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1. Introduction  

Material properties, geometry parameters and applied loads of the structure are assumed to 
be stochastic. Although the finite element method analysis of complicated structures has 
become a generally widespread and accepted numerical method in the world, regarding the 
given factors as constants can not apparently correspond to the reality of a structure.  
The direct Monte Carlo simulation of the stochastic finite element method(DSFEM) requires 
a large number of samples, which requires much calculation time and occupies much 
computer storage space [1]. Monte Carlo simulation by applying the Neumann expansion 
(NSFEM) enhances computational efficiency and saves storage in such a way that the 
NSFEM combined with Monte Carlo simulation enhances the finite element model 
advantageously [2]. The preconditioned Conjugate Gradient method (PCG) applied in the 
calculation of stochastic finite elements can also enhance computational accuracy and 
efficiency [3]. The TSFEM assumes that random variables are dealt with by Taylor 
expansion around mean values and is obtained by appropriate mathematical treatment [4, 
14]. According to first-order or second-order perturbation methods, calculation formulas can 
be obtained [2, 5, 6,8, 9, 13, 15, 16]. The result is called the PSFEM and has been adopted by 
many scholars. 
The PSFEM is often applied in dynamic analysis of structures and the second- order 
perturbation technique has been proved to be accurate and efficient. Dynamic reliability of a 
large frame is calculated by the SFEM and response sensitivity is formulated in the context 
of stiffness and mass matrix condensation [7]. Nonlinear structural dynamics are developed 
by the PSFEM. Nonlinearities due to material and geometrical effects have also been 
included [8]. By forming a new dynamic shape function matrix, dynamic analysis of the 
spatial frame structure is presented by the PSFEM [9].  
It is significant to extend this research to the dynamic state. Considering the influence of 
random factors, the mechanical vibrations for a linear system are illustrated by using the 
TSFEM and the CG.  

2. Random variable 

Material properties, geometry parameters and applied loads of machines are assumed to be 

independent random variables, and are indicated as 1 2, , ,a a   
1

, ,i na a . Their means 

are
11 2, , , , ,i n     , and their variances are.. 

1

2 2, ,i n  . When they are subject to 
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normal distributions, the standard method used to simulate them is to take advantage of 

well-tested computer programs. When they are subject to unknown distributions, the 

sample of 
11 2, , , , ,i na a a a   can be generated from the following method: 

  
2

2
P x

 


                                  (1) 

where, x is a random variable,  is the mean,  is the standard deviation ,and   is an 

arbitrary positive number. Eq.1 is called the Chebyschev inequality. 
The Chebyschev inequality can also be written as  

  
2

2
1P x

 


                  (2) 

After substituting 6 i  , ix a  , Eq.2 becomes  

  6 0.9722i i iP a           (3) 

where     

 6i i ia                   (4) 

or                   

 6i i ia            (5)     

If it is assumed that z  is a random number within the open interval (0,1), then 

 6i i ia z           (6)     

or 

 6i i ia z             (7)                     

Large numbers of samples of random variables 
11 2, , , , ,i na a a a   are produced from Eqs.6 

and 7 so as to resolve the stochastic finite element problem through Monte Carlo 

stimulation. 

3. Dynamic analysis of finite element 

For a linear system, the dynamic equilibrium equation is given by 

           M C K F              (8)         

where      , ,    are the acceleration, velocity and displacement vectors.    ,M K  and 

 C are the global mass, stiffness and damping matrices obtained by assembling the element 

variables in global coordinate system. 
In order to program easily, the comprehensive calculation steps of the Newmark method are 
as follows 
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1. The initial calculation 

The matrices  K ,  M and  C  are formed. 

The initial values     , ,t t t     are given. 

After selecting step t and parameters ,  , the following relevant parameters are 

calculated:  

0.50       20.25 0.5    

 0 2

1
b

t



  1b

t







    2

1
b

t



                 

3

1
1

2
b


     4 1b




     5 2
2

t
b




 
  

 
 

 6 1b t        7b t   

The stiffness matrix is defined as     

      0 1K K b M b C     
      (9)                          

The stiffness matrix inversion
1

K


  
  is solved. 

2. Calculation of each step time 

At time t t  , the load vector is defined as 

        0t t t t tF F M b        2 3t tb b    

         1 4 5t t tC b b b         (10) 

At time t t  , the displacement vector is given by  

    1

t t t tK F


    
          (11)                          

At time t t  , the velocity vector and acceleration vector are obtained as 

           0 2 3t t t t t t tb b b                (12)  

        6 7t t t t t tb b                    (13)              

Vectors      
1 1 1

, ,t i t t i t t i t       
   are solved at time  1 1 32,3, ,t i t i n    step-by -step. 

4. Analysis of mechanical vibration based on CG 

Eq.11 can be expressed as 

    t t t tK F     
     (14)  
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1N samples of random variables 
11 2, , , , ,i na a a a  are produced. 1N  matrices K  

  and 1N  

Eqs.14 are also generated. For a linear vibration, Eq.14 is the system of linear equations. The 

CG method is an effective method for solving the large system of linear equations according 

to the following steps:  
1. First, select an approximate solution as the initial value 

    
 

 
 

 
  

1 2

0 0 0 0
, , ,

N

T

t t t t t t t t   


            (15) 

2. Calculate the first residual vector 

      0 0
t t t tr F K      
           (16) 

and vector 

    0 0T
p K r   

         (17) 

where, 
T

K  
  is the transposed matrix of K  

  

3. For 20,1,2, , 1i n    , iterate step-by-step as follows 

 

   

   

   

   

   

   

, , ,

, , ,

T T Ti i i i i i

i i i i i i i

K p r p K r K r K r

K p K p K p K p K p K p



                               
                                     

     

      

   

     
 (18)  

         1 ii i
t t t t i

p  
  

 
    (19) 

 
     1i i i

i
r r K p     

  
    (20) 

 

   

   

1 1

1

,

,

T Ti i

i T Ti i

K r K r

K r K r



 



         
         

 

  

 

 
  (21) 

 
     1 1

1

Ti i i

i
p K r p

 


   
  

          (22)      

The process can be stopped only if 2nr  is small enough. 

Vectors     
11 2

, , ,t t t t t t N
     are solutions of 1N Eqs.14. 

The mean of  t t   is given by 

  
     

11 2

1

t t t t t t N
t t

N

  
 

  


  



      (23) 
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The variance of  t t   is given by 

       
1 2

1 1

1

1

N

t t t t t ti
i

Var
N

     


 
    (24) 

Similarly, the mean and variance of the vector  
1t i t    can be solved for at 

time  1 1 32,3, ,t i t i n    step-by-step. 

At time  2 2 41,2, ,t t i t i n      ,the strain and stress vectors for element d  are 

     d
tB             (25) 

and 

     D           (26) 

where,  D =the material response matrix of element d ,  B =the gradient matrix of 

element d  and  d
t  =the element d  nodal displacement vector at time t . 

Substituting Eq.25 into Eq.26, the stress for element d  is given by 

      d
tD B      (27)                          

Substituting..samples of random variables 
11 2, , , , ,i na a a a  into Eq.27, the vectors 

     
11 2

, , ,
N

   can be obtained. 

The mean of    is given by 

  
     

11 2

1

N

N

  
 

  



    (28)                          

The variance of    is given by  

       
1

2

1 1

1

1

N

i
i

Var
N

   


 
        (29)                          

The CG method belongs to method of iteration with the advantage of quick convergence. 
For practical purpose, PCG is applied to accelerate the convergence. 

5. Analysis of mechanical vibration based on TSFEM 

Independent random variables of the system are regarded as 
11 2, , , , ,i na a a a  . 

The partial derivative of Eq.14 with respect to ia is given by 

 
     1 t tt t

t t
i i i

F K
K

a a a




 


             
 

 
      (30)                          
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where 

           
0 2 3

t t t tt t t

i i i i i

F F
M b b b

a a a a a

  
         
      

  
  

        0 2 3t t t
i

M
b b b

a
  


 


    

 

       

        

1 4 5

1 4 5

t tt

i i i

t t t
i

C b b b
a a a

C
b b b

a

 

  

     
    


  



 

 
 (31) 

 

After 
     

0 0 0 0 0 0, ,
t tt

t t t
i i i

q q q
a a a

 
  

 
  

  

 
  are given, Eq.31 can be calculated. 

The partial derivative of Eq.30 with respect to ia is given by 

 
 2

1

2
t t

i

K
a

 
   
    2 2

2 2
2 { }

t t t t
t t

i ii i

F K K

a aa a


 



           
    

  
   (32)                         

where 

            
2 2 2

0 2 32 2 2

t t t t
t t t

i i i

F F M
b b b

a a a
     

    
  


    

       
0 2 32

t tt

i i i i

M
b b b

a a a a

      
     

 
       2 22

0 2 32 2 2

t tt

i i i

M b b b
a a a

      
    

 
  

 

                

       

2

1 4 5 1 4 52

2 22

1 4 52 2 2

2
t tt

t t t
i i i ii

t tt

i i i

C C
b b b b b b

a a a aa

C b b b
a a a

 
  

 

          
      

     
    

 
 

 
     (33)   

After
     2 22

0 0 0 0 0 02 2 2
, ,

t tt
t t t

i i i

r r r
a a a

 
  

 
  

  

 
   are given, Eq.33 can be calculated. 

The displacement is expanded at the mean value point  
11 2, , , , ,

T

i na a a a a    by means of 

a Taylor series. By taking the expectation operator for two sides of above Eq.11, the mean of 

the displacement is obtained as 

www.intechopen.com



 
Stochastic Finite Element Method in Mechanical Vibration 

 

229 

      1 2
2

2
1

1

2

n
t t

t t t t ia a
i i a a

a


   

  
 


  


     (34)                          

where,  t t   expresses the mean value of t t  . 

The variance of t t   is given by  

    1
2

2

1

n
t t

t t i
ii a a

Var
a


 


 

 
  
  

       (35)                          

The partial derivative of t t 
   with respect to ia is given by 

 
         

0 2 3
t t t tt t t

i i i i i

b b b
a a a a a

        
          

  
  (36)                          

The partial derivative of t t 
   with respect to ia  is given by 

 
       

6 7
t t t t t t

i i i i

b b
a a a a

       
  
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   
  (37)                          

The partial derivative of Eq.36 with respect to ia  is given by 
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  (38)                       

The partial derivative of Eq.37 with respect to ia  is given by 
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 (39)                          

The mean value and variance of the displacement are obtained at time 

 1 1 32,3, ,t i t i n    step-by-step. 

The partial derivative of Eq.27 with respect to ia  is given by 
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 (40)                          

The partial derivative of Eq.40 with respect to ia  is given by 
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   
 2
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d
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i

D B
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 



             (41)                         

The stress is expanded at mean value point  
11 2, , , , ,

T

i na a a a a    by means of a Taylor 

series. By taking the expectation operator for two sides of the above Eq.27, the mean of 

stress is obtained as 

      1 2
2

2
1

1

2

n

ia a
i i a a

a


   


 


  


     (42)                          

where,    expresses the mean value of . 

The variance of is given by  

    1
2

2

1

n

i
ii a a

Var
a


 

 

 
    

        (43)                          

6. Numerical example 

Figure 1 shows a four-bar linkage, or a crank and rocker mechanism. The establishment of 

differential equation system can be found in literature 10，11，12.The length of bar 1 is 

0.075m, the length of bar 2 is 0.176m, the length of bar 3 is 0.29m,and the length of the bar 4 

is0. 286m, the diameters of three bars are 0.02m. The torque T is 4Nm, the load F1 is 20sint 

N. The three bars are made of steel and they are regarded as three elements. Considering the 

boundary condition, there are 13 unit coordinates. Young’s modulus is regarded as a 

random variable. For numerical calculation, the means of the Young’s modulus within the 

three bars are . 112 10 . 2N m and the variances of the Young’s modulus are 1110  2 4N m . 
Figure 2 shows the mean of the displacement at unit coordinate 11. Unit coordinate 11 is the 
deformation of the upper end of bar 3 in the vertical direction. The DSFEM simulates 1000 
samples. The TSFEM produces an error of less than 0.5%. The CG produces an error of less 
than 0.1%. Figure 3 shows the variance of the displacement at unit coordinate 11. TSFEM 
produces an error of less than 1.0%. CG produces an error of less than 0.4%.Figure 4 shows 
the mean of stress at the top of bar 3. The TSFEM produces an error of less than 0.85%.The 
CG produces an error of less than 0.13%.Figure 5 shows the variance of stress at the top of 
bar 3. The TSFEM produces an error of less than 1%. The CG produces an error of less than 
0.3%.The results obtained by the CG method and the TSFEM are very close to that obtained 
by the DSFEM. Table 1 indicates the comparison of CPU time when the mechanism has 
operated for six seconds.  

Figure 6 shows a cantilever beam. The length, the width, the height , the Poisson’s ratio ,the 

Young’s modulus and the load F are assumed to be random variables. Their means are 1m, 

0.1m, 0.05m, 0.2, 112 10  2N m ,100N.Their standard deviation are 0.2, 0.1, 0.1, 0.01, 910 , 

0.1. Load subjected to the cantilever beam is Fsin(100t)N. It is divided into 400 rectangle 

elements that have 505 nodes. Figure 7 shows the mean of vertical displacement at node 505. 

DSFEM simulates 100 samples. The result obtained by the TSFEM produces an error of less 

than 2% . CG produces an error of less than 0.5%. Figure 8 shows the variance of vertical 
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displacement at node 505.The TSFEM produces an error of less than 3.0%. CG produces an 

error of less than 0.8%.Figure 9 shows the mean of horizontal stress at node 5. The TSFEM 

produces an error of less than 2.4%. CG produces an error of less than 0.9%. Figure 10 shows 

the variance of horizontal stress at node 5. The TSFEM produces an error of less than 3.2%. 

CG produces an error of less than 1.3%. Table 2 indicates the comparison of CPU time when 

the cantilever beam has operated for six seconds.  
 
 

 
 

Fig. 1. A four-bar linkage 

 
 

 

Fig. 2. The mean of displacement at unit coordinate 11 for 2 1110E   
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Fig. 3. The variance of displacement at unit coordinate 11 for 2 1110E   

 
 

 

Fig. 4. The mean of stress at the top of bar 3 for 2 1110E   
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Fig. 5. The variance of stress at the top of bar 3 for 2 1110E   

 
 

DSFEM TSFEM CG 

19 seconds 4 seconds 14 seconds 

 
 

Table 1. Comparison of CPU time for 2 1110E   

 
 
 

 
 
 

Fig. 6. A cantilever beam 
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Fig. 7. The mean of vertical displacement at node 505 

 
 

 

Fig. 8. The variance of vertical displacement at node 505 
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Fig. 9. The mean of horizontal stress at node 5 

 

 

Fig. 10. The variance of horizontal stress at node 5 

 

DSFEM TSFEM CG 

3 hours 8 minutes 17 seconds 1 hour 45 minutes 10 seconds 40 minutes 24 seconds 

Table 2. Comparison of CPU time  
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7. Conclusions 

Considering the influence of random factors, the mechanical vibration in a linear system is 
presented by using the TSFEM. Different samples of random variables are simulated. The 
combination of CG method and Monte Carlo method makes it become an effective method 
for analyzing the vibration problem with the characteristics of high accuracy and quick 
convergence. 
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