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1. Introduction 

Since the initial excitement surrounding successful clinical studies of skin tissue engineering 
more than 20 years ago (Gallico et al., 1984), steady progress has been made in enhancing the 
capabilities of tissue engineering and regenerative medicine. Tissue engineering generally 
depends upon the use of cultured cells. Since living cells do not fall into any of the existing 
medical product categories, this has created a great challenge for both regulatory agencies 
and commercial entities. Although various treatment strategies have been developed, the 
fundamental technologies and infrastructure to support their widespread adoption are still 
limited.  
In this chapter, attention was focused on fundamental technology development. Three major 
areas, i.e., introduction of serum-free culture media, development of cell storage 
technologies and methodological development for quality assurance of the products, are 
discussed with special reference to future development of tissue engineering.   

2. Feasibility of tissue engineering using human bone marrow stromal cells 
cultivated in serum-free conditions 

Tissue engineering is an interdisciplinary approach to regenerate tissue through integration 
of cell biology and biomaterial/biomedical sciences. The concept of tissue engineering is to 
regenerate target tissue by mimicking the developmental or regenerative process of that 
tissue. Thus, it can be considered an ideal therapeutic option for treating various tissue 
defects. Tissue engineering of skin, cartilage, and bone has already been shown both feasible 
and effective in several clinical studies, and its efficacy has attracted significant attention 
from both patients and doctors. However, there are several fundamental technologies which 
need to be improved before widespread practical use of tissue engineering in hospitals or 
clinics. In this chapter, the current status of cell culture media used for clinical tissue 
engineering and the need for the development of safe and reliable serum-free cell culture 
media will be discussed with special reference to bone tissue engineering. 
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Patients who lose healthy bone tissue as a result of inflammation or trauma need bone 
regenerative/reconstructive surgery in order to recover the function of the lost bone. To 
regenerate the lost bone tissue, autologous bone grafting is the current gold standard, 
though this technique is a great burden for patients because transplantable autologous bone 
must be harvested from a healthy site, which causes donor site morbidity and pain. 
Artificial bone substitutes have been developed as alternatives to autologous bone, though 
bone regeneration with them is inefficient because they lack osteo-inductive properties. 
Accordingly, tissue engineering of bone (bone tissue engineering) has attracted significant 
interest because it is considered less invasive than autologous bone grafting and more 
efficient than artificial bone substitutes. In fact, cell-based bone tissue engineering which 
utilizes cells, scaffolds, and bioactive molecules has been shown even more effective than 
artificial bone substitute in both basic and clinical studies. 
For cell-based bone tissue engineering, various tissues derived cells are utilized since 

osteogenic cells can be harvested from bone marrow, periosteum, and adipose tissue, 

though recent studies indicate that bone marrow stromal cells (BMSCs, bone marrow 

derived multipotent mesenchymal stromal cells, or mesenchymal stem cells) are the most 

reliable cell source because of their superior osteogenic ability (Hayashi et al., 2008). 

However, it is difficult to obtain adequate numbers of transplantable BMSCs from bone 

marrow aspirates, as they are rare in the bone marrow (less than 0.01% of marrow cells) 

(Montzka et al., 2010). Therefore, ex vivo expansion of BMSCs is required to obtain a 

sufficient number of transplantable cells. Since BMSCs require several kinds of supportive 

factors for their growth, it is standard practice to use fetal bovine serum (FBS), while 

autologous human serum (HS) and pooled allogeneic HS have also been used. It has been 

suggested that FBS may not be favorable for clinical applications due to the possible risk of 

contamination (prions, viruses, zoonosis) or immunological reactions against xenogeneic 

serum antigens (Agata et al., 2009). Although serious secondary effects of transplanted cells 

that were cultured in the presence of FBS have not been reported to date, a previous clinical 

study that utilized BMSCs cultivated in FBS-supplemented media for the treatment of 

osteogenesis imperfecta showed a 150-fold increase in antibody titer against FBS in the sera 

of one patient who received BMSCs infusions (Horwitz et al., 2002). Theoretically, use of 

autologous HS could eliminate the risks of disease transmissions and immune reactions. 

However, it is not always possible to obtain a sufficient amount of autologous HS for ex vivo 

expansion of BMSCs. In fact, over 400 mL of peripheral blood is usually required to obtain 

200 mL of autologous HS, which is only sufficient to support the growth of BMSCs for a few 

passages. Therefore, collection of a sufficient amount of autologous HS is a considerable 

burden for anaemic patients as well as for healthy female patients with a low body weight. 

Use of pooled allogeneic HS cannot overcome this problem because it has been shown that 

allogeneic HS does not fully support the growth of BMSCs (Kuznetsov et al., 2000). 

Furthermore, even when a sufficient amount of autologous HS can be obtained from each 

patient, the constituents of individual HS could vary, which might lead to variations of cell 

culture outcome. Thus, it is desirable to develop efficient and safe serum-free culture media 

and eventually serum-independent cell expansion protocols for tissue engineering. 

Recently, several companies have launched complete serum-free culture media that can 
support the growth of human mesenchymal stem cells without the addition of sera (Table 
1). Although the number of studies that have investigated the potential of these serum-free 
media is still limited, it has been suggested that these serum-free media can support the 
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growth of human somatic (postnatal/tissue) stem cells even more efficiently than 
conventional serum-based media (Lindroos et al., 2009, Ishikawa et al., 2009, Hartmann et al., 
2010). In support of this conclusion, our previous study of human BMSCs showed that the 

efficacy of cell growth was greater in StemPro SFM (Invitrogen, Carlsbad, California, 
U.S.A.) than FBS-containing medium (Agata et al., 2009). Similar findings have been 

reported with MesenCult-XF (STEMCELL TECHNOLOGIES, Vancouver, BC, Canada), 

STK2 (DS Pharma Biomedical Co.,Ltd., Osaka, Japan), and the xenogenic-free (xeno-free) 

version of StemPro SFM, all of which have been developed for xeno-free as well as serum-
free cultivation of human somatic stem cells (Lindroos et al., 2009, Ishikawa et al., 2009, 
Hartmann et al., 2010). These data indicate that currently available xeno-free, serum-free 
media may have the potential to replace conventional serum-based media in clinical tissue 
engineering, though further basic studies are required to ensure its safety and efficacy. To 
develop a protocol for bone tissue engineering with serum-free media, we now discuss 
current findings regarding the character of serum-free expanded cells. 
 

 

Table 1. List of currently available commercial serum-free media and the osteogenic ability 
of postnatal stem cells cultivated in each product 

Since the type of expansion medium used in primary culture may affect the viability and 
type of cell population generated, it is important to compare the cell populations grown in 
serum-free and serum-containing medium. For this purpose, Lindroos et al. investigated cell 
surface marker expression by cells cultured in FBS- or HS-containing media and those 
cultured in serum-free media using human adipose stem cells. They reported that the 
expression profiles of examined cell surface antigens were not statistically different 
(Lindroos et al., 2009). Our previous study investigated cell surface marker expression by 
human BMSCs cultured in serum-free medium. It also showed that the expression profiles 
of most of the examined antigens were comparable in both serum-free and serum-
containing groups, though there were some differences in the expression of CD105 and 
CD146 (Agata et al., 2009). Since the mean fluorescence intensity of the CD105 antigen was 
stronger in serum-free expanded BMSCs, it is possible that a larger population of CD105-
positive cells was obtained by growth in serum-free medium. In contrast, the CD146-
positive fraction was more evident in cells cultured in serum-based medium and only a 
limited number of cells were positive for CD146 in the serum-free group (Agata et al., 2009). 
It is not clear whether serum-free conditions alter the expression of both of these surface 
markers or whether the conditions selectively support the growth of the CD105positive 
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CD146dim population. Nonetheless, cells grown in serum-free media do appear to be 
different from those grown in serum-containing media, and the information regarding 
BMSCs grown in serum-containing media may not be used as a reference. Therefore, the 
feasibility of bone tissue engineering with serum-free expanded BMSCs should be 
independently investigated from the beginning, though there have already been several 
clinical trials to show the safety and efficacy of bone tissue engineering with BMSCs grown 
in serum-containing media. 
One of the most important things that should be assured for use in a clinical setting is that 

transplanted BMSCs do not form tumors in the recipient following transplantation. Since 

our previous study showed that transplanted BMSCs grown in serum-free medium did not 

form tumors in nude mice (Agata et al., 2009), it might be possible that BMSCs expanded in 

serum-free medium are as safe as those expanded in serum-containing medium. However, 

further studies are required to confirm their safety because few studies have transplanted 

serum-free expanded somatic stem cells. Together with cell transplantation analyses, 

genomic and chromosomal stabilities must be analyzed, because these data can support the 

safety of serum-free expanded BMSCs. 

In addition to confirming the safety of such transplants, assurance of the osteogenic 

differentiation ability of transplanted BMSCs is important in clinical bone tissue 

engineering. BMSCs grown in serum-containing media are known to differentiate into the 

osteogenic lineage when they are cultured in osteogenic induction medium (serum-

containing media supplemented with dexamethasone, ascorbic acid, and β-

glycerophosphate).  However, it was still necessary to determine whether somatic stem cells 

grown in serum-free media would behave similarly in the presence of the same osteogenic 

components. To date, adipose stem cells, umbilical cord tissue-derived mesenchymal stem 

cells, and BMSCs those grown in serum-free media have been shown to differentiate into 

osteogenic cells in the conventional induction medium (Lindroos et al., 2009, Ishikawa et al., 

2009, Hartmann et al., 2010). However, it remains unknown whether conventional 

osteogenic induction medium is optimal for their differentiation, because some of the 

manufacturers recommend a specially formulated kit for osteogenic induction of serum-free 

expanded cells. Therefore, we explored osteogenic induction of BMSCs expanded in serum-

free medium, using both a conventional osteogenic induction medium and the commercially 

supplied osteogenesis kit (Agata et al., 2009). Results of alkaline phosphatase (ALP) assays 

showed that both treatments were able to induce osteogenic differentiation of serum-free 

expanded BMSCs, though the increase of ALP activity was more rapid with the osteogenesis 

kit (Fig. 1A).  We also performed in vivo transplantation experiments to investigate possible 

differences in bone forming abilities between cells grown in the two media. As shown in 

Figure 1B - 1E, cells treated with both osteogenic medium and the osteogenesis kit were able 

to form bone in vivo, and there was no significant difference in the efficacy of bone 

formation (Fig. 1B, 1C: osteogenic medium; Fig. 1D, E: osteogenesis kit). These data 

indicate that bone tissue engineering with serum-free expanded BMSCs can be achieved 

with either the conventional osteogenic induction medium or the osteogenesis kit. 

However, these treatments may not be ideal for induction of osteogenic differentiation of 

serum-free expanded BMSCs, because both media (even the commercially supplied kit) 

contain some serum-derived components. Therefore, to enhance the safety of clinical bone 

tissue engineering, a completely serum-free osteogenic induction media should be 

developed. 
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Fig. 1. Osteogenic abilities of serum-free expanded BMSCs after osteogenic induction with 
either osteogenic medium or osteogenesis kit (From Agata et al., 2009 with permission) 

Collectively, these data indicate that bone tissue engineering with BMSCs expanded in 
currently available commercial serum-free media is feasible, though further studies 
regarding the characteristics of the cells and the safety of serum-free expanded cells are 
required. In addition, further improvements in serum-free media are desirable because 
currently available xeno-free, serum-free media contain allogeneic human proteins, which 
may cause unknown disease-transmissions and immune reactions. Furthermore, related 
products for serum-free media such as cell culture dish coating materials, which are 
required for the efficient adhesion and proliferation of primary culture cells in serum-free 
culture system, should also be improved because no allogeneic-free materials are currently 
available.  

3. Cell storage technologies 

Cell storage technologies are essential for efficient, safe, and widespread use of tissue 
engineering. Storage technologies for cells and tissue-engineered products are required for 
their timely and efficient distribution. Furthermore, storage of stem cells (stem cell banking) 
is expected as a reservoir of stem cells for future use and also for public cell banking. 
Currently, cryopreservation is the most reliable and established technology to store tissues 
and cells. However, some novel technologies such as freeze dry technology have been 
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investigated. In this chapter, we focus on the characteristic features of tissue-engineered 
products for cryopreservation and recent developments in storage technologies. 
Furthermore, potential future applications of stem cell banking are discussed. 

3.1 Storage of tissue-engineered products 

The storage of tissue-engineered products is an attractive target for technological 
development. Since tissue-engineered products usually consist of living cells, technical 
issues include the limited shelf life of the cells and the use of specialized conditions for 
transportation. Without storage, treatment with cells requires timely harvesting from the 
donor, which significantly affects the availability of tissue-engineered products.  If the 
tissue-engineered products can be used as off-the-shelf products such as bioartificial bone 
substitutes, it would significantly enhance the adoption of this alternative. 

3.1.1 Cryopreservation of tissue-engineered products 

Currently, cryopreservation is the only available strategy for the storage of tissue-
engineered products. However, tissue-engineered products usually consist of multiple 
layers of cells and, in most cases, the cells are seeded on scaffold made of biomaterials, 
which complicates the development of efficient freezing storage protocols (Pancrazio et al., 
2007). Furthermore, the scale-up of cryopreservation procedures from the cellular level to a 
macroscopic tissue scale introduces new problems related to heat and mass transfer 
phenomena in larger systems (Karlsson and Toner, 1996). Although it has been shown that 
frozen storage is feasible for some of the tissue-engineered products such as bone (Kofron et 
al., 2003), it is more difficult than that for isolated cells and requires special considerations.  
Water transport processes may cause difficulties for tissue-scale freezing. While cells at the 

surface layer would respond to freeze-induced osmotic changes much like cells in 

suspension, interior cells would dehydrate as a response to the increased intracellular 

tonicity in the dehydrate surface layers. Accordingly, interior cells dehydrate more slowly 

than surface cells, which may affect their survival (Karlsson and Toner, 1996). Heat 

transport limitation in larger tissue may also affect survival. Due to the macroscopic size of 

tissue-engineered products and its finite thermal conductivity, there may be large thermal 

gradients from the surface to the interior of the samples. The presence of a thermal gradient 

during cooling and warming phases makes it difficult to choose optimal temperature 

change protocols for both surface and interior cells. Moreover, osmotic effects (water 

movement from inside-unfrozen cells to outside-frozen cells) during cooling, reduces cell 

survival. Accordingly, it may not be possible to recover full viability throughout the tissue 

(Karlsson and Toner, 1996). 
One of the key decisions in achieving successful freezing of tissue-engineered products is 
the choice of cryoprotectant. Cryoprotectants minimize damage caused by ice crystal 
formation and should induce an amorphous state, rather than ice crystals during the cooling 
and warming phases. Although the use of cryoprotectants is mandatory, currently available 
reagents are cytotoxic to some extent. Since tissue-engineered products are larger than 
isolated cells, longer incubation times with cryoprotectant are necessary which may result in 
a lower survival rate. On the other hand, short incubation times may not allow enough 
cryoprotectant to penetrate relatively thick tissue-engineered products and cause ice 
crystallization and cell death in internal layers. The pre-incubation time used for penetration 
of cryoprotectant should balance damage caused by toxicity and freezing/warming. 
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3.1.2 Technology development for the storage of tissue-engineered products 

Two major approaches to cryopreservation are known, i.e., conventional freeze-thaw 

procedures and vitrification, which is defined as a glass-like solidification (Karlsson & 

Toner, 1996). While freeze-thaw procedures minimize the probability of intracellular ice 

formation, vitrification attempts to prevent ice formation throughout the entire sample 

during the cooling and warming process (Kuleshova et al., 2007). Recently, the potential of 

vitrification has been tested for tissue-engineered constructs. Since tissue-engineered 

products consist of multicellular layers and often include biomaterials with varying 

coefficients of expansion compared with cells, cryopreservation using conventional freeze-

thaw procedures with slow cooling rates has achieved limited success. Accordingly, 

vitrification could be an attractive alternative technology.  

Vitrification has been investigated for tissue-engineered bone and blood vessels. Liu & 

McGrath (2003) explored the potential of vitrification for the cryopreservation of tissue-

engineered bone constructs consisting of a hydroxyapatite scaffold-cell complex. Cell 

survival was 92.0% for suspended cells and 43.0% for attached cells. In terms of tissue-

engineered blood vessel constructs, the effects of vitrification and conventional 

cryopreservation were compared (Elder et al., 2005). Collagen-based vascular constructs 

were used as models in this study. Morphological changes associated with ice formation 

were visible within tissues preserved using traditional cryopreservation but not in tissue 

preserved using vitrification. The metabolic assay results indicated that vitrified tissue 

had viability similar to fresh controls. More recent study with tissue-engineered blood 

vessels using polyglycolic acid scaffold showed that ice formation in tissue-engineered 

blood vessels was negligible in the vitrified specimens but extensive (68.3 + 4.5% of vessel 

area) in the extracellular matrix of frozen specimens. The vitrified tissue had a viability 

similar to fresh controls and the contractility results for vitrified samples were >82.7% of 

fresh controls but markedly reduced in the frozen samples (10.7% for fresh controls)  

(Dahl et al., 2006). Vitrification is a feasible storage method for tissue-engineered blood 

vessel constructs, and their successful storage brings these constructs one step closer to 

clinical utility. Although it is a promising technique, higher concentration of 

cryoprotectant should be used, which could potentially damage the cells. Accordingly, it 

is still technically difficult and its utility for tissue-engineered products remains to be 

elucidated. 

One of the most awaited technologies for the preservation of tissue-engineered product is 

long-term unfrozen storage (more specifically, dry storage) at ambient temperature. This 

approach allows storage without dependence on expensive freezers or liquid nitrogen, 

which require daily maintenance. This “off-the-shelf” availability and low cost should 

facilitate the usage of tissue-engineered products. Unfortunately, this is not yet a reality. 

However, many organisms can undergo a phenomenon called anhydrobiosis to survive in a 

completely dehydrated state for an extended time and resume activity upon rehydration 

(Crowe et al., 2002). The sugar trehalose is found at high concentrations in many 

anhydrobiotic organisms. Thus, the addition of trehalose is considered a key factor in 

achieving freeze-dried storage. In mammalian cells, freeze-drying of platelets was reported 

using trehalose (Crowe et al., 2005). Although recovered platelets were strongly attenuated, 

the survival rate exceeded 90%. Drying of nucleated cells is apparently more challenging. 

However, the addition of p29, a small a-crystallin stress protein, together with trehalose 

showed increased resistance to dryness in 293 cells (Ma et al., 2005). Although “off-the-shelf” 
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tissue-engineered products stored at ambient temperature are not available, the steady 

progress of research in this area may provide a functional protocol at some point in the 

future. 

3.2 Cryopreservation of putative stem/progenitor cells 

Storage of putative stem/progenitor cells is also an attractive research target in tissue 
engineering. Collection of cells for tissue engineering is less invasive than conventional 
tissue or organ transplantation. However, repetitive collection of cells can stress patients. If 
the stem/progenitor cells could be stored, it is possible that they could be repeatedly used 
for future therapy, reducing the burden and the cost to patients. The concept of banking 
stem/progenitor cells in storage is not new. Stem/progenitor cell populations decrease in 
size with age (D'Ippolito et al., 1999; Zhou et al., 2008). If the stem/progenitor cells were 
harvested at an early age and the cells could be stored, it is possible that those cells could be 
used later in the life of the donor for autologous transplantation. In this chapter, we also 
focus on cell banking. 

3.2.1 Banking of somatic stem/progenitor cells 

Currently, one of the most established and widely accepted stem cell bank systems is 
umbilical cord blood banking. However, the establishement of somatic stem cell bank 
other than cord blood (non-hematopoietic stem cells) is still underway. The nature of 
somatic stem/progenitor cells is much different from that of embryonic stem (ES) cells 
and induced pluripotent stem (iPS) cells. Somatic stem/progenitor cells possess limited 
ability to differentiate compared with ES cells and iPS cells. Furthermore, accumulating 
evidence suggests that somatic stem cells may lose their plasticity soon after cultivation is 
initiated (Sugiura et al., 2004). Thus, expansion and storage of autologous somatic stem 
cells for personal future use could be impractical, particularly if the cells carry a genetic 
predisposition for the disease that is being treated. Improved understanding of somatic 
stem/progenitor cells is required for more varied applications.  

3.2.2 Banking of ES cells and iPS cells 

Recently, the establishment of “stem cell banks” has been reported in several countries. 
Those stem cell banks, mostly government-supported, aim to provide a resource for storing, 
characterising and supplying ethically collected, quality controlled stem cell lines for 
research and ultimately for treatment (London et al., 2004; Nakamura, 2010). There is no 
doubt that those stem cell banks can facilitate research in this area and contribute to the 
availability of those rare resources such as human embryonic stem (ES) cells and somatic 
stem cells to researchers who do not have access. Recently, production of induced 
pluripotent stem (iPS) cell lines from human somatic cells has been reported (Nakagawa et 
al., 2008). Theoretically, it is possible to generate personalized iPS cells for therapeutic use 
without ethical problems and also immunological rejection, though it may not be practical 
due to the time and cost required for the production and quality assurance. To overcome 
this problem, the establishment of HLA-haplotype banking for human iPS cells has been 
argued (Nakatsuji et al., 2008). A similar idea was originally reported for human ES cell lines 
(Taylor et al., 2005). HLA-haplotype banking may provide a more efficient and safe 
alternative. They estimated that only 50 iPS cell lines would be necessary to find a three-
locus match for 90.7% of the Japanese population. At present, the safety of iPS cells for 
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clinical use is the major concern. The development of safe and effective clinical applications 
with iPS cells would enhance their appeal. 

4. Non-invasive image-based cell quality evaluation technology for cell 
therapy  

In clinical tissue engineering, both safety and efficacy requirements must be satisfied. In the 

production of conventional chemical-based pharmaceutical drugs, the quality and efficacy 

of the product is guaranteed through adherence to strict regulations. However, cell-based 

materials, including tissue-engineered products, require different strategies to evaluate their 

quality. 

Conventional cell quality evaluation technologies, such as RT-PCR or immuno-stainning, 

require cell-destruction processing such as cell-lysis or cell-fixations. If the quality of the 

cells can be evaluated without destruction process, both examined and non-examined cells 

can be used for therapies. Therefore, the development of such kind of non-invasive cell 

quality evaluation technologies has been awaited (Takagi, M. 2010).  

4.1 Problems in cell therapy and their technological assessment 

The safety and efficacy of cellular products, such as human cells, tissues, and cellular and 

tissue-based products or HCT/P, processed for cell therapy, are currently regulated by 

individual nations. However, the level and scope of regulation differs greatly among 

countries. Frequently referred references are Current Good Tissue Practice and 21 Code of 

Federal Regulations (CFR), Parts 1270 and 1271 of U.S. Food and Drug Administration 

(FDA) (FDA homepage, 2010). 

Commonly, regulations attempt to limit the unique risks associated with cellular products. 

These regulations focus on the followings: (1) limiting the risk of transmission of 

communicable disease from donors to recipients, (2) establishing manufacturing practices 

that minimize the risk of contamination, and (3) requiring an appropriate demonstration of 

safety and effectiveness for cells and tissues that present greater risks due to their 

processing or their use. The regulations suggest that there are two major risks associated 

with HCT/Ps. One is the non-cellular contaminant risk, and the other is the risk from the 

cells themselves. Regulations have been established to assure sterility and/or the aseptic 

nature of the cellular product. However, there are still few criteria or regulations to 

control cell quality. Especially with stem cells, cell quality per se is not covered by licenses 

or regulations. 

Cell quality issues in cell therapy include the health of the cells, and their ability to grow 

and differentiate as required without risk of tumorigencity. Historically, chromosomal tests 

have been conventionally used to assess tumorigenic risk. Animal implant tests are 

commonly used in safety tests for chemical-based pharmaceutical drugs. Biomarker tests, 

which assess specific tumorigenic marker genes/proteins by RT-PCR or flow cytometry are 

the most frequently used molecular biological techniques. However, as explained below, the 

availability of those conventional techniques do not help clinicians overcome the four major 

problems which inhibit the use of cell therapies. Those problems are as follows. 

The most fundamental problem is guaranteeing the non-invasiveness of the engineered 

cells. Cells prepared for therapeutic use should also be high in viability, since artificial 

manipulation could trigger cellular abnormalities. Also, autologous cells from a patient are 
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commonly very limited in number due to the limitations of the source. For safety, 

fluorescent staining or gene transfer should also be avoided.  

The second problem is a need for complete and exhaustive characterization of the 

engineered cells. In the case of conventional pharmaceuticals, the uniformity of products can 

be strictly controlled by regulation of production. However, with human cells, strict 

regulation of processing does not guarantee uniformity of the product since there are huge 

individual variations. Therefore, sampling does not always assure the quality of total 

cellular products.  

The third problem is the time limitation inherent in sample characterization. A sample 

undergoing processing should be assessed repeatedly, until the day of therapy to assure the 

highest level of safety. However, currently utilized assays such as sterilization test take a 

few weeks to show the safety properties of cell-products.  

The fourth and final problem is instability of the cell quality throughout the culture process. 

Accordingly, the cell quality of the cell-based products should be assessed just before 

operation, though conventional evaluation techniques require a few days or even weeks for 

the assessment of cell-products.  

Here, we introduce image-based cell quality prediction technique which might be able to 

overcome all the problems listed above. Image-based cell quality prediction enables non-

invasive, complete, on-time, and predictive evaluation of cells. 

Image cytometry is an exciting new area in cell research (Kim, JS. et al., 2010) and could 

support cell quality evaluation of tissue-engineered products. Given the advances in 

hardware and software, there are commercially available analysis systems for image 

cytometry, such as the IN Cell Analyzer (GE Healthcare, Chalfont St Giles, 

Buckinghamshire, United Kingdom) (GE Healthcare home page, 2011). Image cytometry 

provides exhaustive high content information characterizing intact/fixed cells. It can also 

provide very detailed data describing the localization or expression of molecules and 

organelles in cells. However, current image cytometry analysis is based on fluorescence. 

Although there are many "less-damaging" technologies for fluorescent labelling of cells, they 

still give some changes to the cells;, thus, incompatible to assess patient cells in clinical 

tissue engineering. 
In contrast, there are developing technologies that evaluate/estimate cellular activities by 
"non-invasive" measurement technologies (Takagi, M. 2010). Takagi reviewed these non-
invasive cell imaging technologies, and indicated that cellular activities can be estimated by 
cellular morphologies. Recent non-invasive technologies have also been applied to the cell 
quality evaluation of three dimensionally cultured tissue engineering products (Kino-oka et 
al., 2008). 
Here, we review some important aspects of basic image analysis strategy, especially 
designed for “cell quality prediction system” in tissue engineering and cell therapy, and 
show examples of image-based cell quality prediction technology. 

4.2 Basics of cell image analysis for cell quality prediction 

For image-based cell quality prediction, there are four major steps (Fig. 2): (1) image data 
collection, (2) image processing, (3) experimental data collection, and (4) data analysis. By 
adding a fifth step, (5) Prediction, conventional correlation analysis (in-sample analysis) is 
extended to achieve predictive performance (out-of sample analysis) for the evaluation of 
new samples. 
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Fig. 2. Work flow of non-invasive image-based cell quality prediction 

4.2.1 Image data collection 

To assess cellular quality by digital imagery, a large number of detailed images should be 

collected. There are reports of various types of cellular images applied to non-invasive 

image analysis, such as phase-contrast microscopy, differential interference contrast 

microscopy, light-field microscopy, phase-shifting scanning confocal laser microscopy, etc. 

In our laboratory, phase contrast microscopic images are obtained by BioStaition CT (Nikon 
Corporation, Tokyo, Japan), a fully-automatic cell monitoring system.  

4.2.2 Image processing 

After collecting data, raw images can be processed by image processing software, such as 

ImageJ, CellProfiler, Scion Image, Metamorph, CellClassifier, etc. The image processing 

scheme for cell image analyses combines (1) binarization, (2) noise reduction, and (3) object 

analysis. 

There is no gold standard threshold for image analysis. Based on the type of images, 
different processing filters and orders should be examined to gain the best processing 
result. 
For the analysis, object analysis is the most informative and essential process, that is the 

conversion of cellular images into numerical morphological parameters. The objects in the 

images that correspond to cells are individually labelled and their morphological 

parameters are measured. Although there are some variations in morphological parameters 

calculated by software, the basic parameters are length, breadth, area, perimeter, centroid, 

inner/outer radius, and area of holes of cells. 

4.2.3 Experimental data collection 

To find out the correlation between the cellular morphology and cell quality, cellular images 

should be compared with the data from biological experimentals. Therefore, the samples are 

evaluated by conventional biological techniques after the image acquisition.  
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4.2.4 Data analysis 

Choosing the best approach to data analysis depends on the goal. Bioinformatics, the 

computational and statistical science that analyzes data from molecular biology, offers many 

effective solutions for the analysis of image data and biological experimental data. If the aim 

is evaluation of cell quality, regression analysis is an effective solution. Regression analysis 

could be easily introduced in laboratories by commercially available statistical software, 

such as SPSS. Free statistical programming platform “R" and BioConductor (R Project 

homepage, 2011) provide appropriate applications. 

The basic strategy for image-based cell quality prediction is to select the proper regression 

type and construct a model by using a dataset containing both morphological data and 

experimental data. In the regression analysis, the algorithm searches for the best 

mathematical function (”the model") that can explain the correlation between a change in 

morphological data (input data) and biological data (output data). Hence, once a model that 

links input and output data with good accuracy has been established, future results could be 

predicted using image data alone. This is analogous to arriving at a prognosis using gene 

expression from microarray studies. SPSS (IBM, New York, U.S.A.) and the R platform 

provide multiple optional functions for parameter selection.  

4.2.5 Prediction 

Prediction is the final process for practical image-based cell quality assessment. The 
prediction process is similar to the process of data analysis. Briefly, after the completion of 
regression analysis, the resultant model can function as a "prediction model". However, 
compared to the analytic process that uses all data (known as “in-sample analysis”), 
partitioned data are separately used for “model construction” and “model test” (known as 
“out-of-sample analysis”) for evaluating the generalization performance. In practice, the 
total data are commonly partitioned into training data and test data. Using the regression 
model constructed only with the training data, the error rate between the actual output 
values of test data and the predicted values calculated from the input values of test data are 
compared. When the average error rate for all test data is small, the constructed model could 
be considered a "reliable model" to use with new data. In such a data model validation 
process, leave-one-out or several-fold cross validation is commonly used. Since this final 
process requires the partitioning of total data, the total data pool should be large and varied. 
When the quantity of data is too small, the constructed model will have limited prediction 
value with new data. Also, when data variations are very biased to certain conditions, such 
as with only one lot of cells, the constructed model may perform well for the cell lot 
examined, but would not work with new cell lots. 

4.3 A prediction system based on cell image analysis which supports clinical tissue 
engineering 

Here, we introduce practical examples of non-invasive cell quality prediction to support 
clinical tissue engineering. 

4.3.1 Prediction of cell yield 

In clinical tissue engineering, cell yield on the day of surgery is a critical factor. Seeding cell 
density or cell number is commonly critically defined in most cell therapy protocols to 
assure a certain therapeutic effect. Therefore, the surgery schedule is projected based on the 
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experienced observation of cellular behaviour in the culture flasks. However, such 
scheduling is very tentative and there are cases in which the cell yield is insufficient on the 
scheduled day of surgery. 
To overcome such problems in clinical tissue engineering, we tried to predict the future cell 

yield (14 days later) from early cellular images (images one to three days into the culture 

period). For image data, we collected total 270 phase contrast microscopic images (4x) of 

cultured primary dermal fibroblasts, obtained from 10 healthy volunteers (3 males, 7 

females, 29 - 72 years old). Informed consent was obtained according to a protocol 

approved by the ethics committee of Nagoya University Hospital. Biological data (cell 

growth rate) within 14 days was obtained by manual cell count. All cells were prepared 

using passage three or four from the primary expansion in modified Eagle’s medium 

(DMEM) containing 10% FBS at 37°C in the presence of 5% CO2. A schematic image is 

provided in Fig. 3. 

 

 

Fig. 3. Schematic diagram of cell yield prediction 

The cell attachment rates and growth curves differed greatly among individuals (data not 

shown). However, by multiple-regression analysis (MRA) with parameter selection, the 

predicted growth rates had very small error rates compared to the actual growth rates (Fig. 

4). Among 120 parameters extracted from the image data, three parameters, such as (P1) 

change rate of the variation of elliptical rate (1st day to 3rd day), (P2) Size of the inner radius 

on the third day, and (P3) cell number on the first day, were found to be the best 

combination of cell culture parameters to predict future cell yield (average squared error = 

0.14) (Fig. 4C). It is interesting that other parameters, intentionally selected by cell culture 

experts badly correlated with the cell yield (Fig. 5). By comparing all the data, we arrived at 

three conclusions: (1) morphological cell information is informative for cell growth 

prediction, (2) objectively selected parameters are more effective in cell growth prediction, 

and (3) multiple combinational parameters work better than a single parameter in cell 

growth prediction. 
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Fig. 4. Accuracy of cell yield prediction models. (A) one-parameter prediction model (P1 
only), (B) two-parameter prediction model (P1 and P2), (C) three-parameter prediction 
model (P1, P2, P3). P1, change rate of the variation of elliptical rate (first day to third day); 
P2, size of the inner radius on the third day; P3, cell number on first day 
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Fig. 5. Correlation plot with the image-derived parameter selected by cell culture experts. 
(A) Correlation with area of viable cells after 24 h, (B) Correlation with total cell growth rate 
(day three/day one). 

4.3.2 Predicting the level of osteogenic differentiation 

In stem cell therapy for bone regeneration, the extent of differentiation critically affects the 
in vivo bone formation after implantation. However, good early markers that predict the 
future differentiation level of cells have been unavailable. If the differentiation level of cells 
could be predicted in advance, scheduling of surgery could be set to optimize therapeutic 
outcome. 
As a prediction model of cell differentiation ability, we attempted to predict the alkaline 
phophatase (ALP) activity of human mesenchymal stem cells (hMSCs). For image data, we 
collected 1,170 phase contrast microscopic images (4x) of cultured commercial hMSCs (three 
lots; 20 years old male, 22 year old male, and 19 year old male). Cells at the same passage 
number were cultureed in the differentiation medium (Agata et al.. 2009) at 37°C in the 
presence of 5% CO2. For biological phenomenon data, we collected the ALP activity of all 
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the samples using the method described previously (Agata et al., 2009). We compared the 
two groups of induction positives and negatives. The protocol is described in Fig. 6. 
 

 

Fig. 6. Schematic diagram of osteogenic differentiation prediction 
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Fig. 7. Prediction accuracy of osteogenic differentiation model 

By using ten morphological parameters selected by MRA, we found that ALP activity could 
be predicted with high accuracy (Fig. 7). Although there were slight differences in 
differentiation ability among the examined MSCs, the regression model could be extended 
to respond to any MSCs. In other words, patient differences could be compensated for by 
such a model-based analysis. 

5. Conclusions 

Despite rapid progress in treatment technologies using tissue engineering and regenerative 
medicine, those novel therapies have yet to be extended to standard medical practice and 
only limited numbers of patients have thus far benefited from these less invasive and 
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potentially efficient therapies. The development of the technologies described here should 
facilitate general medical acceptance of tissue engineering. Increased availability of tissue 
engineering should contribute to the quality of life of patients with a wide range of diseases. 
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