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1. Introduction      
 

Robots available nowadays in the everyday markets can be divided into two major 
groups.  First, those that are oriented to a single task, as vacuum cleaners (roomba1, 
robocleaner2, ...), lawn mowers (automower3, robomower4, ...), etc; and second, those 
oriented to various tasks, as robotic pets (Aibo5, Necoro6,... ), museum guiders, or research 
platforms (Pioneer, Koala, etc.). In order to get service robots or personal assistants we 
need to improve the abilities of the second ones. These abilities have to do with their 
ability to smartly combine their basic skills to obtain behaviors that are more complex. 
The generation of autonomous behavior is a very complex issue.  Within a multi-goal 
system, like service robots, the focus is more on the integration than on the control of 
perception algorithms. The organization becomes the critical issue; robustness and 
flexibility are key features. As animals can do it, we can see no compelling reason why 
robots could not, but more research on robot architectures is needed to reach an acceptable 
performance. 
Several paradigms have been historically proposed for behaviour generation in robots. 
These paradigms are also known as architectures. Dynamic and uncertain environments 
forced the evolution from symbolic AI (Nilsson 1984) to reactive and behavior based 
systems (Brooks 1986; Arkin 1989).   
The behaviors based systems adapt smoothly. They have no anticipation and no state, but 
they have shown poor scalability for complex systems. Hybrid architectures have been 
predominant since mid 90s (Simmons 1994; Konolige 1998; Bonasso 1997), mainly those 
three-tiered ones that add two layers to behavior based ones, usually a sequencer, and a 
deliberator. 
Several architectures have been explored after the hybrid three-tiered architectures 
became the de facto standard. In particular, many reviews of the hierarchy principle have 
been proposed in last years (Arkin 2003, Saffiotti 2003, Nicolescu 2002, Behnke 2001, 
Bryson 2001), trying to overcome subsumption limitations.  
Our contribution in this area is a novel hierarchical approach named JDE. This new 
hierarchical approach, ethologically inspired, is based on the selective activation of 

                                                 
1 http://www.roombavac.com 
2 http://www.robocleaner.de 
3 http://www.automower.com 
4 http://www.friendlyrobotics.com 
5 http://www.aibo-europe.com 
6 http://www.necoro.com 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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schemas, which generates the dynamic hierarchies that govern the robot behavior. In 
section 2 we describe its major characteristics. 
Besides the conceptual fundamentals, every architecture has to be implemented in 
software. In section 3 we present some of the existing software platforms for the 
development of robotic software. JDE also provides a software infrastructure to ease the 
development of robotics software. In section 4 this software architecture is described in 
detail. 

 
2. JDE Architecture 
 

In JDE terminology a “behavior” is considered the close combination of perception and 
actuacion in the same platform. Both are splited in small units called schemas (Arkin 
1989). Perceptive schemas build some piece of information concerning the environment or 
the robot itself, and actuation schemas make control decisions considering such information 
like speeding up the motors or moving some joint. JDE also proposes the schemas can be 
combined in a dynamic hierarchy to unfold the behavior repertoire of the robot 
accordingly to current goals and environment situation. Foundations, and further details 
of JDE can be found in the PhD dissertation (Cañas 2003). 

 
2.1 Schemas 
 

JDE follows the Arkin's definition (Arkin 1998) “a schema is the basic unit of behavior from 
which complex actions can be constructed; it consists of the knowledge of how to act or 
perceive as well as the computational process by which it is enacted''.  
They are thought as continuous feedback units, similar to teleo-reactive programs in 
(Nilsson 1997) and are close to control circuitry, which continuously update its outputs 
from its inputs. In JDE each schema has a time scale and a state associated. They can be 
switched on and off at will and they accept some modulation parameters. The schemas are 
thought as iterative processes with a goal, which continuous execution allows them to 
build and keep updated some stimuli or to develop some behavior.  
There are two types of schemas, perceptive and actuation ones. Each perceptive schema 
builds some information piece about the environment or the robot itself, which we'll call a 
stimulus, and keeps it updated and grounded. It can take as input the value of sensor 
readings, or even stimuli elaborated by other schemas. It also accepts modulating 
parameters. Perceptive schemas can be in “slept” or in “active” state. 
Each actuation schema takes control decisions in order to achieve or maintain its own goals, 
taking into account the information gathered by different sensors and the associated 
perceptive schemas. The output of an actuation schema typically orders commands to 
actuators, and can also activate other schemas, both perceptive and actuation ones. Such 
new schemas are regarded as its children, and the parent schema often modulates them 
through mentioned parameters.  
Actuation schemas can be in several states: “slept”, “checking”, “ready” and “active”, 
closely related to how action selection is solved in JDE. Control schemas have 
preconditions, which implicitly describe in which situations such schema is applicable and 
may achieve its goals. 
The algorithm running inside the schema contains all the task-knowledge about how to 
perceive relevant items and how to act, whatever technique be used. JDE architecture only 
imposes the interface: selective activation (on-off) and parameters for modulation, as long 
as it affects the way all the pieces are assembled together into the system. Continuous 
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(iterative) execution is assumed, actively mapping its inputs into its outputs, regardless 
how it is achieved: case-based actuation, fuzzy controller, crisp function, finite-state-
automata, production sytem, etc.  
 
2.2 Hierarchy 
 

All schemas that are awake (those in “checking”, “ready” or “active” states) run 
concurrently, similar to the distribution found in behavior-based systems. To avoid 
incoherent behavior and contradictory commands to actuators JDE proposes hierarchical 
activation as the skeleton of the collection of schemas. It also claims that such hierarchical 
organization, in the ethological sense, provides many other advantages for roboticists like 
bounded complexity for action selection, action-perception coupling and distributed 
monitoring. All of them without losing the reactivity needed to face dynamic and 
uncertain environments. We consider that these features make easier the development of 
versatile and flexible artificial behavior systems. 
In JDE there is hierarchy as long as one schema can activate other schemas. An actuation 
schema may command to actuators directly or may awake a set of new child schemas. 
These children will execute concurrently and they will achieve in conjunction the father's 
goal while pursuing their own. Actually, that's why the father awoke such schemas, and 
not others. A continuous control competition between all the brothers determines whether 
each child schema will finally get the “active” state or remains silent in “checking” or 
“ready” state. Only one winner, if any, pass to “active” state and is allowed to send 
commands to the actuators or spring their own child schemas. The father also activates the 
perceptive schemas needed to resolve the control competition between its actuation 
children and the information needed for them to work and take control decisions. This 
recursive activation of perceptive and actuation schemas conforms a schema hierarchy.  
For instance, in the figure 1 perceptive schemas are squares and actuation ones are circles. 
Schema 1 activates the perceptive children 3 and 4 to build relevant information, and 
awakes the actuation schemas 5, 6, and 7. The 6 wins the control competition and then 
activates 11, 17, 14, and 15.  
 
 

 
 

Figure 1. Schema hierarchy in JDE 

 
The last one, 15, gains control and really sends commands to the actuators. All winning 
schemas have been represented in dark circles. All the dashed schemas are in “slept” state 
and do not consume computing power at all, they are not relevant to the current context. 
Once the father has awaken their children it keeps itself executing, continuously checking 
its own preconditions, monitoring the effects of its current kids, modulating them 
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appropriately and keeping them awake, or maybe changing to other children if they can 
face better the new situation. At its abstraction level, the father has the entire behavior 
context to react accordingly to changes in situation. With continuous modulation, the 
father may adjust the system actuation to small changes in situation, if needed. Changing 
the children schema lets the hierarchy to reconfigure itself, in response to more significant 
variations in environment. This way the activation flows from the root adapting the 
system accordingly to the dynamic situation. Bigger changes may cease the satisfaction of 
the father's preconditions, and all its children are deactivated, forcing the reconfiguration 
of the hierarchy at a higher level. 
There is no privileged number of levels in JDE, it depends on the complexity of the task at 
hand and may evolve as new situations are encountered. Higher levels tend to be more 
abstract and with slower time cycle. The layer concept is weak in JDE, as they are dynamic 
and not always with the same units inside. The schema is the unit, more than the layer. 
 
2.3 Action Selection 
 

JDE decomposes the whole Action Selection Mechanism (ASM) into several simpler action 
selection contests. At each level of the hierarchy, there is a winner-takes-all competition 
among all actuation schemas of such level. There is only one winner at a time, and that is 
the only one allowed to send commands to the actuators or even spring more child 
schemas. 
Before a given schema wins the control, it has to go through several states. First, when the 
parent awakes it, it passes from “slept” to “checking” state. Second, the schema promotes 
from “checking” to “ready” when its preconditions match current situation.  
 
 
 

 
 

Figure 2. Activation regions in all plausible situations of such context 

 
The preconditions are seen here as ethological triggers (Tinbergen 1951), and 
preconditions of teleo-reactive programs (Nilsson 1997). They define the set of situations 
in which such schema is applicable and may achieve its goal, which in JDE is named the 
activation region of such schema. Third, typically, the preconditions of only one schema will 
hold and it will move from “ready” to “active” state. In case of several (or none) “ready” 
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brothers, the parent is called for choosing one winner, using a fixed priority rule o even a 
more flexible arbitration. 
For instance, in figure 2 the activation regions of schemas 5, 6, and 7 of figure 1 are 
displayed. They are defined over the space of possible values for stimuli built by 
perceptive schemas 3 and 4. Impossible combinations are displayed in shadow. The 
situation is a point in such space and it may fall inside an activation region, such schema 
will promote to “ready” or outside. This picture is similar to state-space diagrams in 
(Arkin 2003). The father, schema 1, modulates the activation regions of its children 
through parameters in order to get more or less disjoint and exhaustive regions. 
Uncovered or overlap areas explicitly solved in the ad-hoc arbitration when needed.  
The JDE architecture is goal oriented and situated. It is goal oriented because the winner 
lies in the set of schemas already awaken by the father, and no others. It is situated 
because the environment chooses among them the most suitable to cope with current 
situation. It is also fast: a new action selection takes place at every child iteration, which 
allows timely reaction to environment changes. 
This approach reduces the complexity, because in a population of n schemas there is no 
need to resolve O(n2) interactions, but only a number of small competitions where 
typically 3 or 4 schemas compete at a time for control. In addition, such competitions arise 
in the context of the parent schema being “active”, so the possible situations are bounded.  
 
 

 
 

Figure 3. Additive combination of stimuli in JDE 

 
 

The preconditions can be thought not as the crisp evaluation of the truth of a single 
condition, but as a thresholded continuous variable which accumulates the contribution of 
different stimuli to the trigger itself, as can be seen in figure 3. This way it provides room 
for the additive combination of stimuli and the triggered response observed in the Innate 
Release Mechanism of animals (Lorenz 1981). Some of such stimuli may be internal ones 
or motivations (like thirst, fear, hunger, sexual appetite, etc.) with their own dynamics. 
Several robotics works have explored the effect of such internal variables in action 
selection (Tyrrell 1993, Arkin 2003).  
 
2.4 Perception 
 

Perception has traditionally deserved little interest in the community devoted to research 
on robotics architectures, but we think that it is an essential part of behavior generation 
systems, as it provides all the information on which an autonomous robot must make its 
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control decisions. Perception is relevant both in action selection, data for triggering 
conditions (which actuation schema will actually gain control), and in the normal 
execution of actuation schemas (which actuation decision, or motor value will such 
schema order to actuators).  
The active schemas may change as time passes, so the perception output is a dynamic 
collection of stimuli more than a general world model. In JDE, perception is task oriented. 
Actually, it is tightly coupled to action, as the parent schema awakes both the actuation 
children, and, at the same time, the perceptive schemas which build the relevant 
information.  
Symbols and state are allowed in JDE. The activation of one schema indicates the internal 
predisposition to such stimulus, as some computing power is devoted to search for and 
update its internal symbols. Continuous execution of perceptive schemas keeps their 
symbols grounded just to perceive them when they appear. The stimuli may appear in 
reality but if no internal process exists attending to it, the robot will miss it. The event has 
just not existed for the robot. 
Hierarchy naturally offers an attention mechanism, and so JDE perception is selective and 
situated. Only the data relevant to the current context are searched for, as only such 
perceptive schemas are “active”. No computational resources are spent building stimuli 
not needed now, because the control schemas that need them and the associated 
perceptive schemas are “slept”, which is the default state. In contrast, in Brooks system 
(Brooks 1986) all the automata are always active.  
This selective perception in JDE is very convenient because the number of relevant stimuli 
of the environment, which need to be internalized, grows when the whole system is going 
to exhibit a wide range of behaviors. Perception costs computing time, which is always 
limited. This all-time perception of all potential stimuli does not scale to complex and 
versatile systems, especially if vision is involved. 
An attention mechanism is clearly needed. Again, this requirement is not needed if the 
robot is going to do a single task, but is essential if a full set of behaviors is going to be 
integrated in a single system. 
Sensor fusion and complex stimuli (Arkin98) may be generated in JDE as perceptive 
schema may activate perceptive children and fuse their outputs into a compound 
stimulus. 

 
2.5 Behavior Patterns in JDE 
 

JDE can be used to generate usual behavior patterns found in the robotics literature. For 
instance, a fixed sequence can be generated with states inside a given schema, and the 
simple time passing as the triggering condition from one state to the next one.  
Taxias (Lorenz 1981) can be easily generated in JDE as the conjunction of two schemas: the 
perceptive one characterizes the key stimulus, its position, etc.; and the actuation schema 
decides what to do. For instance, a tracking behavior uses negative feedback, and an 
obstacle avoidance behavior uses a positive one. 
Flexible behavior sequences are identified in animals (Lorenz 1981) and in robotics. In 
order to implement them trigger condition can be used in JDE. These conditions allow 
proceeding with the next action in the sequence. For instance, if a sequence of three 
behaviors want to be implemented, the third schema will really carry on the action that 
achieves the father's goal. The stimulus that has to be present to promote this schema will 
be produced by a second schema, that is, the execution of the second schema increases the 
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chance of the stimulus to appear, so it is an appetitive behavior. The same applies to the 
second with its stimulus and the first. 
In this way, JDE hierarchy is not intended as a task-decomposition in primitive steps, 
which must be executed in sequence, but as a predisposition. There is no a priori strict 
commitment to a single course of action. Actually the father doesn't fully activate their 
actuation children, just awakes them. Which one really gains control at every instant 
depends on the situation, so the sequence adapts its unfolding order to the environmental 
conditions. 
Like reactive planning (Nilsson 1997, Firby 1992), many courses of action are valid and all 
of them are contained in the behavior specification as a collection of child schemas.  
This flexibility allows the system to take advantage of environment opportunities and to 
face little contingencies. 
 

3. Programming Real Robots  
 

All the previously described patterns have to be implemented in a real robot, which means 
that they have to be implemented in a particular programming language, adapted to 
different robotic platforms, etc. This is the other sense of the word “architecture” when 
applied to robotics, the software infrastructure. Different research groups, manufacturers, 
etc. have developed different software architectures, in this section we will review their 
main characteristics. 
 
3.1 Implementing a Robotic Architecture 
 

The ultimate goal of robotic architectures is to be able to make working robots. This 
requires making choices about which software components use, and how to configure 
them. This decision is conditioned by several requirements: 
 

• Mobile robots works in real world domains where real-time is required, may be not 
hard real-time, but al least soft real-time. Besides, there are several types of sensors 
and actuators, as well as interfaces that the programmer must know. 

 

• Typical robotics applications must manage various sources of information (sensors) 
and pursuing various goals at the same time.  

 

• User interface in robotics applications is another major concern in robotics, not only 
from the human computer interaction point of view, in the interaction of robots 
with users; but for the debugging of the pa. 

 

• Robotic software is increasingly distributed, as Woo et al. (Woo 2003) have pointed 
out. It is usual that robotic applications have to communicate with other processes, 
in the same machine or in other computers. 

 

• There are few knowledge about how generate and organize robotic behavior. How 
to organize it is still a research issue and there is no general guides about. 

 

• There are no open standards for robotic software developent (Utz 2002, 
Montemerlo 2003, Cote 2004). In other computer science fields there libraries that 
programmer can use. However, in robotics there are few reusable software, most 
programs have to be built from scratch. This is due to the heterogeneity of robotic 
hardware and to the immaturity of the robotic industry.  
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The way robots are programmed has been changing. Historically the robots were unique, 
they were not produced in series, and programs were built directly using device drivers; 
operating systems were minimal. Application programs read sensor data directly from 
sensors using the drivers, and wrote the commands directly on the motors using the 
library provided by the robot manufacturer.  
The reduction in the number of manufacturers, and their consolidation, as well as the 
work of many research groups, have made possible the appearance of development 
platforms that simplify the development of software, as well as different tools. 
 
 
3.2 Development Tools 
 

Creating software for mobile robots is in essence as any other application development. 
Programmer has to write the program in a particular programming language, compile it, 
link it with the libraries, and finally execute it in the on-board computers. In many cases, 
all this process is performed in a PC, using cross compilers. 
There are some specific programming languages for robotics, as for instance TDL (Task 
Description Language) (Simmons 1998) or RAP (Reactive Action Packages) (Firby 1994). 
However, they have not been a success, and usual programming languages (C, C++, Java, 
etc.) are the dominant ones.  
Another set of useful tools is the simulators. Early simulators were little realistic; only 
simulate flat worlds populated by static obstacles. Nowadays simulators have been greatly 
improved. There are 3-D simulators like Gazebo7, or able to simulate vision (Lozano 2001), 
or to include many robots in the same world, as Player/Stage7. Besides, many robotic 
manufacturers include a simulator for their robots, as for instance, EyeSim for the EyeBot, 
Webots for Khepera and Koala, etc. However, we think that general simulators are better 
option. Among the open source simulators not affiliated to any manufacturer, we think 
that SRISim8 and Stage7 are the most relevant. 
 
 
3.3 Robotic Software Development Platforms 
 

In many areas of software development “middleware“ has appeared as a way to simplify 
software development. Middleware provides predefined data structures, communication 
protocols, sincronization mechanisms, etc. In the robotics software different platforms 
have appeared (Utz 2002). 
Hattig et al. (Horswill 2003) have pointed out that uniform access to hardware is the first 
step towards software reuse in the robotics industry. This characteristic can be found in 
many platforms, but each one implements it in its own way. For example, in ARIA the API 
for accessing sensors and actuators has been made up by a set of methods, while in 
Player/Stage or in JDE has been implemented as a protocol between the applications and 
servers. 
JDE software infrastructure will be described in next chapter.  In order to compare it with 
other alternatives available, we will analyze in this section some software development 
platforms available nowadays for the robotics programmers. We will analyze both 

                                                 
7 http://playerstage.sourceforge.net 
8 http://www.ai.sri.com/~konolige/saphira 
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commercial platforms, such as ARIA from ActivMedia, OPEN-R9 from Sony; as well as, 
open source efforts as Player/Stage, MIRO, Orocos (Bruyninckx 2001), or CARMEN. 
 
 

 
 

Figure 4. Architecture of the ARIA API 
 
 
ARIA 
  

ActivMedia has become the leader in the robotics research manufacturer business after the 
shutdown of Nomadic and RWI. ARIA (Activmedia Robotics Interface for Applications) 
(ActivMedia 2002) is the development environment distributed by ActivMedia with its 
robots (Pioneer, Peoplebot, Amigobot, etc.).  
Underlying the API offered by ARIA, there is a client-server design. ActivMedia robots are 
managed by a micro-controller that implements the server. The application written using 
ARIA connects to this server using a set of predefined messages (protocol) through a serial 
port. 
ARIA offers an object-oriented environment (applications have to be written in C++). It 
offers multitasking support and communications facilities. In this case, Aria objects are not 
distributed; they are placed in the computer that is physically connected to the robot. 
Anyway, ARIA offers the ArNetworking class to manage communications.  
Hardware access in Aria is made through a collection of classes as shown in figure 4. Main 
class is ArRobot where methods as ArRobot::setVel commands a translational velocity and 
ArRobot::setRotVel the rotational one. Packet Receiver and Packet Sender, manage the 
sending and reception of packages through the serial port. Other classes as ArSonarDevice 
or ArSick contain methods for accessing those devices. 
ARIA is offered for Linux and Win32 and it is distributed under GPL license. It also 
includes some basic behaviors as obstacle avoidance, but more complex ones are offered as 
proprietary separate libraries: MAPPER for managing maps, ARNL (Robot Navigation 

                                                 
9 http://www.openr.aibo.com 
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and Localization) for navigation algorithms, ACTS (Color-Tracking Software) to identify 
objects, etc. 
 
 
MIRO 
 
Miro10 is a distributed object-oriented platform developed at Ulm University and 
distributed under GPL license. It uses CORBA as the underlying standard for object 
distribution, to be exact TAO. 
Miro is composed by three levels: devices, services, and classes. The first one, “Miro 
Device Layer“, is the one devoted to access hardware devices; it offers different objects for 
every device. That is, sensors and actuators are accessed through methods of different 
objects, depending on the hardware. For example, RangeSensor defines an interface for 
sensors such as sonar, infrared, laser, etc. DifferentialMotion contains the methods to 
move the robot, etc. Second layer, “Miro Services Layer”, provides descriptions of the 
sensors and actuators as CORBA IDLs, so they can be accessed remotely by objects 
running in other computers, independently of the operating system.  
Third level, “Miro Class Framework” groups the tools for visualization and logs 
management, as well as general use modules, as map building, path planning, or behavior 
generation, etc. 
An application developed using Miro is a collection of local and remote objects. Each one 
runs in its own computer and all of them communicate using the infrastructure of the 
platform. Objects can be written in any language that supports the CORBA standard. Miro 
itself has been written in C++.  
There are other platforms using distributed objects, and CORBA. One of the better known 
is Orocos (Open RObot COntrol Software), the open-source project funded by the 
European Union. 
 
 
OPEN-R 
 

Open-R is the API released by Sony for programming the Aibo robot. Aibo is a robotic pet, 
whose main sensor is a camera situated in the head, and whose actuators are the four legs, 
the tail and the neck. It is an autonomous robot based in a 64 bit RISC processor, able to 
communicate using an integrated WiFi card. 
The operating system used in this robot is Aperios (previously know as Apertos, and 
Muse). It is a real-time object oriented operating system. It is proprietary software, and 
Sony has just release the Open-R API. Open-R offers just a C++ interface, and applications 
can consist in one or more Open-R objects (Martín 2004). Application objects can use a set 
of basic objects, and that can send and receive messages among them.  Each object runs in 
its own thread and control flow is event-based. 
Among the basic objects, OvirtualRobotComm lets applications access to images and joints 
through services as Effectors, that moves the dog joints, or switches the LEDs on and off; 
Sensor that reads the position of the joits; or OfbkImageSensor to access the recorded 
images.  ANT object manages the TCP/IP stack to let applications communicate outside 
the robot, offering the Send and Receive services. 

                                                 
10 http://smart.informatk.uni-ulm.de/MIRO 
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Development environment using Open-R is a PC using a cross compiler for the Aibo RISC. 
Programs developed are written in a memory stick that it is inserted in the robotic dog. 

 
 

 

Figure 5. Software architecture for programming Sony Aibo robot 

 

 
Player/Stage/Gazebo 
 

Another open-source platform is Player/Stage/Gazebo (PSG). Initially developed at 
Southern California (Gerkey 2003), nowadays is an open-source project. Nowadays it 
support different robots (Aibo, Pioneer, Segway, etc.), and the simulator included makes 
him a complete platform. 
In PSG sensors and actuators are managed as files (Vaughan 2003) as in Unix operating 
system. Five basic operations can be performed on those files: open, close, read, write, and 
configure. Every type of device is defined in PSG by an interface; for example, the 
ultrasonic sensors of two different robots will be an instance of the same interface. 
PSG is based on client-server design. Any application has to establish a dialogue using 
TCP/IP with the server Player. This idea let applications be really independent (i.e. they 
can be written in any programming language) and imposes minimal requirements on their 
architecture. 
PSG is oriented to offer an abstract interface of the hardware of the robots, not to offer 
common blocks. However, these blocks can be added defining new messages for the 
protocol. For instance, probabilistic localization has been added as another interface 
localization, that provides multiple hypotheses. This new interface overwrites the 
traditional position based just in odometry. 
There are other well-know platforms, as for instance Mobility, the one developed by RWI 
(B21, B14 are classical robots); Evolution Robotics sells its ERSP; CARMEN is offered by 
Carnegie Mellon university; etc. We have described the previous four just to show the 
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reader the major alternatives faced when developing JDE software infrastructure 
described in next section. 

 
4. JDE Software Infrastructure 
 

Once we have seen existing platforms, we will describe in this section the characteristics of 
JDE software infrastructure. Current JDE implementation consists of the infrastructure 
software (JDE servers), a collection of behavior specific schemas (JDE basic schemas), and 
auxiliary tools and libraries. 
A typical robot control program in JDE programming environment is made up of a 
collection of several concurrent asynchronous threads, corresponding to the JDE schemas. 
Over basic schemas there may be perceptive and actuation schemas. Perceptive schemas 
make some data processing to provide information about the world or the robot. 
Actuation schemas make decisions in order to reach or maintain some goal. They order 
motor commands or activate new schemas, because the schemas can be combined forming 
hierarchies. The underlying theoretical foundations have been described in section 2. 
Figure 6 summarizes this architecture. Two JDE servers (OTOS and OCULO) are in the 
middle, represented as two circles. These servers access the robot sensors and actuators (in 
the low part of the figure 4) using specialized drivers, and provide the data to clients 
(small circles in the top of the figure 4) through a protocol named JDE Protocol.   
 
 

 
 

 
Figure 6. JDE software architecture. OTOS and OCULO servers 
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Figure 7. Programming options using JDE 

 
 
Developers can build their applications using directly these servers; they just need to 
implement the protocol to communicate with the servers.JDE also provides some auxiliary 
clients, as for instance a monitor of the sensors (circle at the top left of the figure). Others 
clients implement the schemas in which JDE is based on.   
In order to facilitate the implementation of JDE schemas, the distribution provides some 
basic schemas that interact with the servers, offering sensor data as shared variables, 
which is much more simple than implementing the protocol. The release also includes the 
skeleton of the schemas to ease its use. 
In summary, JDE software implementation offers two options to develop programs, 
directly using JDE servers, or using the service schemas. The second one is the 
recommended one both because is easier, and because is closer to the conceptual ideas 
behind JDE. Figure 7 shows these two options. 
 
 
4.1 JDE Servers 
 

Robot application gets sensor readings and order actuator commands sending network 
messages to the JDE servers. There are subscription messages for short sensor readings 
like odometer, sonar or laser. Those data are continuously sent from the server to the 
subscribed clients. Large readings, like camera images, are sent only on demand. There are 
also actuation messages from clients to servers. All these messages make up a protocol 
that settles a hardware abstraction layer and provides language and operating system 
independence to the robot applications.  
OTOS server manages proximity sensors, such as sonar, laser, infrared, and tactile sensors. 
It also manages propioceptive sensors such as odometers, and battery power. It also sends 
messages to the robot actuators.  
The protocol to communicate with OTOS servers is mainly based on direct subscription, 
that is, once the client has connected it can subscribe to a particular sensor and the sender 
periodically sends the new data.  
OTOS server has been implemented using five different threads, as shown in figure 8. One 
is devoted to attend new clients; a second one serves already connected clients. The other 
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ones are devoted to listen measurements for the different sensors. Each client can 
subscribe to those sensor it is interested on.  
 
 

 
 

Figure 8.  OTOS implementation using 5 different threads 

 

 

Figure 9. OCULO implementation using 4 different threads 
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OCULO server manages the functions related to the camera and the pan-tilt unit. It lets 
clients send messages to point the camera, and it sends them the images flow. In this case 
the images are send under demand, that is, each time the client needs an image, it has to 
ask for it. 
OCULO has been implemented using 4 threads, as shown in figure 9. As in the OTOS case, 
two threads are devoted to attend new clients and to interact with already connected ones. 
The other two manage the interaction with the camera and the pan-tilt unit. 
Communication with the cameras has been implemented using the video4linux standard. 
Developing an application over JDE servers is the more flexible way of using JDE, 
however it is the hardest way of using it. The alternative is to use the service schemas 
provided in the distribution. 
 

 
4.2 Service Schemas 
 

From the theoretical point of view of JDE, everything should be implemented as a schema. 
It is not just a fundamentalism issue; it is a practical one. It is easier to implement complex 
behavior using schemas than as traditional programs.  
 
 

 
 

Figure 10. JDE GUI connected to a Pioneer and two different cameras (off-board robot) 
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JDE distribution includes schema skeletons to make easy the construction of new schemas, 
and it also includes completely implemented schemas, named “service schemas” to 
facilitate the interaction with JDE servers.  
Getting sensor measurements in JDE using schemas is as simple as reading a local 
variable, and ordering motor commands as easy as writing an actuator variable.  
A set of basic schemas updates those sensor variables with fresh readings and implements 
such actuator variables. They connect to real sensors and actuators, directly on local 
devices or through remote socket servers. Pioneer and B21 robots, SRIsim and Stage 
simulators, video4linux cameras, firewire cameras, Directed Perception pan-tilt units, and 
SICK laser scanners are fully supported in current version of JDE. 
Five service schemas are included in the JDE distribution. “Pan-tilt-motors” and “base-
motors” periodically translate the actuation variables (like translation v and rotation w 
speeds) into actuation messages to the servers. “Oculo-sensations” and “otos-sensations” 
receive network messages from the servers and update the variables that store 
corresponding sensor readings. Finally, “gui-xforms” displays sensor readings, internal 
states and allows the explicit activation from the GUI (Figure 10). It is useful for 
debugging and monitoring. Applications in JDE can be written, either using the JDE 
servers, or using the schemas. In both cases, some auxiliary tools are available. 
 
 
4.3 Auxiliary Tools 
 

A very useful client named Record has also been included in JDE release. This client stores 
all sensorial data in a file, as shown in the left part of the figure 8. This client is used 
together with the Replay client. This client replaces the OTOS and OCULO server 
reproducing off-line the data stored by Record client. This couple is very useful for instance 
when we want to compare different algortihms, or to debug a schema. The Replay server 
can also reproduce data at different speeds (1x, 2x, etc.). Both clients are based on time 
stamps with a resolution of microseconds. 
Another useful client interacting with OTOS y OCULO server is the Monitor. This client 
continiously shows the values received from the sensors for a human operator. This client 
also provides a visual joystick to teleoperate the robot.  
 
 
 

          

 
Figure 11. Record client (left) and Replay server (right) for off-line work 



 327

Various clients of this type can be used simultaneously. In the same way, it can be used 
concurrently with other clients that were implementing the behavior of the robot. This 
monitor can be switched on and off according to the needs of the debugging, saving 
computer power or resources if needed. 
Auxiliary libraries have been also written for grid manipulations (gridslib) and fuzzy 
control (Fuzzylib), to make easier the behavior generation. In the same way, various tools 
have been developed to ease the development of the behaviors.  
For instance, ReplayServer provides sensor data (sonar, laser, encoders, images, etc.) 
previously recorded through the same protocol, which is very convenient for off-line 
work. HSItuner in the same way can be used to tune the values of color filter in HSI space. 
 
 

4.4 Implementing JDE Schemas 
 

JDE schemas have been implemented as independent kernel threads (we have used 
Pthreads library), so they run concurrently. At the initialization time, all threads are 
started but immediately stopped to “slept” state, waiting for someone to awake them. The 
parent thread can resume the execution of a child thread or require it to stop, providing 
room for the selective activation. 
All schemas assume iterative execution. The frequency of the iterations determines the 
schema time scale, and it is enforced with intentional delays between consecutive 
iterations. So, the computing power demand comes in periodic bursts.  
The iterative execution is a discrete approximation of the continuous feedback of the 
theoretical model, and a good one if period is fast enough compared to the events in the 
surroundings (Nilsson 1994). 
The schemas communicate each others through selective activation, stimuli, and 
modulation parameters. The last two are implemented through shared variables. As long 
as several schemas may access to such data concurrently, locks are used to protect them 
and avoid race conditions. Each actuation schema includes a preconditions function, which 
at every iteration checks whether such schema should promote to “ready” state or not. In 
addition, the parent provides each of its children a list of brothers and a pointer to the 
arbitration function.  
Every kid checks its own preconditions and its brothers' state to detect any control 
collision or absence. If its own preconditions are not satisfied, it searches whether there is 
another “active” brother. If not, then it calls the arbitration function to resolve the control 
absence. If its preconditions hold, then it searches whether there is another “ready” or 
“active” brother, and in such a case calls the arbitration function to resolve that control 
collision. If it is the only “ready” or “active” child, it simply executes its specific code for 
that iteration. 
The arbitration function is already implemented in the father's code and the caller is 
indicated whether it must promote to “active” or remain in “ready” state. This way the 
arbitration is configured by the father, but it takes place when a child needs it. 
 
 

5. Conclusions and Further Research 
 

An architecture for behaviour generation named JDE has been presented. Its distinguish 
characteristics are its hierarchical nature and the use of schemas as the basic building 
blocks. Its hierarchy model is taken from ethology and intended as a predisposition of the 
system to perceive certain stimuli and to response in a certain way to them. 
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JDE explicitly introduces perception into the architectural model, closely tied to action, 
offering also a selective attention mechanism. The action selection also takes benefit from 
the hierarchical organization as it is decomposed into several small competitions. This 
bounds its complexity and allows flexible coordination of the schemas. 
One of the weak points in this architecture is that it lacks of high level reasoning that 
allows predictions about the future. There is no explicit symbolic deliberation in the 
classical sense. So, all relevant data for the behaviour must be anticipated by the designer, 
in particular the corresponding stimuli and perceptive schemas have to be allocated in 
advance. All relevant situations must be anticipated by the designer and so the 
corresponding actuation schemas to deal with them allocated in advance. In a similar way, 
perception in JDE can be seen as propositional calculus, but no as first order predicate 
logic. 
We are currently working in the introduction of active perception into JDE. The proposal 
consists in a perceptive schema having actuation children whose goal is to help in the 
perception process of its father. More schemas to increase the behaviors pool and a new 
JDE software implementation are also under development. 
We are committed to general platforms, we think that the only that claims made by robotic 
researchers can be checked is if it can be reproduced. In this way JDE has support for 
general protocols (for instance video4linux) and it has been developed first on B21 robots 
and later for ActivMedia family of robots (Pioneer, etc.) using Aria. In the same way, we 
think that the only way to really check the developments is by releasing programs as  
libre11 software. 
All the code developed to implement JDE has been developed in C language for 
GNU/Linux machines, and is released under GPL. There are GNU/Linux Debian 
packages available for i386 architectures in http://gsyc.escet.urjc.es/robotica/software.  
It can be directly installed in a Debian based Linux using apt-get adding the following 
lines to the sources.list file: 
 
deb http://gscy010.dat.escet.urjc.es/debian dist main 
deb-src http://gscy010.dat.escet.urjc.es/debian dist main 
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