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1. Introduction 

Since their development, structure comparison methods have contributed to advance our 
understanding of protein structure and evolution (Greene et al, 2007; Hasegawa & Holm, 
2009), to help the development of structural genomics projects (Pearl et al, 2005), to improve 
protein function annotations (D. A. Lee et al), etc, thus becoming an essential tool in 
structural bioinformatics. In recent years, their application range has grown to include the 
protein structure prediction field, were they are used to evaluate overall prediction quality 
(Jauch et al, 2007; Venclovas et al, 2001; Vincent et al, 2005; G. Wang et al, 2005), to identify a 
protein’s fold from low-resolution models (Bonneau et al, 2002; de la Cruz et al, 2002), etc. In 
this chapter, after briefly reviewing some of these applications, we show how structure 
comparison methods can also be used for local quality assessment of low-resolution models 
and how this information can help refine/improve them.  
Quality assessment is becoming an important research topic in structural bioinformatics 
because model quality determines the applicability of structure predictions (Cozzetto et al, 
2007). Also, because prediction technology is now easily available and potential end-users of 
prediction methods, from template-based (comparative modeling and threading) to de novo 
methods, are no longer specialized structural bioinformaticians. Quality assessment 
methods have been routinely used for many years in structural biology in the evaluation of 
experimental models. These methods focus on several features of the protein structure (see 
(Laskowski et al, 1998) and (Kleywegt, 2000) and references therein). Because a number of 
quality issues are common to both experimental and predicted models, the use of these 
methods has been naturally extended to the evaluation of structure predictions. For 
example, in the case of homology modeling, a widely used structure prediction technique, 
evaluation of models with PROCHECK (Laskowski et al, 1993), WHAT-CHECK (Hooft et al, 
1997), PROSA (Sippl, 1993), and others (see (Marti-Renom et al, 2000) and references therein) 
is part of the standard prediction protocol; WHATIF (Vriend, 1990) and PROSA (Sippl, 1993) 
have also been used in the CASP experiment to assess comparative models (Venclovas, 2001; 
Williams et al, 2001); etc.  
Some quality assessment problems are unique to the structure prediction field, given the 
specific characteristics of computational models, and have led to the development of 
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methods aimed at: the recognition of near-native predictions from a set of decoys (Jones & 
Thornton, 1996; Lazaridis & Karplus, 2000; Sippl, 1995); identification of a target’s protein 
family (Bonneau et al, 2002; de la Cruz et al, 2002); overall quality assessment of predictions 
(Archie et al, 2009; Benkert et al, 2009; Cheng et al, 2009; Larsson et al, 2009; Lundstrom et al, 
2001; McGuffin, 2009; Mereghetti et al, 2008; Wallner & Elofsson, 2003; 2005; Z. Wang et al, 
2009; Zhou & Skolnick, 2008); and, more recently, residue-level quality assessment (Benkert 
et al, 2009; Cheng et al, 2009; Larsson et al, 2009; McGuffin, 2009; Wallner & Elofsson, 2006; 
2007; Z. Wang et al, 2009). However, in spite of these promising efforts, quality assessment 
of protein structure predictions remains an open issue(Cozzetto et al, 2009). 
Here we focus on the problem of local quality assessment, which consists on the 
identification of correctly modeled regions in predicted structures (Wallner & Elofsson, 
2006; 2007), or, as stated by Wallner and Elofsson(Wallner & Elofsson, 2007): “The real value 
of local quality prediction is when the method is able to distinguish between high and low 
quality regions.”. In many cases, global and local quality estimates are produced 
simultaneously (Benkert et al, 2009; Cheng et al, 2009; Larsson et al, 2009; McGuffin, 2009). 
However, in this chapter we separate these two issues by assuming that, irrespective of its 
quality, a structure prediction with the native fold of the corresponding protein is available. 
From a structural point of view this is a natural requirement, as a correct local feature 
(particularly if it is one which, like a β-strand (Chou et al, 1983), is stabilized by long-range 
interactions) in an otherwise wrong structure can hardly be understood. From a practical 
point of view, successful identification of correct parts within incorrect models may lead to 
costly errors. For example, identifying a correctly modeled binding site within a structurally 
incorrect context should not be used for drug design: it would surely have incorrect 
dynamics; the long-range terms of the interaction potential, like electrostatics, would be 
meaningless; false neighboring residues could create unwanted steric clashes with the 
substrate, thus hampering its docking; or, on the contrary, absence of the true neighbors 
could lead to unrealistic docking solutions; etc. In the remaining of the chapter we describe 
how structure comparison methods can be applied to obtain local quality estimates for low-
resolution models and how these estimates can be used to improve the model quality.  

2. A simple protocol for local quality assessment with structure comparison 
methods 

As mentioned before, an important goal in local quality assessment(Wallner & Elofsson, 
2006; 2007) is to partition the residues from a structure prediction in two quality classes: 
high and low. This can be done combining several predictions; however, in the last two 
rounds of the CASP experiment -a large, blind prediction experiment performed every two 
years(Kryshtafovych et al, 2009)- evaluators of the Quality Assessment category stressed 
that methods aimed to assess single predictions are needed(Cozzetto et al, 2007; Cozzetto et 
al, 2009). These methods are particularly important for users that generate their protein 
models with de novo prediction tools, which are still computationally costly(Jauch et al, 
2007), particularly for large proteins.  
Here we describe a single-molecule approach, based on the use of structure comparison 
methods, that allows to partition model residues in two sets, of high and low quality 
respectively. In this approach (Fig. 1), the user’s model of the target is first structurally 
aligned with a target’s homolog. This alignment, which constitutes the core of the 
procedure, is then used to separate the target’s residues in two groups: aligned and 
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unaligned. The main assumption of this approach is that aligned residues are of higher 
quality than the average. The validity of this assumption is tested in the next section. In 
section 3 we discuss the conditions that determine/limit the applicability and usefulness of 
the method.  
 

 
Fig. 1. Use of structure comparison methods for local quality assessment of structure 
predictions 

2.1 Performance of structure comparison methods in local quality assessment 

To show that structurally aligned residues are usually of higher quality we used a set of de 
novo predictions with medium/low to very low resolution, obtained with Rosetta(Simons et 
al, 1997). Although several de novo prediction programs have shown promising results in the 
CASP experiment(Jauch et al, 2007; Vincent et al, 2005), we used Rosetta predictions 
because: (i) Rosetta is a well known de novo prediction program that has ranked first in 
successive CASP rounds (Jauch et al, 2007; Vincent et al, 2005); (ii) many Rosetta predictions 
are available at the server of Baker’s group, thus allowing a consistent test of our approach,  
with predictions from the same source; and (iii) the program is available for interested users 
(http://www.rosettacommons.org/software/).  
We downloaded the protein structure predictions from the server of Baker’s laboratory 
(http://depts.washington.edu/bakerpg/drupal/). This set was constituted by 999 de novo 
models generated with Rosetta(Simons et al, 1997) for 85 proteins, i.e. a total of 84915 
models. Application of the protocol studied here (Fig. 1) requires that the structure of a 
homolog of the target is available, and that the predictions used have the fold of the target. 
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The former was enforced by keeping only those proteins with a CATH relative at the T-
level(Pearl et al, 2005) (homologs with the same fold of the target protein, regardless of their 
sequence similarity). The second condition was required to focus only on the local quality 
assessment problem, and was implemented by excluding those models not having the fold 
of their target protein. Technically, this meant that we only kept those models structurally 
similar to any member of the target’s structural family: that is, those models giving a score 
higher than 5.25 for the model-homolog structure comparison done with MAMMOTH 
(Ortiz et al, 2002), for at least one homolog of the target protein. This step was 
computationally costly, as it involved 7,493,499 structure comparisons, and could only be 
carried using MAMMOTH(Ortiz et al, 2002); the 5.25 score threshold was taken from 
MAMMOTH’s article (Ortiz et al, 2002). The final dataset was constituted by 68 target 
proteins and a total of 17180 models.  
The properties of the selected target’s residues (STR; to avoid meaningless results we only 
considered STR sets larger than 20 residues) were characterized with four parameters: two 
structure-based, and two sequence-based. The former were used to check if STR really were 
of better quality, comparing their parameters’ values with those obtained for the set of all 
the target residues (ATR), i.e. the whole model structure. It has to be noted that: (i) STR and 
ATR sets are constituted by residues from the target protein, more precisely STR is a subset 
of ATR; and (ii) three possible STR sets were produced, because we checked our procedure 
using three structure comparison methods (MAMMOTH (Ortiz et al, 2002), SSAP(Orengo & 
Taylor, 1990) and LGA(Zemla, 2003)). The sequence-based properties were utilized to 
describe how STR spread along the sequence of the target, which helps to assess the 
usefulness of the protocol. Below we provide a brief description of each parameter, together 
with the results obtained from their use.  

2.1.1 Structural quality: rmsd 

Rmsd(Kabsch, 1976) is a quality measure widely employed to assess structure models: it 
corresponds to the average distance between model atoms and their equivalent in the native 
structure. Small rmsd values correspond to higher quality predictions than larger values. 
In Fig. 2 we see the STR and ATR rmsd distributions. Regardless of the structure 
comparison method used (MAMMOTH (Ortiz et al, 2002), SSAP(Orengo & Taylor, 1990) 
and LGA(Zemla, 2003) in blue, yellow and red, respectively), STR distributions are shifted 
towards lower rmsd values relative to ATR distributions (in grey). This confirms the starting 
assumption: it shows that model residues structurally aligned to the protein’s homolog 
usually have a higher structural quality. A consensus alignment (in black), which combined 
the results of the three structure comparison methods, gave better results at the price of 
including fewer residues; for this reason we excluded the consensus approach from 
subsequent analyses. 
An interesting feature of STR rmsd distributions was that their maxima were between 3.5 Å 
and 6.5 Å, and that a majority of individual values were between 3 Å and 8 Å, and below 10 
Å. To further explore this issue, we plotted the values of rmsd for STR against ATR (Fig. 3, 
grey boxes). In accordance with the histogram results, STR rmsd tended to be smaller than 
ATR rmsd. We distinguished two regions in the graph: in the first region (ATR rmsd 
between 0 Å and 6-8 Å) there was a roughly linear relationship between ATR and STR 
rmsds; however, for ATR rmsd values beyond 8 Å, STR rmsd reached a plateau. This 
plateau is at the origin of the thresholds observed in the histograms (Fig. 2), and confirms 
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that structure alignments can be used to identify subsets of model residues with better rmsd 
than the rest.  
 
 
 
 
 

 
 
 
 
 
 

Fig. 2. Quality of structurally aligned regions vs. whole model, rmsd frequency histogram. 

As a performance reference we used the PROSA program (Sippl, 1993) (white boxes) which 
provides a residue-by-residue, energy-based quality assessment, and is a single model 
method, therefore comparable to the approach presented here. PROSA was executed with 
default parameters, and we took as high quality residues those having energies below zero. 
In Fig. 3 we see that for good models, i.e. those with low ATR values, PROSA results (in 
white) were as good as those obtained with structure comparison methods (in grey). 
However, as models became poorer, PROSA results became worse, particularly after 
structure comparison methods reached their plateau. This indicates that when dealing with 
poor predictions use of structure alignments can improve/complement other quality 
assessment methods.  
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Fig. 3. Quality of structurally aligned (obtained with MAMMOTH (Ortiz et al, 2002)) regions 
vs. whole model, rmsd of selected residues vs. all-residues. Grey: structure comparison-
based protocol (Fig. 1); white: PROSA(Sippl, 1993) results. 

2.1.2 Structural quality: GDT_TS 

GDT_TS is a quality measure routinely utilised by evaluator teams in the CASP community 
experiment (Jauch et al, 2007; Vincent et al, 2005): it is equal to the average of the 
percentages of model residues at less than 1 Å, 2 Å, 4 Å and 8 Å from their location in the 
correct structure. It was computed following the procedure described by Zemla(Zemla, 
2003), using Cα atoms to compute residue-residue distances. GDT_TS varies between 0 and 
100, with values approaching 100 as models become better. 
We found that STR GDT_TS was in general better than ATR GDT_TS (Fig. 4); this was 
particularly true when the latter was below 40-50. Overall, this shows that STR is enriched 
in good quality sub-structures relative to ATR, particularly for poor models.  
Consistency with rmsd analysis was observed when comparing the performance of 
structure comparison-based quality assessment (in grey) with that of PROSA (in white): for 
good models (GDT_TS values above 60-70) both approaches had a similar behavior; 
however, as model quality decreased, use of structure alignments showed increasingly 
better performance than PROSA at pinpointing correct substructures.  
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Fig. 4. Quality of structurally aligned (obtained with MAMMOTH (Ortiz et al, 2002)) regions 
vs. whole model, GDT_TS of the selected residues vs. all-residues GDT_TS. Grey: structure 
comparison-based protocol (Fig. 1); white: PROSA(Sippl, 1993) results. 

2.1.3 Distribution of high quality residues along the protein sequence 

Usually, STR do not form a continuous block, they tend to scatter along the sequence. The 
nature of this distribution is of interest for some applications of quality assessment methods 
(like model refinement) for which STR sets may be of little value if the involved residues are 
either too close in sequence, or contain too many orphan residues.  
To characterize the distribution of STR along the sequence we used two measures: 
maximum distance (MD) between STR runs and normalized size distribution of STR runs 
(SAS). Both are based on the fact that, for a given model, STR sets are constituted by residue 
runs of varying size. MD corresponds to the largest sequence distance between STR runs 
(i.e. the number of residues between the rightmost and leftmost STR runs), divided by 
whole sequence length. MD values near 1 indicate that STR runs are spread over the whole 
protein, while smaller values point to a tighter residue clustering.  SAS corresponds to the 
normalized (again by whole sequence length) size distribution for all runs constituting STR 
sets. SAS gives a view of how the sequence coverage is done: either by large sequence 
chunks, by small residue clusters, or by a mixture of both. When the alignment is 
constituted by small, evenly distributed residue clusters the SAS distribution will approach 
zero.  

www.intechopen.com



 
Computational Biology and Applied Bioinformatics 

 

336 

Our results showed that MD values are more frequent above 0.5, and more than 50% of 
them were higher than 0.8 (Fig. 5). The three structure comparison methods showed similar 
distributions, although LGA was slightly nearer to 1. This indicates that STR spread over a 
substantial part of the predicted protein.  
 

 
Fig. 5. Frequency distribution of the selected residues along the target sequence: normalized 
maximum distance between STR runs (unitless parameter). 

Results for SAS (Fig. 6) showed that while ~50 % of STR formed clusters of size lower than 
10 % of the whole sequence (i.e. SAS values below 0.1), the remaining residues were 
grouped in medium to large stretches. This means that for a 100 residue protein, clusters of 
more than 10 residues (which is roughly the size of an average α-helix) are frequent. In 
addition, for 95 % of the cases, the largest run of adjacent residues was above 30 % of the 
target length.  
The picture arising from MD and SAS distributions is that STR usually extend over the 
protein length. Although STR sets are constituted by somewhat heterogeneous runs they do 
not contain too many orphan residues, as they include one large run (the size of a 
supersecondary structure motif, or larger) and several, smaller runs (the size of secondary 
structure elements).  
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Fig. 6. Frequency distribution of the selected residues along the target sequence: normalized 
maximum distance between STR runs (unitless parameter). 

3. Applicability range of structure comparison methods in local quality 
assessment  

The approach described here is easy to use and has few computational requirements; 
however, it cannot be arbitrarily applied to any model or in any prediction scenario. In this 
section we describe which are its limits regarding prediction methods, target proteins and 
protein model nature.  

3.1 Prediction methods  

As far as the target protein has a homolog of known structure, model-homolog structure 
alignments can be computed and the quality assessment protocol (Fig. 1) can be applied, 
regardless of the prediction method originating the model. However, the approach 
presented here reaches its maximum utility when models are obtained with de novo 
structure prediction methods (methods originally devised to work using only the target’s 
sequence and a physico-chemical/statistical potential, irrespective of the availability of 
homologs). This may seem somewhat contradictory, as one can think that the existence of 
target’s homologs favors the use of comparative modeling methods instead of de novo 
methods. However, this is not the case: while de novo methods were initially developed with 
the de novo scenario in mind (only sequence information is available for the target protein), 
this situation is changing rapidly. Actually, when prediction problems become difficult, or a 
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given method gives an unclear answer, using more than one technique is considered a good 
approach within the prediction community, as the evaluators of the de novo section in the 
CASP6 experiment explain (Vincent et al, 2005): “Many predicting groups now use both de 
novo and homology modeling/fold recognition techniques to predict structures in all 
categories”. In addition, it has been shown that de novo methods can compete with 
template-based methods in the prediction of difficult targets (Jauch et al, 2007; Raman et al, 
2009; Vincent et al, 2005). In this situation, which implies the existence of target's homologs, 
our method can be used to score the local quality of de novo predictions.  
In addition, a completely new field of application for de novo methods has been unveiled by 
the growing interest in knowing the structure of alternative splicing isoforms (C. Lee & 
Wang, 2005). Due to the very localized nature of sequence changes (Talavera et al, 2007), 
structure prediction of alternative splicing variants seems a trivial exercise in comparative 
modeling. However, template-based methods fail to reproduce the structure changes 
introduced by alternative splicing (Davletov & Jimenez, 2004). De novo approaches with 
their ability to combine first principles with deep conformational searches are ideal 
candidates to tackle this problem; in this case, availability of the structure of only one 
isoform would allow the application of our method. 

3.2 Target proteins  

Proteins to which our approach can be applied must have a homolog of known structure. 
The number of these proteins is increasing due to: (i) the progress of structural genomics 
projects (Todd et al, 2005) (this will increase the number of both easy/medium and hard 
targets); (ii) the growing number of alternative splicing variants of unknown structure (C. 
Lee & Wang, 2005).  

3.3 Protein models 

The approach proposed (Fig. 1) is a local, not a global, quality assessment method and 
should only be applied to models that have the native fold of the target (see above). Present 
de novo methods still cannot consistently produce models with a native-like fold (Moult et al, 
2009). Therefore, researchers must ascertain that the model’s fold is correct (irrespective of 
its resolution). This can be done using global quality assessment methods like PROSA 
(Sippl, 1993), the Elofsson’s suite of programs (Wallner & Elofsson, 2007), etc.  

4. Applications 

Once available, local quality information can be used with different purposes. For example, it 
may help to identify those parts of a theoretical model that are more reliable for mutant 
design, or to interpret the results of mutagenesis experiments; it may be used for in sillico 
docking experiments involving de novo models, to decide which parts of the models must be 
employed preferentially; etc. One the most promising applications of quality assessment 
methods is the refinement of low-resolution models (Wallner & Elofsson, 2007). In this section 
we illustrate how the results of the procedure here described can be used for this purpose. 
Among the possible options available for model refinement, we propose to use the 
alignment resulting from the structural superimposition between a de novo model and the 
target’s homolog (Fig. 1) as input to a comparative modeling program. We applied this 
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strategy to 15 proteins (five from each of the three main CATH structural classes: alpha, beta 
and alpha/beta) from our initial dataset. These 15 proteins contributed a total of 2693 de 

novo models that resulted in 8033 model-homolog alignments (obtained with MAMMOTH 
(Ortiz et al, 2002)). These alignments were subsequently used as input to the standard 
homology modeling program MODELLER (Marti-Renom et al, 2000), which was run with 
default parameters. For the aligned regions we found (Fig. 7) that most of the refined 
models had lower model-native rmsd than the starting de novo models, i.e. they were closer 
to the native structure. A similar, although milder, trend was also observed when 
considering the whole set of protein residues (i.e. aligned as well as unaligned residues) 
(Fig. 8). These results show that this simple, computationally cheap model refinement 
protocol, based on the use of structure comparison local quality analysis, clearly helps to 
refine/improve low-resolution de novo models to an accuracy determined by the closest 
homolog of the target. 
  

 
Fig. 7. Model refinement using structure comparison-based local quality assessment: rmsd 
of refined models vs. rmsd of original de novo models, subset of aligned residues. Points 
below the dotted line correspond to refinement-improved models. 
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Fig. 8. Model refinement using structure comparison-based local quality assessment: rmsd 
of refined models vs. rmsd of original de novo models, all protein residues. Points below the 
dotted line correspond to refinement-improved models. 

5. Conclusions 

In this chapter we have described and tested a protocol for local quality assessment of low-
resolution predictions based on the use of structure comparison methods. The testing was 
carried with de novo predictions, and the results showed that structure comparison methods 
allow the partitioning of the model’s residues in two sets of high and low quality, 
respectively. This result holds even when only remote homologs of the target protein are 
available. The simplicity of the approach leaves room for future improvements and fruitful 
combination with other quality assessment methods. Two conditions determine the 
application range of this approach: the target protein must have at least one homolog of 
known structure, and models reproducing the fold of the target are required. However, 
results indicating that we may be near a full coverage of the proteins’ fold space, together 
with advances in overall quality scoring indicate that these two problems are likely to 
become minor issues in the near future. Finally, our procedure suggests a simple refinement 

www.intechopen.com



 
Contributions of Structure Comparison Methods to the Protein Structure Prediction Field 

 

341 

strategy based on the use of comparative modeling programs that may be used to improve 
low-resolution de novo models. 
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