
stem cell differentiation into functional SMC, including:  
i. Growth factors, such as vessel endothelial growth factor (VEGF), platelet-derived 

growth factor (PDGF-BB), transforming growth factor-┚ (TGF-β) and insulin-like 
growth factor (IGF)104,  

ii. Components of the extracellular matrix (ECM). Cellular interactions with the ECM play 
an important role in cell adhesion, growth, migration, apoptosis and differentiation 105. 
It consists of compounds such as collagen, laminin 106, and fibronectin. Collagen IV can 
promote embryonic stem cells to differentiate into stem cell antigen-1-positive (Sca-1+) 
progenitor cells and SMC107. However, ECM can promote adult cell proliferation or 
improve the yield of SMC derived from adult MSC, but ECM alone cannot induce adult 
MSC to differentiate into SMC108, 109. Additionally, culture on a three-dimensional ECM 
scaffold in a dynamic culture system can improve cell proliferation, maintain cell 
phenotypes and lead to a more homogenous distribution of cells on the scaffold 110, 111 
when compared to 2-D static culture.  

iii. In vitro co-culture of fully-differentiated SMC and stem cells appears to improve stem 
cell differentiation into muscle cells, most likely because the SMC secrete specific 
factors into the culture medium. Baskin et al demonstrated that mature urothelium 
can induce urological embryonic tissue or stem cells to differentiate into smooth 
muscle cells in vivo through epithelial-stromal cell interaction or cell-cell interaction. 
In contrast, the embryonic tissue failed to differentiate into SMC when urothelium 
was not present112. Because of this, conditioned medium is commonly used for stem 
cell differentiation. Conditioned medium is essentially culture medium that is 
partially used by cells, and it is enriched with cell-derived material including small 
amounts of growth factors.  

iv. The application of cyclic mechanical strain to cell cultures has been demonstrated to 
increase the expression of smooth muscle cell markers in stem cells113. Periodic 
stretching occurs in vivo as a part of the natural function of hollow organs; for example, 
as the bladder fills and empties. Differentiated SMC easily lose their contractile function 
in static culture once the cells leave the body, but the use of mechanical strain in culture 
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can prevent this spontaneous loss of phenotype in vitro and maintain SMC functional 
characteristics114. 

5. Autologous stem cells for endoscopic therapies 

Another exciting area of clinical urologic investigation is the use of various autologous 
cells to treat vesicoureteral reflux (VUR) and SUI. An increasing number of clinical trials 
using tissue engineering approaches have been reported (Table 1). All of these clinical 
applications of urological tissue engineering are based on a series of successful animal 
experiments115, 116, 117. 
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Table 1. Potential use of autologous stem/progenitor cells for urological tissue engineering 
and cell therapy  

Endoscopic therapy offers a simple method for definitive treatment in SUI and VUR. Two 
types of injectable substances have been investigated. First, natural and synthetic 
biomaterials that serve as bulking agents, such as silicone, fibrin, bioglass, polyvinyl alcohol 
foam, alginate gel, a small-intestinal submucosal suspension and Defulx have been used118. 
Currently, injectable therapy based on bulking agents is used for only about two-thirds of 
patients with SUI, with even lower cure rates. Potential problems of these injectable 
substances include decreasing volume of the injectable substance over time in vivo,  the need 
for multiple injections to obtain and maintain optimal efficacy, potential antigenicity of the 
injectable and related allergic reactions, migration of the injected material, and urethral pain 
both at the time of injection and afterward. The ideal bulking agent should remain 
efficacious over time and have few side effects, but so far, none of the substances in use have 
met these criteria for success and the search for a superior injectable therapy for SUI 
continues. 
Cell-based therapy is a promising alternative in urological procedures for VUR and USI. 
Autologous cells that can be used for this purpose include chondrocytes115, 119, adipose-
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derived stem cells (ASC) 120-122, BMSC 121, 123, and skeletal muscle derived progenitor cells 85, 

124-127. In 1994, Atala et al proposed the use of injectable autologous chondrocytes to correct 
VUR via endoscopy 12, 128. Using a minipig model, they noted that autologous chondrocytes 
injected around the ureter to stop reflux did not migrate and the cartilage bead produced by 
this technique maintained its volume with time. Reflux was corrected in all animals treated 
endoscopically with autologous chondrocytes. After these successful animal experiments, 
several clinical trials have begun115, 119. One study 129 was conducted in a total of 29 children 
(46 ureters) with grades II to IV reflux. Chondrocytes were harvested from a biopsy of each 
patient’s ear cartilage and were grown in culture for 6 weeks. Patients then returned to the 
clinic for transurethral injection of chondrocytes into the bladder trigone to correct reflux. 
Ultrasound was performed 1 month after this procedure and radionuclide cystography was 
done 3 months postoperatively to confirm reflux resolution. When reflux persisted, repeat 
treatment with stored chondrocytes was offered. In this study, a single chondrocyte injection 
corrected reflux in 26 of the 46 ureters (57%), while secondary injection was successful in 12 
of 19 (63%). Overall, reflux was corrected in 38 of the 46 ureters (83%) and in 24 of the 29 
patients (83%). There were no significant complications, and transurethral injection of 
autologous chondrocytes to correct VUR in children appears to be an effective and safe 
technique. The only limitation of this therapy is the high cost.  
The use of myocyte- and stem cell-based injection therapy has also been tested in VUR cases. 
Primary VUR is a congenital anomaly of the ureter-vesical junction that creates a deficiency 
of the longitudinal muscle of the intravesical ureter. This leads to an inadequate valvular 
mechanism and allows urine to flow backward from the bladder to the kidney. Thus, 
myocyte-based therapies are attractive options for the recovery of this muscle defect at the 
ureteral orifice.  
Autologous progenitor cell-based therapy has also made significant progress in treatment of 
SUI. This cell therapy could soon become a standard procedure. The objective of this 
therapy is to improve or cure the sphincter dysfunction via periurethral endoscopic 
injection. Currently, myoblasts obtained from skeletal muscle biopsies and adipose-derived 
cells are the most commonly used cells for therapy for SUI. Recently, autologous myoblasts 
and fibroblasts have been evaluated as a potential injectable therapy for SUI. One group130-

133 has studied a combination therapy consisting of autologous myoblasts injected into the 
rhabdosphincter and fibroblasts injected into the urethral submucosa. A year follow-up 
study of 123 women was performed from 2004 to 2005. A cure rate of about 79% with 
improvements in quality-of-life scores, rhabdosphincter contractility, and urethral closure 
pressures has been achieved. All patients were continent 1 year after receiving this therapy 
and maintained their good outcome at further follow-up visits. Ultrasound images before 
treatment clearly revealed poor periurethral integrity of the sphincteric mechanism; 
postinjection images revealed a completely normal-appearing urethra. 
Rodriguez et al recently reported that adipose-derived stem cells (ASC) have the potential to 
differentiate into functional SMC89 . ASC expressed a series of contractile proteins, including 
┙-SM actin, desmin, myosin heavy chain, calponin, caldesomon, smoothlin, and SM22 
following aspiration from fat tissue and culture in SM differentiation medium. One 
important advantage of using ASC is that adipose tissue can be harvested in large quantities 
with minimal morbidity. Autologous fat tissues were used for cell injection therapy for 
vesicoureteral reflux in a clinical study 134. Two out of 11 patients had a reduction in grade 
of reflux, including one ureter that ceased refluxing altogether135. One recent study136  
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showed ASC could correct neurogenic  erectile dysfunction in rats as effectively as bone 
marrow stem cells did. More research is underway to determine whether ASC can 
differentiate into Leydig, Sertoli and male germ cells. The eventual goal of the research is to 
use ASC to treat male infertility and testosterone deficiency. 

6. Conclusions 

Current advances in urological tissue engineering and stem cell-based therapy demonstrate 
that bladder and urethral tissues can be regenerated using autologous cells seeded onto 
biodegradable scaffolds. VUR and SUI can be corrected with injections of autologous stem 
cells contained in a hydrogel. However, many issues must be elucidated before these 
techniques can become widely used in the clinic. For example, the role of donor cells in 
tissue regeneration remains unclear, and it is not known whether the seeded stem cells 
proliferate and populate scaffold materials themselves, or if they stimulate to the activation, 
migration, proliferation, and differentiation of the local progenitor cells to complete the 
tissue regeneration. Additionally, an approach to promote angiogenesis and to facilitate 
innervation with a functional network of regenerated nerves will greatly improve tissue 
regeneration strategies to create a de novo urological organ. (6,015 words) 
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