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1. Introduction 

Engineered cells replacing tissues should mimic the three-dimensional (3D) structure and 

reflect the different cell phenotypes exhibited by the lost or damaged tissue (Raimondi 

2006; Keung, Healy et al. 2010). The engineered cells should also demonstrate a certain 

plasticity, i.e. an ability to adapt to the environment, in which they are deposited, 

reflecting the minute differences in features necessary to rebuild a functional tissue, which 

is able to renew itself over time (Grad and Salzmann 2009; Ohishi, Chiusaroli et al. 2009; 

Tare, Kanczler et al. 2010). 

Osteoblastic cells in bone need to be able to involve themselves in a remodelling cycle with 

osteoclasts (Hanada, Hanada et al. 2010; Trouvin and Goeb 2010), which may be recruited 

from surrounding bone structures, and/or may be furnished as preosteoclasts within the 

population of osteoblasts. Furthermore, the osteoblasts should be able to undergo a distinct 

alteration in terms of life-span defined characteristics (Lian and Stein 2003; Lian, Stein et al. 

2006; Gordeladze, Reseland et al. 2009), including the transition to osteocytes. Finally, the 

newly formed engineered tissue does not survive unless it develops a vascular network 

(Matsumoto, Kuroda et al. 2008; Grellier, Bordenave et al. 2009) furnishing the bone tissue 

with oxygen, growth factors and nutrients.  

Chondrocytes in engineered cartilage should be able to produce an extracellular matrix 

reflecting the composition, water-binding capacity and mechanical characteristics of true 
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hyaline cartilage (Knecht, Vanwanseele et al. 2006; Heinegard 2009; Bertrand, Cromme et al. 

2010; Goldring and Goldring 2010). This type of cartilage exhibits certain features, such as 

hypoxic conditions and chondrocytes demonstrating gradients of gene transcript levels (cell 

phenotype plasticity) between the juxta-luminal and bone-lining surfaces of a joint 

(Grimshaw and Mason 2001; Lu, Subramony et al. 2010; Oh, Kim et al. 2010). 

The features listed above have been extensively described and confirmed in the literature, 

however, a joint approach to produce well adapting engineered osteoblasts and 

chondrocytes has hitherto not been the subject of review articles or book chapters. The 

present outline encompasses a combined literature review of phenomena to take into 

consideration when engineering such cells from stem cells (SCs): sources of SCs to use 

(Logeart-Avramoglou, Anagnostou et al. 2005; van Osch, Brittberg et al. 2009), genes or 

microRNAs to manipulate (Goldring, Tsuchimochi et al. 2006; Betz 2008; Grundberg, 

Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Gordeladze, Djouad et al. 2009; Lin 

2009; Granchi, Ochoa et al. 2010; Sun 2010; Herlofsen, Kuchler et al. 2011), selection of 

gene and microRNA delivery systems (Saraf and Mikos 2006; Phillips, Gersbach et al. 

2007), choice of humoral growth factors to facilitate SC differentiation (Shahdadfar, 

Fronsdal et al. 2005; Boeuf and Richter 2010; van der Kraan, Davidson et al. 2010), 

selection of appropriate scaffolds to support “asymmetric” SC differentiation (Vinatier, 

Bouffi et al. 2009; Oh, Kim et al. 2010; Seidi, Ramalingam et al. 2011), combination of stem 

cell niches and/or co-cultures to ensure organ mimicry reflecting proper cell-cell 

interactions (Grad and Salzmann 2009; Grellier, Bordenave et al. 2009; Boeuf and Richter 

2010; Tare, Kanczler et al. 2010), mechano-stimulation of cells (Kelly and Jacobs 2010; 

Nowlan, Sharpe et al. 2010), and three-dimensional (3D) organ printing (Williams 2009; 

Visconti, Kasyanov et al. 2010). 

Furthermore, this review also discusses how to stabilize osteoblasts and chondrocytes 

obtained by differentiation of SCs, i.e. how we can make the subject cells resilient to the 

detrimental effects of inflammatory cytokines and T-cells (Gordeladze, Reseland et al. 2009; 

Gruber 2010; Hanada, Hanada et al. 2010; Pacifici 2010), and exosomes shredded from 

immune cells  (Valadi, Ekstrom et al. 2007; Camussi, Deregibus et al. 2010; Zomer, Vendrig 

et al. 2010). 

2. Sources of stem cells for osteoblast and chondrocyte differentiation 

Osteoblast differentiation 

Bone marrow, which is the natural repository of osteoblasts, is widely used as source for bone 

engineering. Under appropriate conditions, bone-derived stem cells (bone mesenchymal stem 

cells = bone MSCs) can differentiate into osteoblasts, chondrocytes, adipocytes, and stromal 

cells (Javazon, Beggs et al. 2004; Otto and Rao 2004; Logeart-Avramoglou, Anagnostou et al. 

2005). The differentiating potency of bone MSCs was enhanced when embedded in diffusion 

chambers or organ capsules, however, there is now a plethora of scaffolds securing the 

development of “proper” osteoblasts to produce bone for tissue replacement purposes. The 

advantage of using bone MSCs is related to the large number of obtainable osteoblasts, their 

high number of passages before the differentiating potential is lost, and their ability to be 

stored frozen for a long period. And the default pathway of bone MSCs is the osteogenic 

pathway (Logeart-Avramoglou, Anagnostou et al. 2005). 
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During the past 10-12 years, many other stem cell sources with osteogenic potential have 

been isolated, including blood, adipose tissue, lung, synovium, skeletal muscle and tooth 

pulp (for review, (Barry and Murphy 2004; Logeart-Avramoglou, Anagnostou et al. 2005; 

Gordeladze, Reseland et al. 2009; Bodle, Hanson et al. 2011; Levi and Longaker 2011; 

Witkowska-Zimny and Walenko 2011)). However, it seems that adipose stem cells (ASCs), 

provided that they are similar to MSCs in terms of surface receptor molecule profile (STRO-

1, CD34, CD45, CD117 negative; CD44, CD49 CD29, CD90, CD105, CD106 positive) 

(Logeart-Avramoglou, Anagnostou et al. 2005; Niemeyer, Krause et al. 2006), may serve as a 

good source for bone engineering (Bodle, Hanson et al. 2011; Levi and Longaker 2011; 

Monaco, Bionaz et al. 2011). Irrespective of whether the source encompasses MSCs or ASCs, 

it seems that “proper” osteoblasts may be obtained if incubation conditions (i.e. the choice of 

growth factor source) and appropriate scaffolds are employed (Logeart-Avramoglou, 

Anagnostou et al. 2005; Kanczler and Oreffo 2008; Kwan, Slater et al. 2008; Gordeladze, 

Reseland et al. 2009; Tiainen, Lyngstadaas et al. 2010; Rahaman, Day et al. 2011; Sabetrasekh, 

Tiainen et al. 2011).  

Chondrocyte differentiation 

As for bone engineering, cartilage engineering relies firmly on the use of MSCs and ASCs 

(van Osch, Brittberg et al. 2009; Boeuf and Richter 2010; O'Sullivan, D'Arcy et al. 2011; 

Witkowska-Zimny and Walenko 2011). Some other sources, i.e. ectodermal cells like skin 

and hair follicles, as well as perinatal tissue and umbilical cord blood (Kuhn and Tuan 2010). 

One article refers to the use of synovial membrane stem cells (SMSCs) and compares their 

potency for chondrocyte differentiation with MSCs and ASCs (Segawa, Muneta et al. 2009). 

The criteria for selection of cell source may vary, but the authors focus on the necessity to 

analyse chondrocytes differentiated from these stem cells and choose the better source 

depending on how close they resemble the gene expression profile of mature chondrocytes 

isolated from hyaline cartilage (Segawa, Muneta et al. 2009; Vinatier, Bouffi et al. 2009; 

Vinatier, Mrugala et al. 2009). 

Differentiating MSCs and ASCs produce all the components constituting ECM and 

represent the cells of choice for engineering articular cartilage. However, adult chondrocytes 

isolated from various sources like articular cartilage, nasal septum, ribs or ear cartilage 

(Kafienah, Jakob et al. 2002; Isogai, Kusuhara et al. 2006) produce de novo cartilage 

displaying the characteristics of its original tissue (Isogai, Kusuhara et al. 2006). It is 

therefore more appropriate to use hyaline cartilage as the preferred source of chondrocytes, 

and a comparison between different sources of hyaline chondrocytes (nasal, costal, and 

articular) has shown the superiority of costal and nasal chondrocytes in terms of quantity of 

cartilage formed after subcutaneous transplantation (Isogai, Kusuhara et al. 2006). One 

major limit related to the use of chondrocytes, is their instability in monolayer culture 

resulting in loss of phenotype (i.e. loss of collagen II, aggrecan and superficial zone protein 

= SZP) (Darling and Athanasiou 2005). Loss of the chondrocytic phenotype is accompanied 

by a phenotypic shift towards fibroblast like cells, which is characterized by an enhanced 

expression of collagen I (Schnabel, Marlovits et al. 2002). This dedifferentiation process is 

reversible, and dedifferentiated chondrocytes arranged in a three-dimensional (3D) lattice 

may retrieve their differentiated phenotype (Domm, Schunke et al. 2002; Malda, van 

Blitterswijk et al. 2003). This is especially true for dedifferentiated chondrocytes, having 
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been ”reversed” some 7-10 days before assuming the fibroblast phenotype (Brinchmann et 

al., unpublished observations).  

The use of chondrocytes from osteoarthritic (OA) cartilage has also been contemplated. 

However, OA chondrocytes are subject to metabolic alterations leading to a low response to 

inductive environmental factors (Fukui, Purple et al. 2001; Sandell and Aigner 2001). 

Although chondrocytes derived from OA patients seem to be less appropriate for articular 

cartilage repair, it has been reported that OA chondrocytes may resume a normal 

chondrocytic phenotype upon 3D-cultivation in vitro (Tallheden, Bengtsson et al. 2005). 

3. Genes and microRNAs as determinants of bone and cartilage quality 

Characteristics of transcriptomes 

When tissue replacement with the aid of tissue engineering is the ultimate therapeutic goal, 

it is vital to understand the differentiation process from precursor cells in terms of gene 

expression. Hence, it is necessary to identify a transcriptome, which is reflecting the “true” 

osteoblast and chondrocyte phenotypes pertaining to the function and localization of such 

cells in the skeleton. Many excellent articles have addressed this task over the past 10 years, 

of which only some are mentioned here (Kulterer, Friedl et al. 2007; Grundberg, Brandstrom 

et al. 2008; Duggal, Fronsdal et al. 2009; Morsczeck, Schmalz et al. 2009; Sundelacruz and 

Kaplan 2009; Bernstein, Sticht et al. 2010; Granchi, Ochoa et al. 2010; Piek, Sleumer et al. 

2010; Sun, Mauerhan et al. 2010; van der Zande, Walboomers et al. 2010; Herlofsen, Kuchler 

et al. 2011). Two transcriptomes featuring putative gene markers of osteoblasts and 

chondrocytes (two each), respectively, will be described in detail. 

Grundberg et al. (Grundberg, Brandstrom et al. 2008) used human trabecular osteoblasts 

stimulated with BMP-2 and dexamethasone for 24 hours. The article refers to genes specific 

for trabecular bone cells (osteoblasts) and genes up-regulated after 2 and 24 hours 

incubation with BMP-2 and dexamethasone, as well as genes altered upon 24 hours 

incubation with dexamethasone alone. Top similarity pathways of cell phenotype 

modulation (as assessed by Ingenuity®) were the IGF-1-, Leptin-, BMP-2- and Wnt-

pathways, indicating a good correlation with the bulk of literature on osteoblast 

differentiation (Gordeladze, Drevon et al. 2002; Komori 2006; Marie 2008; Gordeladze, 

Reseland et al. 2009). The second paper on osteoblastogenesis (Granchi, Ochoa et al. 2010)  

was based on incubation of human MSCs in differentiating medium with dexamethasone 

for 24 hours, and thereafter in mineralizing medium with dexamethasone for 7 days. The 

main groups for the classifications of up-regulated genes were characterized by: 

angiogenesis, apoptosis, bone development, cell communication, cell cycle, embryonal 

development, TGFǃ-signalling, and Wnt-signalling. The cumulative gene lists from these 

reports constituted the osteoblast transcriptome (188 genes) used as osteoblast reference to 

evaluate osteoblast differentiation (see paragraph 11. Bone and cartilage engineering 

revisited). 

As for the chondrocytic differentiation, it is referred to the papers of Bernstein et al. 

(Bernstein, Sticht et al. 2010) and Herlofsen et al. (Herlofsen, Kuchler et al. 2011). Bernstein 

and co-workers used chondrocytes from articular cartilage and MSCs in an intricate array of 

manipulations. The cells were incubated in a differentiating medium containing TGFǃ3 or 

control medium without growth factor. Transcriptomes obtained from the cells were 
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categorized in gene transcripts up-regulated, down-regulated or “unsteady”. The following 

results were obtained: Genes were classified as belonging to groups designated TGFǃ-

related, Wnt-pathway, glycans, actin metabolism, integrins/motility, bone development, 

muscle development, neuronal development, sperm development, and lipid metabolism. 

Comparisons with published gene ontology (GEO) datasets revealed that 1) MSC 

differentiation towards the chondrogenic lineage resembled MSC differentiation in mouse 

embryo limb buds (endochondral differentiation), and 2) an increasing confluence of 

proliferating MSCs will resemble the pellet situation in a timely delayed manner 

(transition from proliferation to differentiation). The paper by Herlofsen et al. describes 

MSCs differentiated to chondrocytes in alginate beads for 21 days in a standard 

differentiating medium with BMP-2. The following gene transcripts COL1A1, COL2A1, 

COL10A1, SOX5, SOX6, SOX9, ACAN, COMP, VCAN, MMP13, ALPL, RUNX2, and SOX8 

were analysed by Q-PCR for verification of differentiation. However, a similarity search, 

where the transcripts for COL2A1 (up-regulated upon differentiation) and CXCL12 

(down-regulated upon differentiation) was compared with the time-course of other genes 

(1072 up-regulated, 898 down-regulated). From these exercises, a joint list was compiled, 

consisting of 261 genes. This cumulative list of genes was used as chondrocyte reference 

to evaluate chondrocyte differentiation (see paragraph 11. Bone and cartilage engineering 

revisited). 

These are just some examples of transcriptomes characterizing cell phenotypes subsequent 

to exposure to differentiating conditions in vitro. Since these experiments have been 

conducted ex vivo, it is reasonable to anticipate that the ultimate transcriptome can only be 

revealed if factors and/or conditions like cell sources, growth factors (adapted incubation 

media), scaffolds or organ printing, mechano-stimulation, gene and/or microRNA 

manipulations, or gene and microRNA delivery systems are all taken into account when a 

final “tissue engineering” process or algorithm is selected.   

Spectrum of microRNAs expressed 

MicroRNAs are short (20-24 nt) non-coding single-stranded RNA molecules that play an 

important role in regulating cellular gene expression. They function at the post-

transcriptional level, by binding mRNA molecules (Gordeladze, Djouad et al. 2009; Lin 2009; 

Beezhold, Castranova et al. 2010). MicroRNAs have been found to play important roles in 

mediating fundamental biological processes like proliferation and differentiation in a 

variety of cells within defined tissues types. Recent reports have suggested that microRNAs 

may play a significant role in bone and cartilage development (Gordeladze, Djouad et al. 

2009; Lin 2009; Sun 2010; Karlsen, Shahdadfar et al. 2011).  

MicroRNAs suppress target gene translation by binding to the 3'-untranslated region (3'-

UTR) of mRNAs, thus repressing translation and/or enhancing mRNA degradation. This 

requires that the 3'-UTR contains at least one specific 6-7 nt sequence which exhibits at least 

partial complementarity to a so-called "seed site," located within the 5'-region of the 

microRNA molecule (Lin 2009; Beezhold, Castranova et al. 2010).  

Despite mounting evidence that miRNAs play a significant role in embryonic development 
and other biological processes, the function of only a handful of miRNAs has been 
determined thus far. And of these miRNAs, only a small subset has been implicated in 
cartilage and/or bone development. These are mir-140 (targeting HDAC4), mir-199a and 
mir-26a (both targeting SMAD1), mir-126 (targeting VCAM1 and HOXA9), mir-125b 
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(targeting ERBB2), mir-145, and mir-146 (Lin 2009). In a recent review article, Gordeladze et. 
al. summarized reports on microRNA species like mir-29b (targeting HDAC4, TGFǃ3, 
ACVR2A, CTNNBIP1, and DUSP), mir-125b (target not specified), mir-133b and mir-135a 
(both targeting SMAD5 and RUNX2), and mir-199b (target not specified) somehow being 
involved in osteochondral development and skeletogenesis (Gordeladze, Djouad et al. 2009). 
Other microRNAs involved in TF-interactions belong to the microRNA family of mir-23a-
27a-24-2 (targeting APC2, RUNX2 and SATB2) (Hassan, Gordon et al. 2010). 
Other studies involving differentiation of human mesenchymal stem cells into osteocytes 

and chondrocytes implicated a different subset of miRNAs. Mir-638 and mir-663 were found 

to be up-regulated in chondrocytes, while mir-24, let-7a, let-7b, let-7c, mir-138, and mir-320 

were associated with osteocyte maturation (Lakshmipathy, Love et al. 2007). We have also 

found (Gordeladze et al., unpublished observations) that the microRNA species 638 and 663 

are up-regulated in chondrocytes as early as 3 days of differentiation from MSCs, but these 

microRNAs are also heavily up-regulated in Th-17 cells differentiated from CD4+ naive T-

cells after 5 days (Yssel et al., unpublished observations). Mir-638 and mir-663 appear to 

have the following targets in common (JUN, FOSB, SP3, and MYC, all of which are 

important for osteoblastogenesis). Finally, a recent survey of the literature revealed that 

several microRNA species (mir-335-5p, mir-27, and mir-29) directly target molecules 

involved in the Wnt-signalling pathway (Kapinas, Kessler et al. 2009; Kapinas, Kessler et al. 

2010; Wang and Xu 2010; Zhang, Tu et al. 2011). 

MicroRNAs directly targeting specific gene markers of bone and cartilage structural ECM 

molecules have not been indisputably identified, however, many microRNAs have been 

shown to affect the steady state levels of such molecules, though probably indirectly. These 

microRNAs are mir-34a, mir-675, mir-21,  mir-146a (COL2A1) (Yamasaki, Nakasa et al. 2009; 

Abouheif, Nakasa et al. 2010; Dudek, Lafont et al. 2010; Kongcharoensombat, Nakasa et al. 

2010), mir-140 (COL2A1, ACAN) (Miyaki, Nakasa et al. 2009), and mir-29b (also directly 

targeting COL1A1, COL5A3, AND COL4A2, as evidenced by the use of 3’-UTR reporter 

assays) (Li, Hassan et al. 2009). 

Interestingly, the expression of microRNAs in osteoblasts and chondrocytes seems to be 

reciprocal, in the sense that the microRNA species highly expressed in chondrocytes are 

virtually absent in osteoblasts (and vice versa). A series of articles on microRNA expression 

profiles in osteoblasts grown in a variety of scaffold composite material have recently been 

published (Annalisa, Furio et al. 2008; Palmieri, Pezzetti et al. 2008; Palmieri, Pezzetti et al. 

2008; Palmieri, Pezzetti et al. 2008), however, the microRNA profiles are not overtly 

compatible with single microRNA studies where proof-of-microRNA-binding has been 

shown. 

The possible role of microRNAs in disease processes like rheumatoid arthritis (RA) and 

osteoarthritis (OA) has been addressed, and a significant up-regulation of mir-155 and 

miR-146a in synovial fibroblasts (RASFs) and synovial fluid derived from patients with 

RA have been documented (Stanczyk, Pedrioli et al. 2008; Duroux-Richard, Presumey et 

al. 2011). These findings unite the concepts of cell-specific microRNA signatures and 

microRNA-exchange between cells in the form of exosomes (Valadi, Ekstrom et al. 2007; 

Zomer, Vendrig et al. 2010). Lastly, predicted polymorphisms in binding sequences for 

mir-146 in the promoter region of the FGF2 have been found (Lei, Papasian et al. 2011), 

implicating microRNAs even more closely with development and treatment of disease 

states. 
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4. Gene and microRNA manipulations and selection of delivery systems 

Osteoblasts and bone engineering 

Biologists have identified several bioactive factors being able to induce or support bone 

generation, including BMPs, TGFǃ, IGF-1, FGFs, LIM mineralizing protein-1 (LMP-1), VEGF 

and caALK2 (activin-receptor like kinase-2, mediating BMP-signalling) (for review, see (Betz 

2008)). Delivery systems frequently used are viral vectors, adenoviral vectors, retroviral and 

lentiviral vectors, adeno-associated vectors (AAV), and non-viral vectors (mostly plasmids). 

Standard transfer procedures comprise electroporation, lipofection and gene-activated 

matrices (GAM) (Betz 2008). Other osteogenic factors of interest for gene manipulation are 

RUNX2, SMADs, DLX3, DLX5, AP-1, and SP7 (osterix) (Marie 2008; Gordeladze, Djouad et 

al. 2009). 
Gene therapy may be based on single genes, however, more successful attempts have been 
made by using combinations of genes, such as BMP + VEGF, BMP2 + RUNX2, VEGF + 
RANKL, BMP-2 + IGF-1, and BMP-2 + SMAD8 (Gersbach, Phillips et al. 2007). Another 
strategy is to deliver the above mentioned osteoinductive growth factors or hormones in a 
scaffold material to render a “kick-start” in terms of osteoblast function, cell organization 
and bone building (Fischer, Kolk et al. 2011). Other applications of gene therapy for 
osteogenesis, such as for periodontal and craniofacial regeneration, have been described 
elsewhere (Scheller and Krebsbach 2009; Rios, Lin et al. 2011). 

Chondrocytes and cartilage engineering 

The concepts of gene therapy for cartilage repair have been thoroughly reviewed by 
Steinert et al. (Steinert, Noth et al. 2008). Approaches mentioned are stimulation of 
chondrogenic differentiation (using TGFǃs, BMPs, WNT, SMADs, SOX9, Brachyury), 
stimulation of cartilage matrix synthesis and/or cell proliferation (TGFǃs, BMPs, IGF-1, 
PDGF, type 2 Collagen minigene, COMP, GlcAT-1), inhibition of 
osteogenesis/hypertrophy growth factors (Noggin, Chordin, PTHrP, SMAD6,7), the use 
of anti-inflammatory agents (IL-1 blockage, TNFǂ-inhibition, MMP-inhibition), 
senescence inhibition, and inhibition of apoptosis (Saraf and Mikos 2006; Steinert, Noth et 
al. 2008). The delivery systems for chondrogenic genes show many common features to 
the ones described for enhancing osteoblastogenesis (see above) (Saraf and Mikos 2006; 
Betz 2008). 

5. Choice of humoral factors for differentiation purposes 

The differentiation of progenitor cells to osteoblasts or chondrocytes in vitro has been 
conducted in media containing differentiating factors like Calcitriol, Dexamethasone, BMP2, 
IGF-1, PDGF, EGF, FGFs, TGFǃs, HGF, PTH/PTHrP, (Logeart-Avramoglou, Anagnostou et 
al. 2005; Steinert, Noth et al. 2008; Tilg, Moschen et al. 2008; Gordeladze, Reseland et al. 
2009; Boeuf and Richter 2010; Levi and Longaker 2011; Witkowska-Zimny and Walenko 
2011). The choice of such factors, either as a single remedy, or in combinations, most 
certainly will affect cell phenotype acquisition in different ways (Kulterer, Friedl et al. 2007; 
Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Sundelacruz and Kaplan 
2009; Bernstein, Sticht et al. 2010; Granchi, Ochoa et al. 2010; Piek, Sleumer et al. 2010; 
Herlofsen, Kuchler et al. 2011). Thus, the outcome of the differentiation process is not easy to 
predict. 
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In vitro differentiation normally requires fetal bovine serum (FBS), however, FBS rises a 
concern over infections, possible immunological reactions to xenogenic peptides and 
inorganic compounds (like non-human sialic acid) (Hattori, Nogami et al. 2008). Hence, the 
use of serum-free incubation media is warranted. It has been shown that MSCs grown in 
serum free-media will acquire both osteoblast and chondrocyte phenotypes when exposed 
to EGF and bFGF, stimulating the ERK-pathway (Solmesky, Lefler et al. 2010), and similar 
results have been obtained by others (Gigout, Buschmann et al. 2009; Felka, Schafer et al. 
2010). Waese et al. report on a one-step successful generation of chondrocytes in a serum-
free monolayer system (with the addition of TGFǃ3 or BMP-4) (Waese and Stanford 2011), 
and several articles underscore the importance of serum source for optimal differentiation 
and inhibition of senescence in engineered chondrocytes (Shahdadfar, Fronsdal et al. 2005; 
Dahl, Duggal et al. 2008; Duggal and Brinchmann 2011). 
Hence, the combination of factors inducing optimal differentiation and the selection of 
serum-free media to produce good chondrocytes and osteoblasts for tissue engineering 
purposes represents a major task to elucidate. 

6. Properties of scaffold materials in bone and cartilage engineering 

Trauma (including bone fractures and cartilage destruction), cancer metastases, rheumatoid 
arthritis and osteoarthritis represent a therapeutic challenge, which previously has been 
approached by implanting autologus tissues (Gordeladze, Reseland et al. 2009; Torroni 2009; 
Giannoudis and Dinopoulos 2010; Khan, Johnson et al. 2010; Lu, Subramony et al. 2010; 
Takeda, Nakagawa et al. 2011). The modern approach of using scaffolds as artificial cell- and 
tissue-supporting material is promising and has been extensively reviewed by Sundelacruz 
and Kaplan (Sundelacruz and Kaplan 2009). Basicly, che choice of scaffold biomaterial and 
biocompatibility is vital for support of cell proliferation, differentiation, and suitability for 
implantation in vivo. Secondly, the geometry and architecture is important determinants of 
support of 3D tissue growth, control of morphology of the growing tissue, support of cell 
proliferation, and favourisation of cell differentiation into particular lineages. Thirdly, the 
porosity of the scaffold is important for the support of cell differentiation, recruitment, 
aggregation, and vascularisation. Furthermore, the mechanical properties, degradation rate, 
and biochemical stimuli are determinant of the scaffold’s ability to permit new tissue 
ingrowth, allow remodelling of the ECM formed, match the healing rate of the new tissue, 
and stimulate progenitor cells to assume a functional and stable cell phenotype. The 
following scaffolds have been tested in different ostechondral tissue engineering settings: 
PET, PLDL, PLA, PGA, PLGA, HA, TCP, and silk fibroin (porosity and pore size), HA, TCP, 
various synthetic polymers and co-polymers, polymer-ceramic composites (pore inter-
connectivity), natural synthetic polymers, including collagen, silk, PLGA, and PCL 
(degradation), natural synthetic polymers, bioactive glasses and ceramic material 
(mechanical strength), and finally PLGA, CaP, TCP, chitosan, HA, collagen, and silk fibroin 
(incorporation of biochemical signalling). 
In order to arrive at the very best system for tissue engineering, large experimental 
permutations of the above mentioned factors including cell sources, humoral factors and 
gene therapeutic approaches, should be performed to obtain the better cell phenotype for 
osteochondral tissue replacement. 
However, some recent articles featuring the use of polymeric scaffold structures in 
osteochondral engineering deserve citation here. Hydrogels incorporating agarose, alginate, 
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collagen, hyaluronic acid polymer and gelatine have been successfully applied to support 
stem cell differentiation and 3D-structuring (Vinatier, Bouffi et al. 2009; Vinatier, Mrugala et 
al. 2009; Hunt and Grover 2010). MSCs embedded in fibrin hydrogel showed superior 
differentiation to osteoblasts compared to cells grown in monolayers, however, they did not 
assume a preferred phenotype after 28 days of incubation. Tiainen and co-workers have 
reported on an ultra-porous titanium oxide (TiO2) scaffold with high compressive strength 
(above 2.5 MPa at 80-90% porosities) (Tiainen, Lyngstadaas et al. 2010), satisfying criteria for 
mechano-stimulation and pore size favouring cell differentiation, recruitment, aggregation 
and vascularisation. Another report on TiO2 confirms its applicability in producing a proper 
bone replacement material (Sabetrasekh, Tiainen et al. 2011). Rahman et al. used bioactive 
glass, which, despite its brittleness, showed physical characteristics favouring neo-
vascularisation being necessary for the perpetuation of engineered bone, when implanted in 
vivo (Rahaman, Day et al. 2011). And finally, it should be mentioned that osteoblast-like cells 
cultured in a bone-mimicking material made of poly-L-lactide + carbon nanotubes + micro-
hydroxyapatite differentiated well into proper, bone-forming osteoblasts, as ascertained by 
genetic profiling (van der Zande, Walboomers et al. 2010).   
Sabetrasekh and co-workers showed that Hydroxylprolyl-methyl Cellulose Hydrogel 
(HistocareTM) (Sabetrasekh 2011) supported the differentiation of MSCs and preosteoblasts 
and cell clusters forming an artificial tissue favouring cell-cell interactions. Duggal et al. 
(Duggal, Fronsdal et al. 2009) showed that MSCs exposed to high-guluronic tripeptide 
arginine-glycine-aspartic acid (RDG) alginate scaffolds, facilitating binding to integrin,   
differentiated well into chondrocytes in the absence of any growth factors. Integrins are 
extracellular receptors conveying mechano-stimulation to the interior of the cell (Liu, 
Calderwood et al. 2000; Weyts, Li et al. 2002; Kapur, Baylink et al. 2003; Gordeladze, 
Reseland et al. 2009), and the use of RDG alginate scaffolds makes the addition of growth 
factors less critical for chondrocyte phenotype acquisition (as shown by transcriptome 
analyses). Hyalouronan (HYAFF-11®) scaffolds have been shown to produce useful cells for 
osteochondral tissue replacement, provided that MSCs were applied instead of ASCs in the 
presence of TGFǃ1 (Loken, Jakobsen et al. 2008; Jakobsen, Shahdadfar et al. 2010). Finally, it 
should be mentioned that scaffold material (e.g. polycaprolactone, PLGA/Hap/, 
Collagen/Hap, agarose/gelatine hydrogel, polyacryl-amide hydrogel, PLGA nanofiber, 
agarose gel, polyacryl-amide gel, poly(2-hydroxyetylmethylmethacrylate) micro-porous gel, 
and silk fibroin) made with a gradient in pore size  (Sundelacruz and Kaplan 2009; Oh, Kim 
et al. 2010; Seidi, Ramalingam et al. 2011) is especially well suitable for interface (i.e. 
ligament-to-bone, tendon-to-bone and cartilage-to-bone) tissue engineering. 
The concept of scaffolds/biomaterial presently extends to include biopolymers, self 
assembled systems, nanoparticles, carbon nanotubes and quantum dots (Williams 2009). 
This definition also includes micro-structured surfaces (Kolind, Dolatshahi-Pirouz et al. 
2010), shown to inhibit cell proliferation and favour differentiation, as well as UV-
bioimprinting of single cell surfaces (Muys, Alkaisi et al. 2006), favouring propagation of 
surface-cell-cell interactions, ensuring proper development of a defined cell phenotype in a 
3D-structure. Application of the scaffolds principle to create a functional 3D-tissue structure 
can also be refined to what is called organ printing. Organ printing is a process which is 
scaffold free or involving hydrogels, and is defined as layer-by-layer additive robotic bio-
fabrication of 3D-functional living macro-tissues and organ constructs using tissue 
spheroids as building blocks. These spheroids are subject to tissue fusion, constituting the 
final 3D-structure of living tissue (Mironov, Visconti et al. 2009). The principles consists of 
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three steps, including a) the production of homo-cellular aggregates, b) building hetero-
cellular aggregates, and finally c) the assembly of organ-mimetics containing a 3D-vascular 
bed (Mironov, Visconti et al. 2009; Visconti, Kasyanov et al. 2010).  
Organ print design of tissues may solve some of the problems encountered in osteochondral 
tissue engineering, namely vascularisation of bone tissue and gradient expression of genes 
from the luminal space to the bone interface of chondrocytes in hyaline cartilage, due to a 
lack of blood-born delivery of nutritional substances and oxygen (Salim, Nacamuli et al. 
2004; Gibson, Milner et al. 2008). Transient changes in oxygen tension inhibit osteogenic 
differentiation, as demonstrated by reduced transcription of gene classes related to 
angiogenesis, family of matrix proteins, HIF-1ǂ, as well as RUNX2, osteocalcin, and 
COL1A1 (Salim, Nacamuli et al. 2004). As for chondrocytes, it has been shown that high O2 
tension makes them shift from producing normal articular isoforms of collagen (types II, IX, 
and XI) to collagen types I, III, and V (Gibson, Milner et al. 2008). High O2 levels also 
suppress the expression of SOX9, necessary for chondrocytic differentiation and Aggrecan 
synthesis (Murphy and Polak 2004). Interestingly, the microRNA species mir-210 has been 
shown to be enhanced by HIF-1ǂ, thus improving tissue tolerance to low O2 levels (Huang, 
Le et al. 2010). This is consistent with the fact that mir-210 is down-regulated in 
dedifferentiated human articular chondrocytes assuming a more fibroblast/stem cell like 
phenotype (Karlsen, Shahdadfar et al. 2011).    
Hence, there exists a plethora of scaffold materials to be considered, when optimal 
osteochondral tissue engineering conditions are to be defined. 

7. Selection of stem cell niches and/or cell co-cultures 

MSCs can be obtained from various tissues (Aicher, Buhring et al. 2010). Today the main 
source for isolation of MSCs in mammals is the bone marrow. However, bone marrow and 
other sources including placenta and adipose tissue contain MSCs displaying heterogeneous 
cell populations. Only a restricted number of appropriate stem cell markers have been 
explored so far, and it seems that the expression profile of CD-molecules differ on MSCs 
isolated from bone marrow, trabecular bone, dental pulp, articular cartilage, synovial 
membrane, adipose tissue, perivascular sites, term placenta, amnionic fluid, umbilical cord 
and pancreas (Bartholomew, Sturgeon et al. 2002; Dean and Bishop 2003; Le Blanc, Tammik 
et al. 2003; Niemeyer, Krause et al. 2006; Drosse, Volkmer et al. 2008; Gordeladze, Reseland 
et al. 2009; Aicher, Buhring et al. 2010). Knowledge of the phenotypical characteristics and 
the functional consequences of such subsets of MSCs might allow the development of 
improved regimens for regenerative medicine. MSCs, which express the specific cell 
adhesion molecule CD146, also known as MCAM, are well suited for bone repair. MSCs 
expressing CD56, CD146 and/or CD271 seem to be adaptable for the regeneration of bone, 
cartilage and intervertebral disks (Ohishi, Chiusaroli et al. 2009; Aicher, Buhring et al. 2010). 
Using two or more MSC niches may thus prove beneficial for the generation of bone tissue 
(Matsumoto, Kuroda et al. 2008; Grellier, Bordenave et al. 2009). CD34-positive, VEGF-
secreting endothelial/skeletal progenitor cells have been shown to enhance the 
vascularisation and speed up fracture healing (Matsumoto, Kuroda et al. 2008). Such 
progenitor cells are normally recruited to the bone-forming site by the CXR4/SDF-1 
pathway (Otsuru, Tamai et al. 2008). Grellier and co-workers have reviewed the literature as 
to the use of co-cultures of osteogenic and endothelial cells (Grellier, Bordenave et al. 2009). 
They describe combinations of osteogenic cells and endothelial cells like osteoblasts, 
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osteoprogenitor cells, umbilical vein endothelial cells, endothelial progenitor cells, 
saphenous vein endothelial cells, outgrowth endothelial cells, and dermal vascular 
endothelial cells cultured in 2D- or 3D-structures of various scaffold materials (Villars, 
Bordenave et al. 2000; Wenger, Stahl et al. 2004; Kaigler, Krebsbach et al. 2005; Stahl, Wu et 
al. 2005; Kaigler, Krebsbach et al. 2006; Clarkin, Emery et al. 2008; Guillotin, Bareille et al. 
2008; Grellier, Ferreira-Tojais et al. 2009; Grellier, Granja et al. 2009) where the endothelial 
cells form a tubular structure surrounded by ECM-producing and mineralizing osteoblasts 
(Grellier, Bordenave et al. 2009). 
In conclusion, co-cultures of niches of MSCs and/or vascularisation of appropriate scaffolds 
(e.g. scaffolds supporting ”asymmetric” differentiation of tissue-generating cells) might 
secure a better functional and long-lasting engineered tissue.       

8. Mechano-stimulation of progenitor cells during differentiation 

Mechano-biology is a relatively new research field, where most of the insight related to 
osteochondral tissue engineering comes from embryonic skeletal development (Nowlan, 
Sharpe et al. 2010). However, the “mechanostat” principle was launched several decades 
ago by Frost and colleagues (Frost 2003; Skerry 2006; Mulvihill and Prendergast 2008). 
Genetic lesions or immobilization (surgical or drug-induced) lead to muscle less limbs, 
reduced muscle fibre size/number, or non-contractile muscles, and to underdeveloped 
joints and bones, mostly due to a lack of mechano-stimulation (Gomez, David et al. 2007; 
Kahn, Shwartz et al. 2009; Nowlan, Bourdon et al. 2010; Nowlan, Sharpe et al. 2010). 
Several humoral factors, growth factors and receptors/ECM-protein/anchoring proteins 
share important signalling pathways, thus eventually leading to osteochondral 
differentiation of progenitor cells, for review, see (Gordeladze, Reseland et al. 2009; Kelly 
and Jacobs 2010; Potier, Noailly et al. 2010). Osteochondral progenitor cells may be subjected 
to shear stress (by fluid flow), compressive load (scaffold compression, hydrostatic 
pressure), or stretching (uni-, bi-, or equi-axial) leading to both proliferation and 
differentiation (Potier, Noailly et al. 2010). Several mechano-modulatory regimens (featuring 
detailed molecular mechanisms, type of mechano-stimulation, mechanical load applied, 
static or intermittent load, frequencies, as well as time frame during osteoprogenitor cell 
differentiation) using both 2D- and 3D-incubation systems, have extensively been described 
elsewhere (Angele, Schumann et al. 2004; Huang, Hagar et al. 2004; Woods, Wang et al. 
2005; Campbell, Lee et al. 2006; Miyanishi, Trindade et al. 2006; Sumanasinghe, Bernacki et 
al. 2006; Mauck, Byers et al. 2007; McMahon, Campbell et al. 2008; McMahon, Reid et al. 
2008; Thorpe, Buckley et al. 2008; Wagner, Lindsey et al. 2008; Arnsdorf, Tummala et al. 
2009; Arnsdorf, Tummala et al. 2009; Gordeladze, Reseland et al. 2009; Haudenschild, Hsieh 
et al. 2009; Li, Kupcsik et al. 2010). However, the permutation of various factors enlisted 
above, yielding the optimal osteochondral cells for further studies in vivo, is difficult to 
envisage. 
Cell shape, determined by the RhoA-Rho kinase = ROCK (influencing the actin 
cytoskeleton), has received much attention as a controller of cell development (McBeath, 
Pirone et al. 2004; Arnsdorf, Tummala et al. 2009; Kelly and Jacobs 2010). This has renewed 
the interest in scaffold material made by nanotechnology, which is able to deliver 2D- and 
3D-surfaces mimicking the ultimate surface pattern of osteoblasts and chondrocytes 
encountered in live tissues (Muys, Alkaisi et al. 2006; Kolind, Dolatshahi-Pirouz et al. 
2010).       

www.intechopen.com



  
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 

 

34 

9. Stabilization of the osteoblast and chondrocyte cell phenotypes 

In order to succeed replacing tissues like bone and cartilage, it is vital that the differentiated 
cells, whether pre-embedded in scaffolds or not, do not develop tumours or alter phenotype 
within a short period after implantation. The preferable phenotype should not lose acquired 
features or assume new ones. However, it has been speculated that engineered osteoblasts 
may be subject to premature senescence, acquire “drag-over” adipocyte characteristics, lose 
their ECM-synthesizing and mineralizing ability, while also enhancing osteoclast-mediated 
resorption yielding negative bone mass through multiple remodelling cycles. Furthermore, 
engineered hyaline cartilage chondrocytes may possibly shift their collagen-synthesizing 
and non-collagenous ECM producing profile towards hypertrophic and mineralizing 
chondrocytes. And chondrocytes may also recruit, activate and over-stimulate osteoclasts to 
resorb adjoining bone structures. Finally, it should be mentioned that engineered cartilage to 
replace hyaline articular cartilage also will be subject to remodelling, e.g. via the IL-1 
induced Syndecan4-ERK-MMP3-ADAMT5 cleavage of Aggrecan, which is up-regulated in 
osteoarthritic joints (Bertrand, Cromme et al. 2010). It should also be mentioned that 
immune cells (e.g Th-17 cells) secrete interleukins known to differentiate and activate 
osteoclasts from monocytes (Weitzmann and Pacifici 2007; Adamopoulos and Bowman 
2008; Tilg, Moschen et al. 2008; Hanada, Hanada et al. 2010; Pacifici 2010), and that 
chondrocytes exposed to exosome-like structures or certain microRNA antago- or pre-mirs 
(e.g. antagomir-222), are detrimental to the chondrocyte phenotype (Gordeladze et al., 
unpublished observations). 
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Fig. 1A. Osteoblast differentiating scheme. Human mesenchymal stem cells (hMSCs) were 
incubated for 20 days in standard differentiating medium (containing dexamethasone), 
subjected to mechanical loading, transfected with the pcDNA3-Runx2 containing plasmid, 
grown in a 3D-lattice (PLA- or HA-based scaffolds), or transfected with antagomiRNAs 
corresponding to mir-328 and mir-339 
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It is therefore suggested that gene manipulations (at least temporal transcription control) 
should be considered as part of a strategy to create and stabilize in vivo engineered bone or 
cartilage for tissue replacement. Potentially, one should consider the transient 
manipulations of microRNAs, since these short RNA-molecules are known to interfere with 
a plethora of cell specific transcriptions factors (Gordeladze, Djouad et al. 2009). MicroRNAs 
are also targeting epigenetic factors (Roach and Aigner 2007; Dahl, Duggal et al. 2008; 
Haberland, Montgomery et al. 2009; Lee, Jung et al. 2011; McGee-Lawrence and Westendorf 
2011) like HDACs involved in the differentiation of stem cells and stabilization of various 
cell phenotypes (Li, Xie et al. 2009; Li, Hassan et al. 2009; Lee, Jung et al. 2011).   

10. Bone and cartilage engineering revisited 

Permutation of factors influencing cell phenotypes 

There are numerous reports in the literature featuring the results of manipulations of single 
or a few variables known to affect the result of cell engineering based on stem cell or 
progenitor cell differentiation towards osteoblasts or chondrocytes to be implanted to heal 
osteochondral tissue lesions. These factors relate to cell source(s), application of growth 
factors, the use of gene therapy, application of mechano-stimulation and the selection of 
scaffold material (Isogai, Kusuhara et al. 2006; Gordeladze, Reseland et al. 2009; Aicher, 
Buhring et al. 2010; Granchi, Ochoa et al. 2010). 
To find the combination of factors rendering engineered cells functional enough to assume a 
“proper” phenotype, generating tissues not deviating from their original counterparts with 
given characteristics, represents a painstaking task. It seems insurmountable, since the 
number of permutations necessary to explore all possible additive or synergistic interactions 
are numerous. It is therefore probably a good approach to define a set of measurable end-
point characteristics for osteochondral tissues to evaluate the experimental steps taken, 
when going from bench to patient. Osteochondral tissues represent certain geometrical and 
mechanical properties (Knecht, Vanwanseele et al. 2006; Gordeladze, Reseland et al. 2009), 
as well as gene expression profiles (Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et 
al. 2009; Granchi, Ochoa et al. 2010; Herlofsen, Kuchler et al. 2011), which may guide the 
selection of major combinations of treatments, as envisaged by the permutation process. To 
shed light on this exercise, some bioinformatics exercises have been conducted, and some 
selected experiments have been described. 

Permutations encompassing mechano-stimulation, 3D-growth, and manipulations of 
genes and microRNAs 

MSCs were differentiated in standard media towards osteoblasts or chondrocytes, by 
subjecting them to cyclical mechano-stimulation (uni-axial stretch), gene manipulations, 
growth in 3D-lattices, and finally to manipulations of microRNA levels. The following test 
battery was used: Q-PCR analyses of osteoblast and chondrocyte “specific” transcription 
factors (TFs) and marker genes (e.g. RUNX2, OSTERIX = SP7, VDR, RANK-L, OPG, SOX9, 
GLI3, FOXO3A, WNT5A, ALPL, COL1A1, OSTEOCALCIN, OSTEOPONTIN, COL2A1, 
COL10A1, AGGRECAN); Q-PCR of mir-326, mir-339, mir-24, and mir-149; 
immunohistochemistry of COL2a1 and AGGRECAN; cell staining using Alizarin Red S and 
Alcian Blue; mineralization (radiology and histology) in SCID mice (m. tibialis); 
GAG/DNA-ratio, clinical score for micropellets and alginate beads; osteoclast resorption 
assay (using PBMCs + RANK-L/CSF-U on dentine slices). Some of the results obtained 
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with MSCs differentiated towards osteoblasts are referred to in Figures 1 and 2, panels A 
and B. 
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Fig. 1B. Selected results of the experiment described in Figure 1A. Mechanical loading was 
performed in monolayers using uni-axial cell diameter alteration  by 1000 µE (1E = 1 micro-
strain = 1/1,000,000 alteration of the cell’s diameter) for 30 min every other day. The antago-
miRNAs were transfected (by lipofection) into cells in monolayers every 5 days. Expression 
of genes like Runx2, Collagen-1, Osteocalcin and the microRNAs 328 and 339, were 
performed using Q-PCR. Furhtermore, Alizarin Red staining (indicating mineralized 
surface) was performed at day 20, and cells being deposited (for an additional 7 days) in the 
tibial muscle of SCID mice were X-rayed, harvested and subjectd to histological analyses 

Figure 1A indicates the manipulation of MSCs grown in: 1) osteoblast differentiating 
medium 2) in mono-layers, 3) exposed to mechano-stimulation, 4) subject to up/down-
regulation of TFs, and 5) grown in PLA- or HA-scaffolds (cylinders), or 5) transfected with 
pre- or antago-microRNAs. Figure 1B features some of the results of these single 
manipulations, indicating that RUNX2 over-expression is superior in terms of osteoblast 
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differentiation, however, mechano-stimulation, and suppression of mir-328 and mir-339 also 
give promising osteoblasts for in vivo implantation. 
Figure 2A describes the manipulation of MSCs grown in chondrocyte differentiating 
medium 1) in mono-layers, 2) exposed to mechano-stimulation, 3) subject to up/down-
regulation of TFs, 4) grown in alginate beads or micropellets, or 5) transfected with pre- or 
antago-microRNAs. Figure 2B summarizes selected results of these single manipulations, 
indicating that suppression of RUNX2 is no better than incubation in micropellets or 
alginate beads, or transfecting the cells with premir-24 and premir-149. All in all, 
manipulating the microRNA species seem to give superior results. 
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Fig. 2A. Chondrocyte differentiation scheme. Human mesenchymal stem cells (hMSCs) were 
incubated for 20 days in standard differentiating medium (containing TGFǃ3), subjected to 
mechanical loading (1000 µE), infected with anti-Runx2-shRNA (contained within a 
lentiviral construct), grown in a 3D-lattice (micropellet or alginate), or transfected with 
premiRNAs corresponding to mir-24 and mir-149 

From the above experiments, a 20 day differentiating scheme was envisaged, where gene- 
and microRNA-manipulated MSCs, grown in standard differentiating media, were 
mechano-stimulated for 10 days and thereafter incubated for another 10 days in a 3D-
structure (HA-scaffold for osteoblast, and alginate beads for chondrocytes). These 
incubation schemes are shown in Figure 3A, while results of the experiments are 
summarized in Figure 3B. By combining the different manipulations, it was shown that 
osteoblast and chondrocyte “specific” markers were enhanced some 3-4 fold over control 
MSCs differentiated in mono-layers compared to 2-3 fold for single condition 
manipulations. To assess the influence of inflammation (using incubation media containing 
interleukins and TNFǂ) on osteoblast or chondrocyte phenotype stability and osteoclast 
activation, cells were exposed to IL-1ǃ, IL-6, IL-17 and TNFǂ for 14 days. Osteoclasts 
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differentiated from PBMCs for 7 days were then co-culture with the osteoblasts or 
chondrocytes, and resorption pit surface was assessed. It became quite clear that 
inflammatory cytokines were detrimental to the ostechondral cell phenotypes and 
microRNA profile, and they also enhanced their ability to stimulate bone resorption through 
activation of osteoclasts. From these experiments, it seems that one might chose transient 
microRNA manipulations in combination with either cell stretching or growth in 
scaffold/hydrogel, if a permanent gene manipulation (e.g. alteration of RUNX2- and 
possibly also SOX9-expression) may render the cells less prone to negative influence 
encountered within their new environment.      

Bioinformatics networking using micro-arrays of translated RNAs and non-translated 
microRNAs 

To elucidate the concept of permutations of variables pertaining to the differentiation of 
stem cells (SCs) to become preferred osteoblasts or chondrocytes for tissue replacement, we 
will present an interesting exercise with transcriptomes, microRNA micro-arrays and a 
literature survey. Based on osteoblast derived transcriptomes (Grundberg, Brandstrom et al. 
2008; Granchi, Ochoa et al. 2010), featuring gene transcripts from cells in human trabecular 
hip bone explants, and differentiating human mesenchymal stem cells (MSCs) undergoing 
differentiation and mineralization phases, respectively, a combined transcriptome of 188 
genes were constructed. This transcriptome was run against two microRNA micro-arrays 
obtained from a) human MSCs differentiated to osteoblasts within a hydroxyapatite (HA) 
scaffold for 28 days, and from b) human MSCs differentiated to osteoblasts in monolayers 
for 3 days only, using a bioinformatics program designated Mir@nt@n (Le Bechec, Portales-
Casamar et al. 2011). Furthermore, a transcriptome of genes pertinent to the chondocyte 
phenotype, consisting of 261 genes, was compiled by Brinchmann et al. (Duggal, Fronsdal et 
al. 2009; Herlofsen, Kuchler et al. 2011). These MSCs, grown in PRONOVA-LVG alginate for 
21 days, represented genes displaying the same time course over 21 days as did COL2A1 or 
CXCL12. The present transcriptome was run against two microRNA micro-arrays obtained 
from a) human chondrocytes embedded in hyaline cartilage and dedifferentiated for 28 
days, and b) human MSCs differentiated to chondrocytes in micropellets for 3 days.  
The bioinformatics procedure featuring some comprehensive examples is given in Figure 
4A. Twelve genes involved in WNT- and NOTCH-mediated signalling (according to 
KEGG’s pathways) and a set of fourteen transcription factors (TFs) known to be important 
for osteoblastogenesis (Komori 2006; Marie 2008; Gordeladze, Djouad et al. 2009) were 
loaded into Mir@nt@n and two small networks emerged. All the microRNAs 16, 22, 24, 93, 
125b, 141, 149, 200a and 206 have been shown to be down-regulated in osteoblastic cells 
(Gordeladze, Djouad et al. 2009; Lin 2009), which would be consistent with an up-regulation 
of TFs (SATB2, ETS1, and RNF11),  and WNT (signalling molecule binding to FRIZZLED-
LRP5/6) (Gordeladze, Reseland et al. 2009). However, NOTCH3 (known to inhibit 
osteoblastogenesis through interactions with the canonical WNT-pathway and Runx2) 
(Gordeladze, Reseland et al. 2009) would also be up-regulated. Interestingly, ETS1 seems to 
be involved in a regulatory network involving NOTCH3, RNF11, and six microRNA species, 
where mir-206 is reciprocally interacting with ETS1. Mir-206 is marginally down-regulated 
in osteoblasts, however, significant over-expression of this microRNA species in mice leads 
to bone loss (Inose, Ochi et al. 2009). Finally DKK2 (an inhibitor of LPR5/6) would be up-
regulated, and the present prediction cannot be given a straight-forward, simple 
interpretation. 
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Fig. 2B. Selected results of the experiment described in Figure 2A. Mechanical loading of 
MSCs was performed in monolayers using uni-axial cell diameter alteration (1000 µE) for 30 
min every other day. The pre-miRNAs were transfected into cells in monolayers every 5 
days. Expression of genes like Sox9, Wnt5A, Collagen-2, and the microRNAs 24 and 149, 
were performed using Q-PCR. Furhtermore, immunohistochemistry of Collagen 2 and 
Aggrecan was performed, and clinical scoring (featuring GAG/DNA-ratio, immuno-
histochemistry, and distance between cells in micropellets and alginate beads) were also 
measured 

Out of seventeen putative interactions (reciprocal or not) between microRNAs known to be 
down-regulated in osteoblasts, eight are compatible with a direct inhibitory effect on 
translation, yielding 47% consistency according to the concept of microRNA-TF interactions 
(Zhou, Ferguson et al. 2007; Aguda, Kim et al. 2008; Hobert 2008; Do and Scholer 2009). The 
conclusion to be drawn from this example is that the list of marker genes and microRNAs 
describing the differentiation of MSCs to osteoblasts is too slim to warrant its use as a 
predictor of the acquisition of a proper osteoblast phenotype to be employed in bone 
replacement therapy. But, after all, the marker genes and microRNAs were all just picked 
from various, independent articles on osteoblast differentiation and from two KEGG’s 
pathways charts. 
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Fig. 3A. Multipurpose differentiation scheme. The following experimental settings were 
selected: Human MSCs were incubated in standard differentiating medium containing 
dexamethasone or TGFǃ3 alone, respectively, or manipulated for 10 days interfering with 
gene expression, microRNA levels, and cell shape, and thereafter incubated in a 3D-stucture 
(HA-scaffold or alginate hydrogel, respectively) for another 10 days 

More interestingly, Figure 4B describes the results of the use of the Mir@nt@n networking 

algorhitm, where the applied lists of target genes are based on cells derived from healthy 

human bone and cartilage, and the microRNA species are retrieved from micro-arrays 

obtained from the tabulated experiments. The four experimental conditions summarized 

here (involving on average some 30 microRNA species and 225 genes per experiment) 

clearly indicate that cell manipulations performed in a 3D-structure, and over a prolonged 

time frame of 28 days, yield a preferred osteoblast or chondrocyte phenotype, since the per 

cent compatibility demonstrated by microRNA – target gene interactions were 76% versus 

19% (osteoblasts) and 88% versus 16% (chondrocytes), respectively. 

Some examples of expected regulation patterns are given underneath: MSCs differentiated 
into osteoblasts in a HA scaffold show an up-regulated level of mir-143. In parallel, 
transcripts of putative target genes like DUSP2 (inactivates the MAPK pathway used by 
TNFs and TGFǃs), BMP1 (involved in chondrogenesis), ID1 (belongs to the TGFǃ pathway 
involved in chondrogenesis), TNFAIP6 (TNFǂ-induced protein 6), and FBN1 (sequestering 
TGFǃ within ECM) were up-regulated. The first five interactions are expected, the last one is 
not (giving a per cent compatibility of 83%). Furthermore, the mir-29 family (MIR-29a,b,c) of 
microRNAs was down-regulated, and putative target transcripts of genes like COL1A1, 
COL4A1, COL4A5, COL5A1, COL21A1, BMP1, ID1, TNFAIP6, and FBN1 should be up-
regulated. According to their alleged function, the interaction of the 29-family of 
microRNAs is expected when the collagens are concerned (Eyre 2002; Almarza and 
Athanasiou 2004; Goldring, Tsuchimochi et al. 2006; Davies, Chang et al. 2007; Shahdadfar, 
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Loken et al. 2008; Heinegard 2009; Van Agtmael and Bruckner-Tuderman 2010), but does 
not comply with the expected down-regulation of BMP1, ID1, and TNFAIP6. Cumulative 
compatibility score is now down to 73%. According to the literature (Li, Hassan et al. 2009), 
mir-29b does de facto bind to the 3’-UTR of the COL1A1, COL5A3 and COL4A2. 
Furthermore, the mir-29 family of microRNAs has also been shown to be involved in the 
regulation of Wnt-signalling through a positive feed-back loop (Kapinas, Kessler et al. 2010) 
and via suppression of SPARC (osteonectin) (Kapinas, Kessler et al. 2009). Scrutinizing the 
effect of mir-376c (being down-regulated) reveals that putative targets are DLX1 and 
RUNX2 (important TFs ensuring osteoblastogenesis), SPP1 (involved in bio-mineral tissue 
development and ossification) and PAFAH1B1 (involved in cell cycle adaptation to 
differentiation). Now, the cumulative compatibility score is 80%. The final cumulative score 
for this experiment (MSCs to osteoblasts in HA scaffold for 28 days) converged towards 
76%. As expected, the 3 days incubation of MSCs seeded in culture flasks in osteogenic 
medium yielded a compatibility score of only 18%, where some of the microRNAs being 
modulated in the 28 days experiments with MSCs seeded into HA scaffolds did not appear 
as significantly altered (e.g. mir-376c). 
 

Characteristics obtained with combined differentiation
strategies (based on rank scores)

Osteo
Control

Osteo
Combined

Chondro
Control

Chondro
Combined

Effect on osteoblast differentiation
(Q-PCR of TFs and marker genes) 100 326

Effect on chondrocyte differentiation
(Q-PCR of TFs and marker genes) 100 365

Effect on osteoblast differentiation (Mineralization/ALP-positive
surface, iin vivo mineralization and histology) 100 287

Effect on chondrocyte differentiation (Alcian blue surface, GAG/DNA-
ratio, immunohistochemistry, histological score) 100 345

Effect on engineered osteoblasts to ”reverse”
detrimental biological effect of inflammatory cytokines 100 388

Effect on engineered chondrocytes to ”reverse”
detrimental biological effect of inflammatory cytokines 100 276

Effect on engineered osteoblasts to resist ”increase” in pertinent 
microRNAs (i.e. MiR-328, -339) 100 445

Effect on engineered chondrocytes to resist ”loss” of pertinent 
microRNAs (i.e.MiR-24, -149) 100 412

 

Fig. 3B. Selected results obtained in the experiment described in Figure 3A showing 
synergism of the single manipulations used in combination. The following parameters were 
analysed: effect on cell differentiation, as estimated by Q-PCR of transcription factors (TFs) 
and marker genes, or as mineralized/ALP positive surfaces, in vivo mineralization in SCID 
mice and de novo bone tissue production (histology), and proteoglycan positive surface 
(Alcian blue colouration). Furthermore, the impact on cell phenotype stability upon 
exposure to cytokines (IL-1ǃ, IL-6, IL-17, and TNFǂ) in terms of osteoclast activation and 
microRNA stability, was determined 

Chondrocytes embedded within hyaline cartilage were dedifferentiated within their native 
matrix for 28 days, and a micro-RNA micro-array was obtained. Running these micro-RNA 
species using the Mir@nt@n algorithm together with the transcriptome of 261 genes gave a 
compatibility score of 88% (see Figure 4B). The following microRNAs and putative target 
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gene transcripts should be mentioned: Mir-143 was up-regulated upon dedifferentiation, 
and putatively interacts with gene transcripts like SMO (involved in hedgehog = Hh 
activation of Gli1/2/3-mediated chondrogenesis) (Bale 2002; Takebe, Harris et al. 2011), 
COL1A1 (serves as bone matrix protein), WNT10B (involved in osteoblast differentiation), 
ADAMTSL1 (exhibits metalloproteinase activity), and HAS3 (synthesizes hyaluran). The 
mir-143 mediated suppression of all the above listed genes are expected when chondrocytes 
are dedifferentiated. Mir-140-3p was down-regulated and coupled to the modulation of 
gene transcripts like KLF4 (transcription factor activated by the Wnt-pathway) (Saulnier, 
Puglisi et al. 2011) , FOXQ1 (serves as a down-stream mediator of TGFǃ1 signalling) 
(Feuerborn, Srivastava et al. 2011), CITED4 (serves as a co-activator of CEP/p300, TFAP2, 
and SMAD4 transcription factors involved in stem cell differentiation) (Braganca, Swingler 
et al. 2002), and PTCH4 (receptor activated by Hh, thus stimulating the SMO-GLI pathway 
of gene transcription) (Takebe, Harris et al. 2011). 
 

Marker genes 
(transcriptome)

MicroRNA 
profile

Mir@nt@n networking

 

Fig. 4A. Bioinformatics-based marker gene and microRNA networking. A list consisting of 
marker genes taken from the canonical WNT- and the NOTCH-pathways (see KEGG’s 
pathways), as well as transcription factors (TFs) and microRNAs demonstrated to be 
involved in differentiation of osteoblasts (Gordeladze, Djouad et al. 2009; Hassan, Gordon et 
al. 2010; Kapinas, Kessler et al. 2010) was loaded into the Mir@nt@n algorithm, searching for 
interaction networks. Within the  complicated network obtained, two types of interactions 
emerged: 1) microRNAs target several gene transcripts (putatively binding to the 3’-UTR 
region of the subject mRNAs) (left-hand chart), and 2) microRNAs may be involved in 
regulatory loops with TFs (right-hand chart) 

A fall in mir-140-3p is compatible with an up-regulation of the four above mentioned gene 
transcripts and loss of chondrocyte phenotype. So far, the compatibility score is 100%. 
Another microRNA up-regulated in dedifferentiated chondrocytes is mir-382, which 
putatively targets the transcripts of the following genes: PLCG2 (PLCǄ2 activates NF-κB, 
AP-1, and NFATc1 induced gene expression important for osteoblastogenesis) (Chen, Wang 
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et al. 2008; Marie 2008; Gordeladze, Reseland et al. 2009), DKK2 (serves as an inhibitor of the 
Wnt-signalling pathway), and RUNX3 (cooperates with RUNX2 to induce chondrogenesis 
through Hh synthesis) (Komori 2005). Mir-15b proved to be up-regulated upon 
dedifferentiation of the mature, hyaline cartilage-embedded chondrocytes, and putatively 
targets the following gene transcripts: FGF2 (involved in chondrogenesis) (Goldring, 
Tsuchimochi et al. 2006), CCND1, LRP6, FZD4 (Katoh 2007). All genes targeted by mir-382 
and mir-15b are associated with the osteochondral phenotype and therefore, the 
compatibility score remains at 100%. Lastly, mir-21 and mir-495 were up-regulated upon 
dedifferentiation of the hyaline cartilage chondrocytes. Putative targets were SOX5 
(transcription factor favouring chondrogenesis), MEF2C (necessary factor for collagen X 
transcription, and interacting with Dlx5/6 to enhance RUNX2 expression)  (Solomon, 
Berube et al. 2008), and SOX6 (transcription factor favouring chondrogenesis, FGF7 
(involved in chondrogenesis), CDH13 (predisposing factor along with TGFǃ3, PTHR1, and 
PRG1 in ossification of ligaments of the spine) (Furushima, Shimo-Onoda et al. 2002), GLI3 
(early transcription factor appearing during chondrogenesis) (Bale 2002; Takebe, Harris et al. 
2011), respectively. This completes the random selection of microRNAs, however, at this 
point the compatibility score was still a staggering 100%. Subsequent to the analysis of all 
putative interactions, the score fell to 88%. The same exercise performed on microRNA-
arrays from MSCs differentiated in micropellets for 3 days revealed a compatibility score of 
some 16% only, despite a similar number of microRNAs and gene transcripts significantly 
modulated compared to controls. 
 

Experiment conducted

Mir@nt@n networking

MicroRNA
species

Gene
transcripts
targeted

Per cent (%) 
compatibility with

expected modulation

Osteoblast: 
188 genes

MSCs: differentiation in HA scaffold (3D) 
for 28 days

34 89
(14%)

76

MSCs: differentiation in monolayers (2D) 
for 3 days

17 53 (28%) 18

Chondrocytes: 
261 genes

Chondrcytes: Embedded in hyaline cartilage, 
dedifferentiated in 3D for 28 days

52 136
(52%)

88

MSCs: differentiation in micropellets (3D) 
for 3 days

54 142
(54%)

16

 

Fig. 4B. Computation of compatibility score between osteoblast and chondrocyte 
transcriptomes and microRNA profiles. Gene transcript (mRNA) and microRNA networks 
were generated using osteoblast mRNA fingerprints from separate experiments (published 
in the literature) and microRNA-arrays from own experiments (see chapter text). Percentage 
of predicted mRNA-microRNA interactions in accordance with expected up-and down-
regulation of gene expression in osteoblasts and chondrocytes were calculated. The higher 
the percentage, the better the differentiation process obtained, and (theoretically) the higher 
probability of success when using engineered osteochondral cells for tissue replacement 

In conclusion, the more in vivo like incubation conditions, the more tissue-adapted 
osteoblasts and chondrocytes will be obtained when performing in vitro cell engineering. 
This exercise does not take into considerations all possible favourable factors (like stem cell 
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source, differentiation media, optimal scaffolds, mechano-stimulation, gene-manipulations 
including phenotype protection by microRNAs etc.), but it is reasonable to believe that a 
permutation of selected conditions will aid in arriving at osteoblasts and chondrocytes 
highly suitable for long-lasting tissue replacements. Finally, it should be emphasized that 
one must improve on the selection of genes (and microRNAs) to constitute the preferred 
profile of proper osteoblasts and chondrocytes for successful tissue replacements. 
Of special interest are the observations that the use of microRNA manipulations seems to 
protect the engineered osteoblasts and chondrocytes from losing their phenotypic 
characteristics in an environment where inflammation still is active, as well as protecting 
them from over-activating osteoclasts within the space (i.e. knee joint) where they might be 
replacing damaged tissue. 

11. Summary and future perspectives  

This chapter summarizes the concept of single factor permutations in order to arrive at the 
optimal scheme for generating osteochondral cells for tissue replacement. To be considered 
is the use of trimmed osteoblast or chondrocyte transcriptomes (between 200 and 400 
transcripts) obtained from clean cell populations residing within healthy bone and cartilage, 
along with a defined number of microRNA species (not more than 20-30) as markers and 
guidance for the use of a set of manipulations eventually leading to functional and stable 
cell phenotypes. 
One scheme may consist of the following materials and factors: MSCs or ASCs exposed to a 
growth factor in a serum-free differentiating medium, mechano-stimulation (adapted to 
optimalize differentiation of osteoblasts or chondrocytes), preferably within scaffolds 
(designed to display a porosity gradient), transient adjustments of the levels of certain 
microRNA species (down-regulated in differentiating osteoblasts, up-regulated in 
differentiating chondrocytes). 
If the disease necessitating tissue replacement can be handled/treated successfully, 
manipulations of the engineered cells to withstand phenotype alterations, may not be 
necessary. However, in the case of osteochondral replacement in joints being subject to 
inflammation, it may be necessary to protect the engineered cells from changing their 
function (e.g. stimulating osteoclastogenesis) or showing an accelerated development of 
senescence, by permanently modulating expression of selected genes or microRNAs. 
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