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1. Introduction  

Cancer is the second leading cause of mortality worldwide, with an expected 1.5-3.0 million 

new cases and 0.5-2.0 million deaths in 2011 for the US and Europe, respectively (Jemal et 

al., 2011). Hence, this is an enormously important health risk, and progress leading to 

enhanced survival is a global priority. Strategies that have been pursued over the years 

include the search for new biomarkers, drugs or treatments (Rodrigues et al., 2007). 

Synthetic biology together with bioinformatics represents a powerful tool towards the 

discovery of novel biomarkers and the design of new biosensors. 

Traditionally, the majority of new drugs has been generated from compounds derived from 

natural products (Neumann & Neumann-Staubitz, 2010). However, advances in genome 

sequencing together with possible manipulation of biosynthetic pathways, constitute 

important resources for screening and designing new drugs (Carothers et al. 2009). 

Furthermore, the development of rational approaches through the use of bioinformatics for 

data integration will enable the understanding of mechanisms underlying the anti-cancer 

effect of such drugs (Leonard et al., 2008; Rocha et al., 2010). 

Besides in biomarker development and the production of novel drugs, synthetic biology can 

also play a crucial role in the level of specific drug targeting. Cells can be engineered to 

recognize specific targets or conditions in our bodies that are not naturally recognized by 

the immune system (Forbes, 2010).  

Synthetic biology is the use of engineering principles to create, in a rational and systematic 

way, functional systems based on the molecular machines and regulatory circuits of living 

organisms or to re-design and fabricate existing biological systems (Benner & Sismour, 

2005). The focus is often on ways of taking parts of natural biological systems, characterizing 

and simplifying them, and using them as a component of a highly unnatural, engineered, 

biological system (Endy, 2005). Virtually, through synthetic biology, solutions for the unmet 

needs of humankind can be achieved, namely in the field of drug discovery. Indeed, 

synthetic biology tools enable the elucidation of disease mechanisms, identification of 

potential targets, discovery of new chemotherapeutics or design of novel drugs, as well as 

the design of biological elements that recognize and target cancer cells. Furthermore, 

through synthetic biology it is possible to develop economically attractive microbial 

production processes for complex natural products.  
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Bioinformatics is used in drug target identification and validation, and in the development 

of biomarkers and tools to maximize the therapeutic benefit of drugs. Now that data on 

cellular signalling pathways are available, integrated computational and experimental 

projects are being developed, with the goal of enabling in silico pharmacology by linking the 

genome, transcriptome and proteome to cellular pathophysiology. Furthermore, 

sophisticated computational tools are being developed that enable the modelling and design 

of new biological systems. A key component of any synthetic biology effort is the use of 

quantitative models (Arkin, 2001). These models and their corresponding simulations enable 

optimization of a system design, as well as guiding their subsequent analysis. Dynamic 

models of gene regulatory and reaction networks are essential for the characterization of 

artificial and synthetic systems (Rocha et al., 2008). Several software tools and standards 

have been developed in order to facilitate model exchange and reuse (Rocha et al., 2010). 

In this chapter, synthetic biology approaches for cancer diagnosis and drug development 
will be reviewed. Specifically, examples on the design of RNA-based biosensors, bacteria 
and virus as anti-cancer agents, and engineered microbial cell factories for the production of 
drugs, will be presented.  

2. Synthetic biology: tools to design, build and optimize biological processes 

Synthetic biology uses biological insights combined with engineering principles to design 

and build new biological functions and complex artificial systems that do not occur in 

Nature (Andrianantoandro et al., 2006). The building blocks used in synthetic biology are 

the components of molecular biology processes: promoter sequences, operator sequences, 

ribosome binding sites (RBS), termination sites, reporter proteins, and transcription factors. 

Examples of such building blocks are given in Table 1.  

Great developments of DNA synthesis technologies have opened new perspectives for the 
design of very large and complex circuits (Purnick & Weiss, 2009), making it now affordable 
to synthesize a given gene instead of cloning it. It is possible to synthesize de novo a small 
virus (Mueller et al., 2009), to replace the genome of one bacterium by another (Lartigue et 
al., 2007) and to make large chunks of DNA coding for elaborate genetic circuits. Software 
tools to simulate large networks and the entire panel of omics technologies to analyze the 
engineered microorganism are available (for details see section 3). Finally, the repositories of 
biological parts (e.g. Registry of Standard Biological Parts (http://partsregistry.org/)) will 
increase in complexity, number and reliability of circuits available for different species. 
Currently, the design and synthesis of biological systems are not decoupled. For example, 
the construction of metabolic pathways or any circuit from genetic parts first requires a 
collection of well characterized parts, which do not yet fully exist. Nevertheless, this 
limitation is being addressed through the development and compilation of standard 
biological parts (Kelly et al., 2009). When designing individual biological parts, the base-by-
base content of that part (promoter, RBS, protein coding region, terminator, among others) is 
explicitly dictated (McArthur IV & Fong, 2010). Rules and guidelines for designing genetic 
parts at this level are being established (Canton et al., 2008). Particularly, an important issue 
when designing protein-coding parts is codon optimization, encoding the same amino acid 
sequence with an alternative, preferred nucleotide sequence. Although a particular 
sequence, when expressed, may be theoretically functional, its expression may be far from 
optimal or even completely suppressed due to codon usage bias in the heterologous host.  
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Genetic part Examples Rationale 

Transcriptional control

Constitutive promoters lacIq, SV40, T7, sp6 “Always on” transcription 

Regulatory regions tetO, lacO, ara, gal4, rhl box Repressor and activator sites 

Inducible promoters ara, ethanol, lac, gal, rhl, lux, 
fdhH, sal, glnK, cyc1  

Control of the promoter by 
induction or by cell state 

Cell fate regulators GATA factors Control cell differentiation 

Transcriptional control   

RNA interference 
(RNAi) 

Logic functions, RNAi 
repressor 

Genetic switch, logic evaluation 
and gene silencing 

Riboregulators Ligand-controlled 
ribozymes 

Switches for detection and 
actuation 

Ribosome binding site Kozak consensus sequence 
mutants 

Control the level of translation 

Post-transcriptional control

Phosphorylation 
cascades 

Yeast phosphorylation 
pathway 

Modulate genetic circuit behavior 

Protein receptor design TNT, ACT  and EST 
receptors 

Control detection  thresholds and 
combinatorial protein function 

Protein degradation Ssra tags, peptides rich in 
Pro, Glu, Ser and Thr 

Protein degradation at varying 
rates 

Localization signals Nuclear localization, 
nuclear export and  
mitochondrial localization 
signals 

Import or export from  nucleus and 
mitochondria 

Others   

Reporter genes GFP, YFP, CFP, LacZ Detection of expression 

Antibiotic resistance ampicilin, 
chloramphenicol 

Selection of cells 

Table 1. Genetic elements used as components of synthetic regulatory networks (adapted 
from McArthur IV & Fong, 2010 and Purnick & Weiss, 2009). Legend: CFP, cyan fluorescent 
protein; GFP, green fluorescent protein; YFP, yellow fluorescent protein. 

Codon optimization of coding sequences can be achieved using freely available algorithms 

such as Gene Designer (see section 3). Besides codon optimization, compliance with 

standard assembly requirements and part-specific objectives including activity or specificity 

modifications should be considered. For example, the BioBrick methodology requires that 

parts exclude four standard restriction enzyme sites, which are reserved for use in assembly 

(Shetty et al., 2008). Extensive collections of parts can be generated by using a naturally 

occurring part as a template and rationally modifying it to create a library of that particular 

genetic part. Significant progress in this area has been recently demonstrated for promoters 

and RBS (Ellis et al., 2009; Salis et al., 2009). Ellis and co-workers (2009) constructed two 

promoter libraries that can be used to tune network behavior a priori by fitting mathematical 

promoter models with measured parameters. By using this model-guided design approach 

the authors were able to limit the variability of the system and increase predictability. 
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However, it is well-known that noisy or leaky promoters can complicate the system design. 

In these cases a finer control over expression can be established by weakening the binding 

strength of the downstream gene (Ham et al., 2006), or by using two promoter inputs to 

drive transcription of an output via a modular AND gate (Anderson et al., 2006). 

Additionally, modular and scalable RNA-based devices (aptamers, ribozymes, and 

transmitter sequences) can be engineered to regulate gene transcription or translation (Win 

& Smolke, 2007).  

Design at the pathway level is not only concerned with including the necessary parts, but 

also with controlling the expressed functionality of those parts. Parts-based synthetic 

metabolic pathways will require tunable control, just as their natural counterparts which 

often employ feedback and feed-forward motifs to achieve complex regulation (Purnick & 

Weiss, 2009). Using a synthetic biology approach, the design of DNA sequences encoding 

metabolic pathways (e.g. operons) should be relatively straightforward. Synthetic scaffolds 

and well-characterized families of regulatory parts have emerged as powerful tools for 

engineering metabolism by providing rational methodologies for coordinating control of 

multigene expression, as well as decoupling pathway design from construction (Ellis et al., 

2009). Pathway design should not overlook the fact that exogenous pathways interact with 

native cellular components and have their own specific energy requirements. Therefore, 

modifying endogenous gene expression may be necessary in addition to balancing cofactor 

fluxes and installing membrane transporters (Park et al., 2008).  

After designing parts, circuits or pathways, the genomic constructs ought to be 
manufactured through DNA synthesis. Nucleotide’s sequence information can be 
outsourced to synthesis companies (e.g. DNA2.0, GENEART or Genscript, among others). 
The convenience of this approach over traditional cloning allows for the systematic 
generation of genetic part variants such as promoter libraries. Also, it provides a way to 
eliminate restriction sites or undesirable RNA secondary structures, and to perform codon 
optimization. The ability to make large changes to DNA molecules has resulted in 
standardized methods for assembling basic genetic parts into larger composite devices, 
which facilitate part-sharing and faster system-level construction, as demonstrated by the 
BioBrick methodology (Shetty et al., 2008) and the Gateway cloning system (Hartley, 2003). 
Other approaches based on type II restriction enzymes, such as Golden Gate Shuffling, 
provide ways to assemble many more components together in one step (Engler et al., 2009). 
A similar one-step assembly approach, circular polymerase extension cloning (CPEC), 
avoids the need for restriction-ligation, or single-stranded homologous recombination 
altogether (Quan & Tian, 2009). Not only is this useful for cloning single genes, but also for 
assembling parts into larger sequences encoding entire metabolic pathways and for 
generating combinatorial part libraries. On a chromosomal level, disruption of genes in 
Escherichia coli and other microorganisms has become much faster with the development of 
RecBCD and lambda RED-assisted recombination systems (Datsenko & Wanner, 2000), 
allowing the insertion, deletion or modification by simply using linear gene fragments. 
Additionally, multiplex automated genome engineering (MAGE) has been introduced as 
another scalable, combinatorial method for producing large-scale genomic diversity (Wang 
et al., 2009). This approach makes chromosomal modification easier by simultaneously 
mutating target sites across the chromosome. Plasmid-based expression and chromosomal 
integration are the two common vehicles for implementing synthetic metabolic pathways. 
Recently, the chemically inducible chromosomal evolution (CIChE) was proposed as a long-
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term expression alternative method (Tyo et al., 2009). This new method avoids 
complications associated with plasmid replication and segregation, and can be used to 
integrate multiple copies of genes into the genome. All these techniques will provide 
technical platforms for the rapid synthesis of parts and subsequent pathways.  
The majority of the synthetic biology advances has been achieved purely in vitro (Isalan et 
al., 2008), or in microorganisms involving the design of small gene circuits without a direct 
practical application, although scientifically very exciting. These studies have offered 
fundamental insight into biological processes, like the role and sources of biological noise; 
the existence of biological modules with defined properties; the dynamics of oscillatory 
behavior; gene transcription and translation; or cell communication (Alon, 2003; Kobayashi 
et al., 2004). An interesting example of a larger system that has been redesigned is the 
refactoring of the T7 bacteriophage (Chan et al., 2005). Another successful example has been 
the production of terpenoid compounds in E. coli (Martin et al., 2003) and Saccharomyces 
cerevisiae (Ro et al., 2006) that can be used for the synthesis of artemisinin. Bacteria and fungi 
have long been used in numerous industrial microbiology applications, synthesizing 
important metabolites in large amounts. The production of amino acids, citric acid and 
enzymes are examples of other products of interest, overproduced by microorganisms. 
Genetic engineering of strains can contribute to the improvement of these production levels. 
Altogether, the ability to engineer biological systems will enable vast progress in existing 
applications and the development of several new possibilities. Furthermore, novel 
applications can be developed by coupling gene regulatory networks with biosensor 
modules and biological response systems. An extensive RNA-based framework has been 
developed for engineering ligand-controlled gene regulatory systems, called ribozyme 
switches. These switches exhibit tunable regulation, design modularity, and target 
specificity and could be used, for example, to regulate cell growth (Win & Smolke, 2007). 
Engineering interactions between programmed bacteria and mammalian cells will lead to 
exciting medical applications (Anderson et al., 2006). Synthetic biology will change the 
paradigm of the traditional approaches used to treat diseases by developing “smart” 
therapies where the therapeutic agent can perform computation and logic operations and 
make complex decisions (Andrianantoandro et al., 2006). There are also promising 
applications in the field of living vectors for gene therapy and chemical factories (Forbes, 
2010; Leonard et al., 2008). 

3. Bioinformatics: a rational path towards biological behavior predictability 

In order to evolve as an engineering discipline, synthetic biology cannot rely on endless trial 
and error methods driven by verbal description of biomolecular interaction networks. 
Genome projects identify the components of gene networks in biological organisms, gene 
after gene, and DNA microarray experiments discover the network connections (Arkin, 
2001). However, these data cannot adequately explain biomolecular phenomena or enable 
rational engineering of dynamic gene expression regulation. The challenge is then to reduce 
the amount and complexity of biological data into concise theoretical formulations with 
predictive ability, ultimately associating synthetic DNA sequences to dynamic phenotypes. 

3.1 Models for synthetic biology 

The engineering process usually involves multiple cycles of design, optimization and 
revision. This is particularly evident in the process of constructing gene circuits (Marguet et 
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al., 2007). Due to the large number of participating species and the complexity of their 
interactions, it becomes difficult to intuitively predict a design behavior. Therefore, only 
detailed modeling can allow the investigation of dynamic gene expression in a way fit for 
analysis and design (Di Ventura et al., 2006). Modeling a cellular process can highlight 
which experiments are likely to be the most informative in testing model hypothesis, and for 
example allow testing for the effect of drugs (Di Bernardo et al.,  2005) or mutant 
phenotypes (Segre et al., 2002) on cellular processes, thus paving the way for individualized 
medicine.  
Data are the precursor to any model, and the need to organize as much experimental data as 

possible in a systematic manner has led to several excellent databases as summarized in 

Table 2. The term “model” can be used for verbal or graphical descriptions of a mechanism 

underlying a cellular process, or refer to a set of equations expressing in a formal and exact 

manner the relationships among variables that characterize the state of a biological system 

(Di Ventura et al., 2006). The importance of mathematical modeling has been extensively 

demonstrated in systems biology (You, 2004), although its utility in synthetic biology seems 

even more dominant (Kaznessis, 2009).  

 

Name Website 

BIND (Biomolecular Interaction Network Database) http://www.bind.ca/  

Brenda (a comprehensive enzyme information 
system) 

http://www.brenda.uni-koeln.de/  

CSNDB (Cell Signaling Networks Database) http://geo.nihs.go.jp/csndb/  

DIP (Database of Interacting Proteins) http://dip.doe-mbi.ucla.edu/  

EcoCyc/Metacyc/BioCyc (Encyclopedia of E. coli 
genes and metabolism) 

http://ecocyc.org/  

EMP (Enzymes and Metabolic Pathways Database) http://www.empproject.com/  

GeneNet (information on gene networks) http://wwwmgs.bionet.nsc.ru/mgs/s
ystems/genenet/  

Kegg (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.ad.jp/kegg/kegg
.html  

SPAD (Signaling Pathway Database) http://www.grt.kyushu-u.ac.jp/eny-
doc/  

RegulonDB (E. coli K12 transcriptional network) http://regulondb.ccg.unam.mx/  

ExPASy-beta (Bioinformatics Resource Portal) http://beta.expasy.org/ 

Table 2. Databases of molecular properties, interactions and pathways (adapted from Arkin, 
2001).   

Model-driven rational engineering of synthetic gene networks is possible at the level of 
topologies or at the level of molecular components. In the first one, it is considered that 
molecules control the concentration of other molecules, e.g. DNA-binding proteins regulate 
the expression of specific genes by either activation or repression. By combining simple 
regulatory interactions, such as negative and positive feedback and feed-forward loops, one 
may create more complex networks that precisely control the production of protein 
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molecules (e.g. bistable switches, oscillators, and filters). Experimentally, these networks can 
be created using existing libraries of regulatory proteins and their corresponding operator 
sites. Examples of these models are the oscillator described by Gardner et al (2000) and 
repressilator by Elowitz and Leibler (2000). In the second level, the kinetics and strengths of 
molecular interactions within the system are described. By altering the characteristics of the 
components, such as DNA-binding proteins and their corresponding DNA sites, one can 
modify the system dynamics without modifying the network topology. Experimentally, the 
DNA sequences that yield the desired characteristics of each component can be engineered 
to achieve the desired protein-protein, protein-RNA, or protein-DNA binding constants and 
enzymatic activities. For example, Alon and co-workers (2003) showed how simple 
mutations on the DNA sequence of the lactose operon can result in widely different 
phenotypic behavior. 
Various mathematical formulations can be used to model gene circuits. At the population 

level, gene circuits can be modeled using ordinary differential equations (ODEs). In an ODE 

formulation, the dynamics of the interactions within the circuit are deterministic. That is, the 

ODE formulation ignores the randomness intrinsic to cellular processes, and is convenient 

for circuit designs that are thought to be less affected by noise or when the impact of noise is 

irrelevant (Marguet et al., 2007). An ODE model facilitates further sophisticated analyses, 

such as sensitivity analysis and bifurcation analysis. Such analyses are useful to determine 

how quantitative or qualitative circuit behavior will be impacted by changes in circuit 

parameters. For instance, in designing a bistable toggle switch, bifurcation analysis was 

used to explore how qualitative features of the circuit may depend on reaction parameters 

(Gardner et al., 2000). Results of the analysis were used to guide the choice of genetic 

components (genes, promoters and RBS) and growth conditions to favor a successful 

implementation of designed circuit function. However, in a single cell, the gene circuit’s 

dynamics often involve small numbers of interacting molecules that will result in highly 

noisy dynamics even for expression of a single gene. For many gene circuits, the impact of 

such cellular noise may be critical and needs to be considered (Di Ventura et al., 2006). This 

can be done using stochastic models (Arkin, 2001). Different rounds of simulation using a 

stochastic model will lead to different results each time, which presumably reflect aspects of 

noisy dynamics inside a cell. For synthetic biology applications, the key of such analysis is 

not necessarily to accurately predict the exact noise level at each time point. This is not 

possible even for the simplest circuits due to the “extrinsic” noise component for each circuit 

(Elowitz et al., 2002). Rather, it is a way to determine to what extent the designed function 

can be maintained and, given a certain level of uncertainty or randomness, to what extent 

additional layers of control can minimize or exploit such variations. Independently of the 

model that is used, these can be evolved in silico to optimize designs towards a given 

function. As an example, genetic algorithms were used by Francois and Hakim (2004) to 

design gene regulatory networks exhibiting oscillations.  

In most attempts to engineer gene circuits, mathematical models are often purposefully 
simplified to accommodate available computational power and to capture the qualitative 
behavior of the underlying systems. Simplification is beneficial partially due to the limited 
quantitative characterization of circuit elements, and partially because simpler models may 
better reveal key design constraints. The limitation, however, is that a simplified model may 
fail to capture richer dynamics intrinsic to a circuit. Synthetic models combine features of 
mathematical models and model organisms. In the engineering of genetic networks, 
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synthetic biologists start from mathematical models, which are used as the blueprints to 
engineer a model out of biological components that has the same materiality as model 
organism but is much less complex. The specific characteristics of synthetic models allow 
one to use them as tools in distinguishing between different mathematical models and 
evaluating results gained in performing experiments with model organisms (Loettgers, 
2007). 

3.2 Computational tools for synthetic biology 

Computational tools are essential for synthetic biology to support the design procedure at 

different levels. Due to the lack of quantitative characterizations of biological parts, most 

design procedures are iterative requiring experimental validation to enable subsequent 

refinements (Canton et al., 2008). Furthermore, stochastic noise, uncertainty about the 

cellular environment of an engineered system, and little insulation of components 

complicate the design process and require corresponding models and analysis methods (Di 

Ventura et al., 2006). Many computational standards and tools developed in the field of 

systems biology (Wierling et al., 2007) are applicable for synthetic biology as well. 

As previously discussed, synthetic gene circuits can be constructed from a handful of basic 

parts that can be described independently and assembled into interoperating modules of 

different complexity. For this purpose, standardization and modularity of parts at different 

levels is required (Canton et al., 2008). The Registry of Standard Biological Parts constitutes 

a reference point for current research in synthetic biology and it provides relevant 

information on several DNA-based synthetic or natural building blocks. Most 

computational tools that specifically support the design of artificial gene circuits use 

information from the abovementioned registry. Moreover, many of these tools share 

standardized formats for the input/output files. The System Biology Markup Language 

(SBML) (http://sbml.org) defines a widely accepted, XML-based format for the exchange of 

mathematical models in biology. It provides a concise representation of the chemical 

reactions embraced by a biological system. These can be translated into systems of ODEs or 

into reaction systems amenable to stochastic simulations (Alon, 2003). Despite its large 

applicability to simulations, SBML currently lacks modularity, which is not well aligned 

with parts registries in synthetic biology. Alternatively, synthetic gene systems can be 

described according to CellML language which is more modular (Cooling et al., 2008).  

One important feature to enable the assembly of standard biological parts into gene 
circuits is that they share common inputs and outputs. Endy (2005) proposed RNA 
polymerases and ribosomes as the molecules that physically exchange information 
between parts. Their fluxes, measured in PoPS (Polymerase Per Second) and in RiPS 
(Ribosomes Per Second) represent biological currents (Canton et al., 2008). This picture, 
however, does not seem sufficient to describe all information exchanges even in simple 
engineered gene circuits, since other signal carriers like transcription factors and 
environmental “messages” should be explicitly introduced and not indirectly estimated 
by means of PoPS and RiPS (Marchisio & Stelling, 2008). Based on the assumption that 
parts share common input/output signals, several computational tools have been 
proposed for gene circuit design, as presented in Table 3. Comparing these circuit design 
tools it is obvious that we are still far from an ideal solution. The software tools differ in 
many aspects such as scope of parts and circuit descriptions, the mode of user interaction, 
and the integration with databases or other tools. 
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Circuit design and simulation 

Biojade http://web.mit.edu/jagoler/www/biojade/  

Tinkercell http://www.tinkercell.com/Home  

Asmparts http://soft.synth-bio.org/asmparts.html  

ProMoT http://www.mpimagdeburg.mpg.de/projects/promot  

GenoCAD http://www.genocad.org/genocad/  

GEC http://research.microsoft.com/gec  

TABASCO http://openwetware.org/wiki/TABASCO  

Circuit optimization 

Genetdes http://soft.synth-bio.org/genetdes.html  

RoVerGeNe http://iasi.bu.edu/~batt/rovergene/rovergene.htm  

DNA and RNA design 

Gene Designer https://www.dna20.com/index.php?pageID=220  

GeneDesign http://www.genedesign.org/  

UNAFold http://www.bioinfo.rpi.edu/applications/hybrid/download.php  

Vienna RNA package http://www.tbi.univie.ac.at/~ivo/RNA/  

Zinc Finger Tools http://www.scripps.edu/mb/barbas/zfdesign/zfdesignhome.php  

Protein Design 

Rosetta http://www.rosettacommons.org/main.html  

RAPTOR http://www.bioinformaticssolutions.com/products/raptor/index.
php  

PFP http://dragon.bio.purdue.edu/pfp/  

Autodock 4.2 http://autodock.scripps.edu/  

HEX 5.1 http://webloria.loria.fr/~ritchied/hex/  

Integrated workflows 

SynBioSS http://synbioss.sourceforge.net/  

Clotho http://biocad-server.eecs.berkeley.edu/wiki/index.php/Tools  

Biskit http://biskit.sf.net/  

Table 3. Computational design tools for synthetic biology (adapted from Marchisio & 
Stelling, 2009; Matsuoka et al., 2009; and Prunick & Weiss, 2009) 

Biojade was one of the first tools being reported for circuit design (Goler, 2004). It provides 

connections to both parts databases and simulation environments, but it considers only one 

kind of signal carrier (RNA polymerases). It can invoke the simulator TABASCO (Kosuri et 

al., 2007), thus enabling genome scale simulations at single base-pair resolution. 

CellDesigner (Funahashi et al., 2003) has similar capabilities for graphical circuit 

composition. However, parts modularity and consequently circuit representation do not 

appear detailed enough. Another tool for which parts communicate only by means of PoPS, 

but not restricted to a single mathematical framework, is the Tinkercell. On the contrary, in 

Asmparts (Rodrigo et al., 2007a) the circuit design is less straightforward and intuitive 

because the tool lacks a Graphic User Interface. Nevertheless, each part exists as an 

independent SBML module and the model kinetics for transcription and translation permit 

to limit the number of parameters necessary for a qualitative system description. Marchisio 

and Stelling (2008) developed a new framework for the design of synthetic circuits where 
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each part is modeled independently following the ODE formalism. This results in a set of 

composable parts that communicate by fluxes of signal carriers, whose overall amount is 

constantly updated inside their corresponding pools. The model also considers transcription 

factors, chemicals and small RNAs as signal carriers. Pools are placed among parts and 

devices: they store free signal carriers and distribute them to the whole circuit. Hence, 

polymerases and ribosomes have a finite amount; this permits to estimate circuit scalability 

with respect to the number of parts. Mass action kinetics is fully employed and no 

approximations are required to depict the interactions of signal carriers with DNA and 

mRNA. The authors implemented the corresponding models into ProMoT (Process 

Modeling Tool), software for the object-oriented and modular composition of models for 

dynamic processes (Mirschel et al., 2009). GenoCAD (Czar et al., 2009) and GEC (Pedersen & 

Phillips, 2009) introduce the notions of a grammar and of a programming language for 

genetic circuit design, respectively. These tools use a set of rules to check the correct 

composition of standard parts. Relying on libraries of standard parts that are not necessarily 

taken from the Registry of Standard Biological Parts, these programs can translate a circuit 

design into a complete DNA sequence. The two tools differ in capabilities and possible 

connectivity to other tools. 

The ultimate goal of designing a genetic circuit is that it works, i.e. that it performs a given 

function. For that purpose, optimization cycles to establish an appropriate structure and a 

good set of kinetic parameters values are required. These optimization problems are 

extremely complex since they involve the selection of adequate parts and appropriate 

continuous parameter values. Stochastic optimization methods (e.g. evolutionary 

algorithms) attempt to find good solutions by biased random search. They have the 

potential for finding globally optimal solutions, but optimization is computationally 

expensive. On the other hand, deterministic methods (e.g. gradient descent) are local search 

methods, with less computational cost, but at the expense of missing good solutions. 
The optimization problem can be tackled by tools such as Genetdes (Rodrigo et al., 2007b) 
and OptCircuit (Dasika & Maranas, 2008). They rely on different parts characterizations and 
optimization algorithms. Genetdes uses a stochastic method termed “Simulated Annealing” 
(Kirkpatrick et al., 1983), which produces a single solution starting from a random circuit 
configuration. As a drawback, the algorithm is more likely to get stuck in a local minimum 
than an evolutionary algorithm. OptCircuit, on the contrary, treats the circuit design 
problem with a deterministic method (Bansal et al., 2003), implementing a procedure 
towards a “local’ optimal solution. Each of these optimization algorithms requires a very 
simplified model for gene dynamics where, for instance, transcription and translation are 
treated as a single step process. Moreover, the current methods can cope only with rather 
small circuits. Another tool that has been described by Batt and co-workers (2007), 
RoVerGeNe, addresses the problem of parameter estimation more specifically. This tool 
permits to tune the performance and to estimate the robustness of a synthetic network with 
a known behavior and for which the topology does not require further improvement.  
Detailed design of synthetic parts that reproduce the estimated circuit kinetics and 
dynamics is a complex task. It requires computational tools in order to achieve error free 
solutions in a reasonable amount of time. Other than the placement/removal of restriction 
sites and the insertion/deletion of longer motifs, mutations of single nucleotides may be 
necessary to tune part characteristics (e.g. promoter strength and affinity toward regulatory 
factors). Gene Designer (Villalobos et al., 2006) is a complete tool for building artificial DNA 
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segments and codon usage optimization. GeneDesign (Richardson et al., 2006) is another 
tool to design long synthetic DNA sequences. Many other tools are available for specific 
analysis of the DNA and RNA circuit components. The package UNAFold (Markham & 
Zuker, 2008) predicts the secondary structure of nucleic acid sequences to simulate their 
hybridizations and to estimate their melting temperature according to physical 
considerations. A more accurate analysis of the secondary structure of ribonucleic acids can 
be performed through the Vienna RNA package (Hofacker, 2003). Binding sites along a 
DNA chain can be located using Zinc Finger Tools (Mandell & Barbas, 2006). These tools 
allows one to search DNA sequences for target sites of particular zinc finger proteins 
(Kaiser, 2005), whose structure and composition can also be arranged. Thus, gene control by 
a class of proteins with either regulation or nuclease activity can be improved. Furthermore, 
tools that enable promoter predictions and primers design are available, such as BDGP and 
Primer3. Another relevant task in synthetic biology is the design and engineering of new 
proteins. Many tools have been proposed for structure prediction, homology modeling, 
function prediction, docking simulations and DNA-protein interactions evaluation. 
Examples include the Rosetta package (Simons et al., 1999); RAPTOR (Xu et al., 2003); PFP 
(Hawkins et al., 2006); Autodock 4.2 (Morris et al., 2009) and Hex 5.1 (Ritchie, 2008).  
Further advance in computational synthetic biology will result from tools that combine and 
integrate most of the tasks discussed, starting with the choice and assembly of biological 
parts to the compilation and modification of the corresponding DNA sequences. Examples 
of such tools comprise SynBioSS (Hill et al., 2008); Clotho and Biskit (Grunberg et al., 2007). 
Critical elements are still lacking, such as tools for automatic information integration 
(literature and databases), and tools that re-use standardized model entities for optimal 
circuit design. Overall, providing an extended and integrated information technology 
infrastructure will be crucial for the development of the synthetic biology field. 

4. A roadmap from design to production of new drugs 

Biological systems are dynamic, that is they mutate, evolve and are subject to noise. 
Currently, the full knowledge on how these systems work is still limited. As previously 
discussed, synthetic biology approaches involve breaking down organisms into a hierarchy 
of composable parts, which is useful for conceptualization purposes. Reprogramming a cell 
involves the creation of synthetic biological components by adding, removing, or changing 
genes and proteins. Nevertheless, it is important to notice that assembly of parts largely 
depends on the cellular context (the so-called chassis), thus restraining the abstraction of 
biological components into devices and modules, and their use in design and engineering of 
new organisms or functions.  
One level of abstraction from the DNA synthesis and manipulation is parts production, 
which optimization can be accomplished through either rational design or directed 
evolution. Applying rational design to parts alteration or creation is advantageous, in that it 
cannot only generate products with a defined function, but it can also produce biological 
insights into how the designed function comes about. However, it requires prior structural 
knowledge of the part, which is frequently unavailable. Directed evolution is an alternative 
method that can effectively address this limitation. Many synthetic biology applications will 
require parts for genetic circuits, cell–cell communication systems, and non-natural 
metabolic pathways that cannot be found in Nature, simply because Nature is not in need of 
them (Dougherty & Arnold, 2009). In essence, directed evolution begins with the generation 

www.intechopen.com



 
Computational Biology and Applied Bioinformatics 170 

of a library containing many different DNA molecules, often by error-prone DNA 
replication, DNA shuffling or combinatorial synthesis (Crameri et al., 1998). The library is 
next subjected to high-throughput screening or selection methods that maintain a link 
between genotype and phenotype in order to enrich the molecules that produce the desired 
function. Directed evolution can also be applied at other levels of biological hierarchy, for 
example to evolve entire gene circuits (Yokobayashi et al., 2002). Rational design and 
directed evolution should not be viewed as opposing methods, but as alternate ways to 
produce and optimize parts, each with their own unique strengths and weaknesses. 
Directed evolution can complement this technique, by using mutagenesis and subsequent 
screening for improved synthetic properties (Brustad & Arnold, 2010). In addition, methods 
have been developed to incorporate unnatural amino acids in peptides and proteins 
(Voloshchuk & Montclare, 2009). This will expand the toolbox of protein parts, and add 
beneficial effects, such as increased in vivo stability, when incorporated in proteinaceous 
therapeutics. Also, the development of de novo enzymes has seen a significant increase 
lately. The principle of computational design uses the design of a model, capable of 
stabilizing the transition state of a reaction. From there on, individual amino acids are 
positioned around it to create a catalytic site that stabilizes the transition state. The mRNA 
display technique resembles phage display and is a technique for the in vitro selection and 
evolution of proteins. Translated proteins are associated with their mRNA via a puromycin 
linkage. Selection occurs by binding to an immobilized substrate, after which a reverse 
transcriptase step will reveal the cDNA and thus the nucleotide sequence (Golynskiy & 
Seelig, 2010). If the selection step includes measurement of product formation from the 
substrate, novel peptides with catalytic properties can be selected.  
For the design, engineering, integration and testing of new synthetic gene networks, tools 

and methods derived from experimental molecular biology must be used (for details see 

section 2). Nevertheless, progress on these tools and methods is still not enough to 

guarantee the complete success of the experiment. As a result, design of synthetic biological 

systems has become an iterative process of modeling, construction, and experimental testing 

that continues until a system achieves the desired behavior (Purnick & Weiss, 2009). The 

process begins with the abstract design of devices, modules, or organisms, and is often 

guided by mathematical models (Koide et al., 2009). Afterwards, the newly constructed 

systems are tested experimentally. However, such initial attempts rarely yield fully 

functional implementations due to incomplete biological information. Rational redesign 

based on mathematical models improves system behavior in such situations (Koide et al., 

2009; Prather & Martin, 2008). Directed evolution is a complimentary approach, which can 

yield novel and unexpected beneficial changes to the system (Yokobayashi et al., 2002). 

These retooled systems are once again tested experimentally and the process is repeated as 

needed. Many synthetic biological systems have been engineered successfully in this fashion 

because the methodology is highly tolerant to uncertainty (Matsuoka et al., 2009). Figure 1 

illustrates the above mentioned iterative approach used in synthetic biology. 

Since its inception, metabolic engineering aims to optimize cellular metabolism for a 

particular industrial process application through the use of directed genetic modifications 

(Tyo et al., 2007). Metabolic engineering is often seen as a cyclic process (Nielsen, 2001), 

where the cell factory is analyzed and an appropriate target is identified. This target is then 

experimentally implemented and the resulting strain is characterized experimentally and, if 

necessary, further analyses are conducted to identify novel targets. The application of 
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synthetic biology to metabolic engineering can potentially create a paradigm shift. Rather 

than starting with the full complement of components in a wild-type organism and 

piecewise modifying and streamlining its function, metabolic engineering can be attempted 

from a bottom-up, parts-based approach to design by carefully and rationally specifying the 

inclusion of each necessary component (McArthur IV & Fong, 2010). The importance of 

rationally designing improved or new microbial cell factories for the production of drugs 

has grown substantially since there is an increasing need for new or existing drugs at prices 

that can be affordable for low-income countries. Large-scale re-engineering of a biological 

circuit will require systems-level optimization that will come from a deep understanding of 

operational relationships among all the constituent parts of a cell. The integrated framework 

necessary for conducting such complex bioengineering requires the convergence of systems 

and synthetic biology (Koide et al., 2009). In recent years, with advances in systems biology 

(Kitano, 2002), there has been an increasing trend toward using mathematical and 

computational tools for the in silico design of enhanced microbial strains (Rocha et al., 2010). 

  

 

Fig. 1. The iterative synthetic biology approach to design a given biological circuit/system. 

Current models in both synthetic and systems biology emphasize the relationship between 
environmental influences and the responses of biological networks. Nevertheless, these 
models operate at different scales, and to understand the new paradigm of rational systems 
re-engineering, synthetic and systems biology fields must join forces (Koide et al., 2009). 
Synthetic biology and bottom-up systems biology methods extract discrete, accurate, 
quantitative, kinetic and mechanistic details of regulatory sub-circuits. The models 
generated from these approaches provide an explicit mathematical foundation that can 
ultimately be used in systems redesign and re-engineering. However, these approaches are 
confounded by high dimensionality, non-linearity and poor prior knowledge of key 
dynamic parameters (Fisher & Henzinger, 2007) when scaled to large systems. 
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Consequently, modular sub-network characterization is performed assuming that the 
network is isolated from the rest of the host system. The top-down systems biology 
approach is based on data from high-throughput experiments that list the complete set of 
components within a system in a qualitative or semi-quantitative manner. Models of overall 
systems are similarly qualitative, tending toward algorithmic descriptions of component 
interactions. Such models are amenable to the experimental data used to develop them, but 
usually sacrifice the finer kinetic and mechanistic details of the molecular components 
involved (Price & Shmulevich, 2007). Bridging systems and synthetic biology approaches is 
being actively discussed and several solutions have been suggested (Koide et al., 2009).  
A typical synthetic biology project is the design and engineering of a new biosynthetic 
pathway in a model organism (chassis). Generally, E. coli is the preferred chassis since it is 
well-studied, easy to manipulate, and its reproduction in biological cultures is very handy. 
Initially, relevant databases like Kegg and BioCyc (Table 2) can be consulted for identifying 
all the possible metabolic routes that allow the production of a given drug from metabolites 
that exist in native E. coli. Then, for each reaction, the species that are known to possess the 
corresponding enzymes/genes must be identified. This step is relevant, since most often the 
same enzyme exhibits different kinetic behavior among different species. Information on 
sequences and kinetic parameters can be extracted from the above-mentioned sources, 
relevant literature and also from Brenda and Expasy databases. Afterwards, the information 
collected is used to build a family of dynamic models (Rocha et al., 2008, 2010) that enable 
the simulation of possible combinations regarding pathway configuration and the origin of 
the enzymes (associated with varying kinetic parameters). Optflux tool can be used for 
simulations and metabolic engineering purposes (http://www.optflux.org/). Using the 
same input (a fixed amount of precursor) it is possible to select the configuration that allows 
obtaining higher drug yields. Furthermore, through the use of genome-scale stoichiometric 
models coupled with the dynamic model it is possible to understand the likely limitations 
regarding the availability of the possible precursors. In fact, if the precursor for the given 
drug biosynthesis is a metabolic intermediate, possible limitations in its availability need to 
be addressed in order to devise strategies to cope with it. Based on this information, the next 
step involves the construction of the enzymatic reactions that will lead to the production of 
the drug from a metabolic precursor in E. coli. The required enzymes are then synthesized 
based on the gene sequences previously selected from the databases. The cloning strategy 
may include using a single plasmid with two different promoters; using two different 
plasmids, with different copy numbers and/or origins of replication; or ultimately 
integrating it into the genome, in order to allow fine tuning of the expression of the various 
enzymes necessary. Finally, a set of experiments using the engineered bacterium needs to be 
performed to evaluate its functionality, side-product formation and/or accumulation, 
production of intermediate metabolites and final product (desired drug). In the case of the 
previously mentioned artemisinin production, DNA microarray analysis and targeted 
metabolic profiling were used to optimize the synthetic pathway, reducing the accumulation 
of toxic intermediates (Kizer et al., 2008). These types of methodologies enable the validation 
of the drug production model and the design of strategies to further improve its production. 

5. Novel strategies for cancer diagnosis and drug development  

Cancer is a main issue for the modern society and according to the World Health 
Organization it is within the top 10 of leading causes of death in middle- and high-income 
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countries. Several possibilities to further improve existing therapies and diagnostics, or to 
develop novel alternatives that still have not been foreseen, can be drawn using synthetic 
biology approaches. Promising future applications include the development of RNA-based 
biosensors to produce a desired response in vivo or to be integrated in a cancer diagnosis 
device; the design and engineering of bacteria that can be programmed to target a tumor 
and release a therapeutic agent in situ; the use of virus as a tool for recognizing tumors or for 
gene therapy; and the large scale production of complex chemotherapeutic agents, among 
others. 

5.1 RNA-based biosensors 

Synthetic biology seeks for new biological devices and systems that regulate gene 

expression and metabolite pathways. Many components of a living cell possess the ability to 

carry genetic information, such as DNA, RNA, proteins, among others. RNA has a critical 

role in several functions (genetic translation, protein synthesis, signal recognition of 

particles) due to its functional versatility from genetic blueprint (e.g. mRNA, RNA virus 

genomes. Its catalytic function as enzyme (e.g. ribozymes, rRNA) and regulator of gene 

expression (e.g. miRNA, siRNA) makes it stand out among other biopolymers with a more 

specialized scope (e.g. DNA, proteins) (Dawid et al., 2009). Therefore, non-coding RNA 

molecules enable the formation of complex structures that can interact with DNA, other 

RNA molecules, proteins and other small molecules (Isaacs et al., 2006). 

Natural biological systems contain transcription factors and regulators, as well as several 

RNA-based mechanisms for regulating gene expression (Saito & Inoue, 2009). A number of 

studies have been conducted on the use of RNA components in the construction of synthetic 

biologic devices (Topp & Gallivan, 2007; Win & Smolke, 2007). The interaction of RNA with 

proteins, metabolites and other nucleic acids is affected by the relationship between 

sequence, structure and function. This is what makes the RNA molecule so attractive and 

malleable to engineering complex and programmable functions.  

5.1.1 Riboswitches 

One of the most promising elements are the riboswitches, genetic control elements that 
allow small molecules to regulate gene expression. They are structured elements typically 
found in the 5’-untranslated regions of mRNA that recognize small molecules and respond 
by altering their three-dimensional structure. This, in turn, affects transcription elongation, 
translation initiation, or other steps of the process that lead to protein production (Beisel & 
Smolke, 2009; Winkler & Breaker, 2005). Biological cells can modulate gene expression in 
response to physical and chemical variations in the environment allowing them to control 
their metabolism and preventing the waste of energy expenditure or inappropriate 
physiological responses (Garst & Batey, 2009). There are currently at least twenty classes of 
riboswitches that recognize a wide range of ligands, including purine nucleobases (purine 
riboswitch), amino acids (lysine riboswitch), vitamin cofactors (cobalamin riboswitch), 
amino sugars, metal ions (mgtA riboswitch) and second messenger molecules (cyclic di-
GMP riboswitch) (Beisel & Smolke, 2009). Riboswitches are typically composed of two 
distinct domains: a metabolite receptor known as the aptamer domain, and an expression 
platform whose secondary structure signals the regulatory response. Embedded within the 
aptamer domain is the switching sequence, a sequence shared between the aptamer domain 
and the expression platform (Garst & Batey, 2009). The aptamer domain is part of the RNA 
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and forms precise three-dimensional structures. It is considered a structured nucleotide 
pocket belonging to the riboswitch, in the 5´-UTR, which when bound regulates 
downstream gene expression (Isaacs et al., 2006). Aptamers specifically recognize their 
corresponding target molecule, the ligand, within the complex group of other metabolites, 
with the appropriate affinity, such as dyes, biomarkers, proteins, peptides, aromatic small 
molecules, antibiotics and other biomolecules. Both the nucleotide sequence and the 
secondary structure of each aptamer remain highly conserved (Winkler & Breaker, 2005). 
Therefore, aptamer domains are the operators of the riboswitches.  
A strategy for finding new aptamer sequences is the use of SELEX (Systemic Evolution of 

Ligands by Exponential enrichment method). SELEX is a combinatorial chemistry technique 

for producing oligonucleotides of either single-stranded DNA or RNA that specifically bind 

to one or more target ligands (Stoltenburg et al., 2007). The process begins with the synthesis 

of a very large oligonucleotide library consisting of randomly generated sequences of fixed 

length flanked by constant 5' and 3' ends that serve as primers. The sequences in the library 

are exposed to the target ligand and those that do not bind the target are removed, usually 

by affinity chromatography. The bound sequences are eluted and amplified by PCR to 

prepare for subsequent rounds of selection in which the stringency of the elution conditions 

is increased to identify the tightest-binding sequences (Stoltenburg et al., 2007). SELEX has 

been used to evolve aptamers of extremely high binding affinity to a variety of target 

ligands. Clinical uses of the technique are suggested by aptamers that bind tumor markers 

(Ferreira et al., 2006). The aptamer sequence must then be placed near to the RBS of the 

reporter gene, and inserted into E. coli (chassis), using a DNA carrier (i.e. plasmid),  in order 

to exert its regulatory function.  

Synthetic riboswitches represent a powerful tool for the design of biological sensors that 

can, for example, detect cancer cells, or the microenvironment of a tumor, and in the 

presence of a given molecule perform a desired function, like the expression in situ of a 

therapeutic agent. Several cancer biomarkers have been identified in the last decade; 

therefore there are many opportunities of taking these compounds as templates to design 

adequate riboswitches for their recognition. Alternatively, the engineering goal might be the 

detection of some of these biomarkers in biological samples using biosensors with aptamers 

as the biological recognition element, hence making it a less invasive approach. The 

development of aptamer-based electrochemical biosensors has made the detection of small 

and macromolecular analytes easier, faster, and more suited for early detection of protein 

biomarkers (Hianik & Wang, 2009). Multi-sensor arrays that provide global information on 

complex samples (e.g. biological samples) have deserved much interest recently. Coupling 

an aptamer to these devices will increase its specificity and selectivity towards the selected 

target(s). The selected target may be any serum biomarker that when detected in high 

amounts in biological samples can be suggestive of tumor activity. 

5.2 Bacteria as anti-cancer agents   

Bacteria possess unique features that make them powerful candidates for treating cancer in 
ways that are unattainable by conventional methods. The moderate success of conventional 
methods, such as chemotherapy and radiation, is related to its toxicity to normal tissue and 
inability to destroy all cancer cells. Many bacteria have been reported to specifically target 
tumors, actively penetrate tissue, be easily detected and/or induce a controlled cytotoxicity. 
The possibility of engineering interactions between programmed bacteria and mammalian 
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cells opens unforeseen progresses in the medical field. Emerging applications include the 
design of bacteria to produce therapeutic agents (in vitro or in vivo) and the use of live 
bacteria as targeted delivery systems (Forbes, 2010; Pawelek et al., 2003). An impressive 
example of these applications is described by Anderson and co-workers (2006). The authors 
have successfully engineered E. coli harboring designed plasmids to invade cancer cells in 
an environmentally controlled way, namely in a density-dependent manner under 
anaerobic growth conditions and arabinose induction. Plasmids were built containing the 
inv gene from Yersinia pseudotuberculosis under control of the Lux promoter, the hypoxia-
responsive fdhF promoter, and the arabinose-inducible araBAD promoter. This is significant 
because the tumor environment is often hypoxic and allows for high bacterial cell densities 
due to depressed immune function in the tumor. Therefore, this work demonstrated, as a 
“proof of concept”, that one can potentially use engineered bacteria to target diseased cells 
without significantly impacting healthy cells.  
Ideally, an engineered bacterium for cancer therapy would specifically target tumors 

enabling the use of more toxic molecules without systemic effects; be self-propelled enabling 

its penetration into tumor regions that are inaccessible to passive therapies; be responsive to 

external signals enabling the precise control of location and timing of cytotoxicity; be able to 

sense the local environment allowing the development of responsive therapies that can 

make decisions about where and when drugs are administered; and be externally detectable, 

thus providing information about the state of the tumor, the success of localization and the 

efficacy of treatment (Forbes, 2010).  Indeed some of these features naturally exist in some 

bacteria, e.g. many genera of bacteria have been shown to preferentially accumulate in 

tumors, including Salmonella, Escherichia, Clostridium and Bifidobacterium. Moreover, bacteria 

have motility (flagella) that enable tissue penetration and chemotactic receptors that direct 

chemotaxis towards molecular signals in the tumor microenvironment. Selective 

cytotoxicity can be engineered by transfection with genes for therapeutic molecules, 

including toxins, cytokines, tumor antigens and apoptosis-inducing factors. External control 

can be achieved using gene promoter strategies that respond to small molecules, heat or 

radiation. Bacteria can be detected using light, magnetic resonance imaging and positron 

emission tomography. At last, genetic manipulation of bacteria is easy, thus enabling the 

development of treatment strategies, such as expression of anti-tumor proteins and 

including vectors to infect cancer cells (Pawelek et al., 2003). To date, many different 

bacterial strategies have been implemented in animal models (e.g. Salmonella has been tested 

for breast, colon, hepatocellular, melanoma, neuroblastoma, pancreatic and prostate cancer), 

and also some human trials (e.g. C. butyricum M-55 has been tested for squamous cell 

carcinoma, metastic, malignant neuroma and melanoma) have been carried out (Forbes, 

2010).  

Ultrasound is one of the techniques often used to treat solid tumors (e.g. breast cancer); 

however, this technique is not always successful, as sometimes it just heats the tumor 

without destroying it. Therefore, we are currently engineering the heat shock response 

machinery from E. coli to trigger the release of a therapeutic agent in situ concurrent with 

ultrasound treatment. For that purpose, several modeling and engineering steps are being 

implemented. The strategy being pursued is particularly useful for drugs that require in situ 

synthesis because of a poor bioavailability, thereby avoiding repetitive oral doses to achieve 

sufficient concentration inside the cells. The use of live bacteria for therapeutic purposes 

naturally poses some issues (Pawelek et al., 2003), but currently the goal is to achieve the 
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proof-of-concept that an engineered system will enable the production of a cancer-fighting 

drug triggered by a temperature increase.  

5.3 Alternative nanosized drug carriers  

The design of novel tumor targeted multifunctional particles is another extremely 
interesting and innovative approach that makes use of the synthetic biology principles. The 
modest success of the traditional strategies for cancer treatment has driven research towards 
the development of new approaches underpinned by mechanistic understanding of cancer 
progression and targeted delivery of rational combination therapy.  

5.3.1 Viral drug delivery systems  

The use of viruses, in the form of vaccines, has been common practice ever since its first use 

to combat smallpox. Recently, genetic engineering has enlarged the applications of viruses, 

since it allows the removal of pathogen genes encoding virulence factors that are present in 

the virus coat. As a result, it can elicit immunity without causing serious health effects in 

humans. In the light of gene therapy, the use of virus-based entities hold a promising future, 

since by nature, they are being delivered to human target cells, and can be easily 

manipulated genetically. As such, they may be applied to target and lyse specific cancer 

cells, delivering therapeutics in situ. Bacteriophages are viruses that specifically and only 

infect bacteria. They have gained more attention the last decades, mainly in phage display 

technology. In anti-cancer therapy, this technique has contributed enormously to the 

identification of new tumor-targeting molecules (Brown, 2010). In vivo phage display 

technology identified a peptide exhibiting high affinity to hepatocellular carcinoma cells 

(Du et al., 2010). In a different approach, a phage display-selected ligand targeting breast 

cancer cells was incorporated in liposomes containing siRNA. The delivered liposomes were 

shown to significantly downregulate the PRDM14 gene in the MCF7 target cells (Bedi et al., 

2011). In addition, the option to directly use bacteriophages as drug-delivery platforms has 

been explored. A recent study described the use of genetically modified phages able to 

target tumor cell receptors via specific antibodies resulting in endocytosis, intracellular 

degradation, and drug release (Bar et al., 2008). Using phage display a variety of cancer cell 

binding and internalizing ligands have been selected (Gao et al., 2003). Bacteriophages can 

also be applied to establish an immune response. Eriksson and co-workers (2009) showed 

that a tumor-specific M13 bacteriophage induced regression of melanoma target cells, 

involving tumor-associated macrophages and being Toll-like receptor-dependent. Finally, 

marker molecules or drugs can be chemically conjugated onto the phage surface, making it a 

versatile imaging or therapy vehicle that may reduce costs and improve life quality 

(Steinmetz, 2010). An M13 phage containing cancer cell-targeting motifs on the surface was 

chemically modified to conjugate with fluorescent molecules, resulting in both binding and 

imaging of human KB cancer cells (Li et al., 2010). Besides being genetically part of the virus, 

anti-tumor compounds can also be covalently linked to it. We are currently, by phage 

display, selecting phages that adhere and penetrate tumor cells. Following this selection, we 

will chemically conjugate anti-cancer compounds (e.g. doxorubicin) to bacteriophages, 

equipped with the cancer cell-recognizing peptides on the phage surface. We anticipate that 

such a multifunctional nanoparticle, targeted to the tumor using a tumor “homing” peptide, 

will enable a significant improvement over existing anti-cancer approaches. 
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5.4 Microbial cell factories for the production of drugs 
On a different perspective, as exemplified in section 4, synthetic biology approaches can be 

used for the large scale production of compounds with pharmaceutical applications. One of 

the easily employable approaches to develop synthetic pathways is to combine genes from 

different organisms, and design a new set of metabolic pathways to produce various natural 

and unnatural products. The host organism provides precursors from its own metabolism, 

which are subsequently converted to the desired product through the expression of the 

heterologous genes (see section 4). Existing examples of synthetic metabolic networks make 

use of transcriptional and translational control elements to regulate the expression of 

enzymes that synthesize and breakdown metabolites. In these systems, metabolite 

concentration acts as an input for other control elements (Andrianantoandro et al., 2006). An 

entire metabolic pathway from S. cerevisiae, the mevalonate isoprenoid pathway for 

synthesizing isopentyl pyrophosphate, was successfully transplanted into E. coli. In 

combination with an inserted synthetic amorpha-4, 11-diene synthase, this pathway 

produced large amounts of a precursor to the anti-malarial drug artemisinin. This new 

producing strain is very useful since a significant decrease in the drug production time and 

costs could be achieved (Martin et al., 2003). In addition to engineering pathways that 

produce synthetic metabolites, artificial circuits can be engineered using metabolic 

pathways connected to regulatory proteins and transcriptional control elements 

(Andrianantoandro et al., 2006). One study describes such a circuit based on controlling 

gene expression through acetate metabolism for cell–cell communication (Bulter et al., 2004). 

Metabolic networks may embody more complex motifs, such as an oscillatory network. A 

recently constructed metabolic network used glycolytic flux to generate oscillations through 

the signaling metabolite acetyl phosphate (Fung et al., 2005). The system integrates 

transcriptional regulation with metabolism to produce oscillations that are not correlated 

with the cell division cycle. The general concerns of constructing transcriptional and protein 

interaction-based modules, such as kinetic matching and optimization of reactions for a new 

environment, apply for metabolic networks as well. In addition, the appropriate metabolic 

precursors must be present. For this purpose, it may be necessary to include other enzymes 

or metabolic pathways that synthesize precursors for the metabolite required in a synthetic 

network (Leonard et al., 2008; McArthur IV & Fong, 2010). 

Many polyketides and nonribosomal peptides are being used as antibiotic, anti-tumor and 

immunosuppressant drugs (Neumann & Neumann-Staubitz, 2010). In order to produce 

them in heterologous hosts, assembly of all the necessary genes that make up the synthetic 

pathways is essential. The metabolic systems for the synthesis of polyketides are composed 

of multiple modules, in which an individual module consists of either a polyketide synthase 

or a nonribosomal peptide synthetase. Each module has a specific set of catalytic domains, 

which ultimately determine the structure of the metabolic product and thus its function. 

Recently, Bumpus et al. (2009) presented a proteomic strategy to identify new gene clusters 

for the production of polyketides and nonribosomal peptides, and their biosynthetic 

pathways, by adapting mass-spectrometry-based proteomics. This approach allowed 

identification of genes that are used in the production of the target product in a species, for 

which a complete genome sequence is not available. Such newly identified pathways can 

then be copied into a new host strain that is more suitable for producing polyketides and 

nonribosomal peptides at an industrial scale. This exemplifies that the sources of new 

pathways are not limited to species with fully sequenced genomes.  
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The use of synthetic biology approaches in the field of metabolic engineering opens 
enormous possibilities, especially toward the production of new drugs for cancer treatment. 
Our goal is to design and model a new biosynthetic pathway for the production of natural 
drugs in E. coli. Key to this is the specification of gene sequences encoding enzymes that 
catalyze each reaction in the pathway, and whose DNA sequences can be incorporated into 
devices that lead to functional expression of the molecules of interest (Prather & Martin, 
2008). Partial pathways can be recruited from independent sources and co-localized in a 
single host (Kobayashi et al., 2004). Alternatively, pathways can be constructed for the 
production of new, non-natural products by engineering existing routes (Martin et al., 2003).  

6. Conclusion  

Despite all the scientific advances that humankind has seen over the last centuries, there are 

still no clear and defined solutions to diagnose and treat cancer. In this sense, the search for 

innovative and efficient solutions continues to drive research and investment in this field. 

Synthetic biology uses engineering principles to create, in a rational and systematic way, 

functional systems based on the molecular machines and regulatory circuits of living 

organisms, or to re-design and fabricate existing biological systems. Bioinformatics and 

newly developed computational tools play a key role in the improvement of such systems. 

Elucidation of disease mechanisms, identification of potential targets and biomarkers, 

design of biological elements for recognition and targeting of cancer cells, discovery of new 

chemotherapeutics or design of novel drugs and catalysts, are some of the promises of 

synthetic biology. Recent achievements are thrilling and promising; yet some of such 

innovative solutions are still far from a real application due to technical challenges and 

ethical issues. Nevertheless, many scientific efforts are being conducted to overcome these 

limitations, and undoubtedly it is expected that synthetic biology together with 

sophisticated computational tools, will pave the way to revolutionize the cancer field. 
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