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University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture 

Croatia 

1. Introduction 

Ultra large container ships are very sensitive to the wave load of quartering seas due to 
considerably reduced torsional stiffness caused by large deck openings. As a result, their 
natural frequencies can fall into the range of encounter frequencies in an ordinary sea 
spectrum. Therefore, the wave induced hydroelastic response of large container ships 
becomes an important issue in structural design. Mathematical hydroelastic model 
incorporates structural, hydrostatic and hydrodynamic parts (Senjanović et al. 2007, 2008a, 
2009b, 2010b). Beam structural model is preferable in the early design stage and for 
determining global response, while for more detailed analyses 3D FEM model has to be 
used. The hydroelastic analysis is performed by the modal superposition method, which 
requires dry natural vibrations of the structure to be determined. For each mode dynamic 
coefficients (added mass and damping) and wave load are calculated based on velocity 
potential. The governing equation of ship motion in rough sea specified for the impulsive 
(slamming) load as a transient problem is solved in time domain. The motion equation is 
also given for the case of harmonic wave excitation (springing), which is solved in the 
frequency domain. 
In the chapter, methodology of the ship hydroelastic analysis is described, and position and 
role of the beam structural model is explained. Beam finite element for coupled horizontal 
and torsional vibrations, that includes warping of ship cross-section, is constructed. Shear 
influence on both bending and torsion is taken into account. The strip element method is 
used for determination of normal and shear stress flows, and stiffness moduli, i.e. shear 
area, torsional modulus, shear inertia modulus (as a novelty), and warping modulus. 
In the modelling of large container ships it is important to appropriately account for the 
contribution of transverse bulkheads to hull stiffness and the behavior of relatively short 
engine room structure. In the former case, the equivalent torsional modulus is determined 
by increasing ordinary (St. Venant) value, depending on the ratio of the strain energy of a 
bulkhead and corresponding hull portion. Equivalent torsional modulus of the engine room 
structure is also determined utilizing the energy approach. It is assumed that a short closed 
structure behaves as an open one with the contribution of decks. 
Application of the beam structural model for ship hydroelastic analysis is illustrated in case 
of a very large container ship. Correlation of dry natural vibrations analysis results for the 
beam model with those for 3D FEM model shows very good agreement. Hydroelastic 
analysis emphasizes peak values of transfer functions of displacements and sectional forces 
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in resonances, i.e. in the case when the encounter frequency is equal to one of the natural 
frequencies. 

2. Methodology of ship hydroelastic analysis 

A structural model, ship and cargo mass distributions and geometrical model of ship 
surface have to be defined to perform ship hydroelastic analysis. At the beginning, dry 
natural vibrations have to be calculated, and after that modal hydrostatic stiffness, modal 
added mass, damping and modal wave load are determined. Finally, wet natural vibrations 
as well as the transfer functions (RAO) for determining ship structural response to wave 
excitation are obtained (Senjanović et al. 2008a, 2009b), Fig. 1. 
 

 
Fig. 1. Methodology of ship hydroelastic analysis 

3. General remarks on structural model 

A ship hull, as an elastic non-prismatic thin-walled girder, performs longitudinal, vertical, 
horizontal and torsional vibrations. Since the cross-sectional centre of gravity and centroid, 
as well as the shear centre positions are not identical, coupled longitudinal and vertical, and 
horizontal and torsional vibrations occur, respectively. The shear centre in ships with large 
hatch openings is located below the keel and therefore the coupling of horizontal and 
torsional vibrations is extremely high. The above problem is rather complex due to 
geometrical discontinuity of the hull cross-section, Fig. 2. 
The accuracy of the solution depends on the reliability of stiffness parameters 
determination, i.e. of bending, shear, torsional and warping moduli. The finite element 
method is a powerful tool to solve the above problem in a successful way. One of the first 
solutions for coupled horizontal and torsional hull vibrations, dealing with the finite 
element technique, is given in (Kawai, 1973, Senjanović & Grubišić, 1991). Generalised and 
improved solutions are presented in (Pedersen, 1985, Wu & Ho, 1987). In all these 
references, the determination of hull stiffness is based on the classical thin-walled girder 
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theory, which doesn’t give a satisfactory value for the warping modulus of the open cross-
section (Haslum & Tonnessen, 1972, Vlasov, 1961). Apart from that, the fixed values of 
stiffness moduli are determined, so that the application of the beam theory for hull vibration 
analysis is limited to a few lowest natural modes only. Otherwise, if the mode dependent 
stiffness parameters are used the application of the beam theory can be extended up to the 
tenth natural mode (Senjanović & Fan, 1989, 1992, 1997). 
 

. 

Fig. 2. Discontinuities of ship hull 

4. Consistent differential equations of beam vibrations 

Referring to the flexural beam theory (Timoshenko & Young, 1955, Senjanović, 1990), the 
total beam deflection, w, consists of the bending deflection, wb, and the shear deflection, ws, 
while the angle of cross-section rotation depends only on the former, Fig. 3 
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The cross-sectional forces are the bending moment and the shear force 
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where E and G are the Young's and shear modulus, respectively, while Ib and As are the 
moment of inertia of cross-section and shear area, respectively. 
The inertia load consists of the distributed transverse load, qi, and the bending moment, Ǎi, 
and in the case of coupled horizontal and torsional vibration is specified as 

 
  

     

2 2

2 2 ,i

w
q m c

t t
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 


2

2 ,i bJ
t

 (5) 

where m is the distributed mass, Jb is the mass moment of inertia about z-axis, and c is the 
distance between the centre of gravity and the shear centre, G Sc z z  , Fig. 4. 
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Fig. 3. Beam bending and torsion 

 

 
Fig. 4. Cross-section of a thin-walled girder 

In a similar way the total twist angle, Ǚ, consists of the pure twist angle, Ǚt, and the shear 
contribution, Ǚs, while the second torsional displacement, which causes warping of cross-
section, is variation of the pure twist angle, i.e. Fig. 3 (Pavazza, 2005) 
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

   


  


,  .t
t s

x
 (6) 

The cross-sectional forces include the pure torsional torque, Tt, warping bimoment, Bw, and 
additional torque due to restrained warping, Tw 

  ,t tT GI  (7) 

 


 


,w wB EI
x

 (8) 

 





,s
w sT GI

x
 (9) 

where It, Iw and Is are the torsional modulus, warping modulus and shear inertia modulus, 
respectively. 
The inertia load consists of the distributed torque, Ǎti, and the bimoment, bi, presented in the 
following form: 

 



 

  
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2 2

2 2 ,ti t

w
J mc

t t
 (10) 
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

2

2 ,i wb J
t

 (11) 

where Jt is the mass polar moment of inertia about the shear centre, and Jw is the mass 
bimoment of inertia with respect to the warping centre, Fig. 4. 
Considering the equilibrium of a beam differential element, one can write for flexural 
vibrations 

 


 


,i

M
Q Ǎ

x
 (12) 
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Q
q q

x


  


 (13) 

and for torsional vibrations (Pavazza, 1991) 

 ,w
w i

B
T b

x


 

  (14) 

 .t w
ti

T T Ǎ Ǎ
x x

 
   

   (15) 

The above equations can be reduced to two coupled partial differential equations as follows. 
Substituting Eqs. (2) and (3) into (12) yields 
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2 2

2 2 .s b b

s s

w EI J

x GA x GA t

  
  
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 (16) 

By inserting Eqs. (3) and (4) into (13) leads to 

 
4 2 4 4 3
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 (17) 

In a similar way, substituting Eqs. (8) and (9) into (14) yields 
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By inserting Eqs. (7), (9) and (10) into (15) one finds 
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 (19) 

Furthermore, Ǚ in (17) can be split into  t s  and the later term can be expressed with (18). 

Similar substitution can be done for  b sw w w  in (19), where ws is given with (16). Thus, 

taking into account that    /bw x  and    /t x , Eqs. (17) and (19) after integration 

per x read 
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 (21) 

After solving Eqs. (20) and (21) the total deflection and twist angle are obtained by 
employing (16) and (18), i.e. 
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where f(t) and g(t) are integration functions, which depend on initial conditions. 
The main purpose of developing differential equations of vibrations (20) and (21) is to get 
insight into their constitution, position and role of the stiffness and mass parameters, and 
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coupling, which is realized through the inertia terms. If the pure torque Tt is excluded from 
the above theoretical consideration, it is obvious that the complete analogy between bending 
and torsion exists, (Pavazza, 1991). 
Application of Eqs. (20) and (21) is limited to prismatic girders. For more complex problems, 
like ship hull, the finite element method is on disposal. 
The shape functions of beam finite element for vibration analysis have to satisfy the 
following consistency relations for harmonic vibrations obtained from Eqs. (22) and(23), 
(Senjanović, 1990) 
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      (25) 

5. Beam finite element 

The properties of a finite element for the coupled horizontal and torsional vibration analysis 
can be derived from the total element energy. It consists of the strain energy, the kinetic 
energy, the work of the distributed external lateral load, q, and the torque, Ǎ, and the work 
of the boundary forces. Thus, according to (Senjanović, 1990, Senjanović & Grubišić, 1991), 
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 (26) 

where l is the element length. Since the beam has four displacements, , , ,w    , a two-node 
finite element has eight degrees of freedom, i.e. four nodal shear-bending and torsion-
warping displacements respectively, Fig. 5, 
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Therefore, the basic beam displacements, wb and Ǚt, can be presented as the third-order 
polynomials 
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Furthermore, satisfying alternately the unit value for one of the nodal displacement {U} and 
zero values for the remaining displacements, and doing the same for {V}, it follows that: 

 
     
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 (29) 

where wbi, wsi, wi and Ǚti, Ǚsi, Ǚi are the shape functions specified below by employing 
relations (24) and (25) 
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Fig. 5. Beam finite elemet 
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Constitution of torsional matrices ikd   , ike    and ikf    is the same as ika   , ikb    and 
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according to (25). By substituting Eqs. (29) (26) one obtains 
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where, assuming constant values of the element properties, 
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The vectors {P} and {R} in Eq. (36) represent the shear-bending and torsion-warping nodal 
forces, respectively, 

    
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       
   
       

 (38) 

The above matrices are specified in Appendix A, as well as the load vectors for linearly 
distributed loads along the finite element, i.e. 

 
0 1 0 1, .q q q         (39) 

The total element energy has to be at its minimum. Satisfying the relevant conditions 

 
       0 , 0tot totE E

U V

 
 

 
 (40) 

and employing Lagrange equations of motion, the finite element equation yields 

           ,
q

f k m f  


   (41) 

 

where 

 

     

   

, ,

0
, .

0

q
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ws t ts tw

P q U
f f

R V

k m m
k m

k k m m

     
       
     
   

       





 (42) 

 

It is obvious that coupling between the bending and torsion occurs through the mass matrix 
only, i.e. by the coupling matrices [m]st and [m]ts. 

6. Contribution of transverse bulkheads to the hull stiffness 

This problem for container ships is extensively analyzed in (Senjanović et al., 2008b), 
where torsional modulus of ship cross-section is increased proportionally to the ratio of 
bulkhead strain energy and strain energy of corresponding hull portion. The bulkhead is 
considered as an orthotropic plate with very strong stool (Szilard, 2004). Bulkhead strain 
energy is determined for the given warping of cross-section as a boundary condition. The 
warping causes bulkhead screwing and bending. Here, only the review of the final results 
is presented. Bulkhead deflection (axial displacement) is given by the following formula, 
Fig. 6: 

    
2 2

, 1 2 ,
y z z

u y z y z d
b H H

                      
  (43) 
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where H is the ship height, b is one half of bulkhead breadth, d is the distance of warping 
centre from double bottom neutral line, y and z are transverse and vertical coordinates, 
respectively, and   is the variation of twist angle. 

 

 
Fig. 6. Shape of bulkhead deformation 

The bulkhead grillage strain energy includes vertical and horizontal bending with 
contraction and torsion (Senjanović et al., 2008b). 

    
3 3

2
2

1 116 32 8 143
1

1 35 105 75 75g y z y z t

H b Hb Hb
U i i i i i E

b H
  


         

 (44) 

where iy, iz and it are the average moments of inertia of cross-section and torsional modulus 
per unit breadth, respectively. The stool strain energy is comprised of the bending, shear 
and torsional contributions 

    
2 22

2
3

12 9
72 1

10 1
sb sb st

s

s

h I I bIh
U E

b b A

 
      

 


 (45) 

where Isb, As and Ist are the moment of inertia of cross-section, shear area and torsional 
modulus, respectively. Quantity h is the stool distance from the inner bottom, Fig. 7. 
 

 
Fig. 7. Longitudinal section of container ship hold 
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The equivalent torsional modulus yields, Fig. 7 

 
 

2
1 0

4 1
1 ,      ,g s

t t

t

U UCa
I I C

l I l E


 
      




 (46) 

where a is the web height of bulkhead girders (frame spacing), l0 is the bulkhead spacing, 

1 0l l a   is the net length, and C is the energy coefficient. 

7. Contribution of engine room structure to the hull stiffness 

Ultra Large Container Ships are characterized by relatively short engine room structure with 
length of about a half of ship breadth. Its complex deformation is illustrated in a case of a 
7800 TEU container ship, Fig. 8. The deck shear deformation is predominant, while hold 
transverse bulkhead stool is exposed to bending. Due to shortness of the engine room, its 
transverse bulkheads are skewed but somewhat less pronounced than warping of the hold 
bulkheads. Warping of the transom is negligible, and that is an important fact when 
specifying boundary conditions in vibration analysis. 
 

 
Fig. 8. Deformation of 7800 TEU container ship aft structure 

7.1 Stiffness of engine room structure 
A short engine room structure can be considered either as a closed segment with relevant 
stiffness or as an open segment with increased stiffness due to deck contribution (Pedersen, 
1985). The latter simulation in fact gives results which agree better with 3D FEM results, 
than the former one (Pedersen, 1983). Deck contribution to hull stiffness can be determined 
by energy approach, as it is done in the case of transverse bulkheads (Senjanović et al., 
2008b). Such a beam model is consistent at global level of energy balance, and that is 
sufficient for application in ship hydroelastic analysis, where proper natural frequencies and 
mode shapes of dry hull are required. 
In the case of short engine room, torsion induces distortion of cross-section while hull 
bending is negligible. Solution of that complex problem is described here by employing the 
energy balance approach and concept of the effective stiffness due to reason of simplicity. A 
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closed hull segment is considered as open one with deck influence. For that purpose let us 
determine deck strain energy. All quantities related to closed and open cross-section are 
designated by  . 

 and  .  , respectively 
As it can be seen in Fig. 8, the upper deck is exposed to large deformation, while the double 
bottom in-plane deformation is quite small. The relative axial displacement of the internal 
upper deck boundaries, with respect to double bottom, is result of their warping 

  D B D B tU U U w w       (47) 

It causes deck in-plane (membrane) deformation. The problem can be solved in an 
approximate analytical way by considering deck as a beam. Its horizontal anti-symmetric 
deflection consists of pure bending and shear contribution, Fig. 9. The former is assumed in 
the form 

 
2

3 ,
2b b

y y
u U

b b

     
   

 (48) 

which satisfies relevant boundary conditions:  0 0bu   and  0 0bu  , where 
bU  is the 

boundary bending deflection. Shear deflection depends on bending deflection 

  d

d

22

2 2 1 ,b
s b

yuEI a
u U

GA y b b

      
 

  (49) 

where the internal deck cross-section area, 2A at , its moment of inertia, 32
3

I a t , and the 

relation  2 1E ǎ G  , are taken into account, Fig. 9. Total deflection is obtained by 

summing up its constitutive parts, Eqs. (48) and (49). Relation between total boundary 
deflection and the bending boundary deflection reads 

  
2

1 2 1 b

a
U U

b

      
   

  (50) 

 

 
Fig. 9. Deck deformation and double bottom rotation, a)-bird view, b)-lateral view 
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The total internal deck strain energy consists of the bending and shear contributions 

 
d d

d d
d d

2 22

1 2

1 1
2 2

b b

b s

b b

u u
E EI y GA y

y y 

   
    

   
   (51) 

By substituting Eqs. (48) and (49) into (51), one finds 

    
3 2

2
1 4 1 1 2 1 b

a a
E ǎ Gt ǎ U

b b

           
     

 (52) 

Finally, by taking into account Eqs. (47) and (50), yields 

 
 

 
 

3

2 2
1 2

4 1

1 2 1
D B t

aǎ Gt
b

E w w Ǚ
aǎ
b

   
   
    
 

 (53) 

On the other hand, total energy of the closed hull segment can be obtained by summing up 
energy of open segment and the deck strain energy, i.e. 

 1tot w t ǍE E E E E     
 (54) 

where 

 d d d
1 1

,      ,      .
2 2

a a a

w w t t t t Ǎ x

a a a

E B Ǚ x E T Ǚ x E Ǎ Ǚ x
  

        
 (55) 

Within a short span 2a, constant value of tǙ  (as for deck) can be assumed, so that second 

term in Eq. (26) by inserting tT   from Eqs. (7), leads to 

 2 .t t tE GI aǙ 
 (56) 


t
E  and 

1
E  in (54) can be unified into one term since both depend on 2

tǙ  

 2
1t t tE E GaI Ǚ  

 (57) 

where 

   11 ,      t t

t

E
I C I C

E
  




 (58a, b) 


t
I  is the effective torsional modulus which includes both open cross-section and deck 
effects. 
Engine room structure is designed in such a way that the hold double skin continuity is 
ensured and necessary decks are inserted between the double skins. Strain energy is derived 
for the first (main) deck and for the others it can be assumed that their strain energy is 
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proportional to the deck plating volume, V, and linearly increasing deformation with the 
deck distance from inner bottom, h, Fig. 9, since the double bottom is much stiffer than 
decks. In that way the coefficient C, Eq. (58b), by employing (53) and (56), reads 

 
   

 

3
2

1

2

4 1

1 2 1

D B
i

t

t

aǎ t w w k
E b
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b

   
  

     
   




 (59) 

where 

 

2

1 1

.i iV h
k

V h

 
  

 
  (60) 

In the above consideration distortion of cross-sections is not included and that is subject of 
further investigation. 

7.2 Torsion of segmented girder 

Let us consider a girder consisted of three segments, Fig. 10. The end segments are open and 
the middle one is closed, so that the girder is symmetric with respect to the z axis. Each 
segment is specified in its local coordinate system. The properties of the middle and end 
segments are designated by  . 

 and  . 
, respectively. The relevant expressions for 

displacements and sectional forces are listed below (Senjanović et al., 2009a, 2010a): 
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 (61) 

 2 3ch sh ,w t w pB GI A ǂx A ǂx EI Ǚ    

where 
pǙ  represents particular solution of differential equation and coefficient α  yields 

 .t

w

GIǂ
EI

  (62) 

The symbols iA  and iB  are used for the integration constants of the closed and open 
segments. The girder is loaded with torque Mt at the ends, while 0xǍ  . The ends are fixed 
against warping. 
The boundary and compatibility conditions in the considered case, yield 
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 (63) 

 

 
Fig. 10. Torsion of segmented girder 

From the third and last conditions (63) one finds 

 1 1,  .t t

tt

M a M l
A B

GIGI
 



  (64) 

The remaining four conditions (63) lead to the system of algebraic equations (Senjanović et 
al., 2010a) and its analytical solution reads: 
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 (66) 

8. Numerical procedure for vibration analysis 

A thin-walled girder is modelled with a set of beam finite elements. Their assemblage in the 
global coordinate system, performed in the standard way, results in the matrix equation of 
motion, which may be extended by the damping forces 
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        Δ Δ Δ ( ) ,K C M F t            
 

 (67) 

where [K], [C] and [M] are the stiffness, damping and mass matrices, respectively; 

     Δ , Δ  and Δ   are the displacement, velocity and acceleration vectors, respectively; and 

{F(t)} is the load vector. 
In case of natural vibration {F(t)} = {0} and the influence of damping is rather low for the 
most of the structures, so that the damping forces may be ignored. Assuming 

    Δ e ,iǚtǗ  (68) 

where  Ǘ  and ǚ are the mode vector and natural frequency respectively, Eq. (67) leads to 

the eigenvalue problem 

     2 0K ǚ M Ǘ        , (69) 

which may be solved by employing different numerical methods (Bathe, 1996) The basic one 
is the determinant search method in which ǚ is found from the condition 

 2 0K ǚ M         (70) 

by an iteration procedure. Afterwards,  Ǘ  follows from (69) assuming unit value for one 
element in  Ǘ . 
The forced vibration analysis may be performed by direct integration of Eq. (67), as well as 
by the modal superposition method. In the latter case the displacement vector is presented 
in the form 

    Δ Ǘ X    , (71) 

where    Ǘ Ǘ     is the undamped mode matrix and {X} is the generalised displacement 
vector. Substituting (71) into (67), the modal equation yields 

        ( )k X c X m X f t            
  , (72) 

where 

 

   

– modal stiffness matrix

– modal damping matrix

– modal mass matrix

( ) ( ) – modal load vector.

T

T

T

T

k Ǘ K Ǘ

c Ǘ C Ǘ

m Ǘ M Ǘ

f t Ǘ F t

              

              

              

   

 (73) 

The matrices [k] and [m] are diagonal, while [c] becomes diagonal only in a special case, for 
instance if [C] = ǂ0 [M] + ǃ0 [K], where ǂ0 and ǃ0 are coefficients (Senjanović, 1990). 
Solving (72) for undamped natural vibration, [k] = [ǚ2m] is obtained, and by its backward 
substitution into (72) the final form of the modal equation yields 
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        2 2 ( )ǚ X ǚ Ǉ X X Ǘ t           
  , (74) 

where 

 

 
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  
    
  

 (75) 

If [Ǉ] is diagonal, the matrix Eq. (74) is split into a set of uncoupled modal equations. 
If vibration excitation is of periodical nature it can be split into harmonics, and the structure 
response for each of them is determined in the frequency domain. In a case of general or 
impulsive excitation the vibration problem has to be solved in the time domain. 
Several numerical methods are available for this purpose, as for instance the Houbolt, the 
Newmark and the Wilson ǉ method (Bathe, 1996), as well as the harmonic acceleration 
method (Lozina, 1988, Senjanović, 1984). 
It is important to point out that all stiffness and mass matrices of the beam finite element 
(and consequently those of the assembly) are frequency dependent quantities, due to 
coefficients ǂ and ǈ in the formulation of the shape functions, Eqs. (34) and (35). Therefore, 
for solving the eigenvalue problem (69) an iteration procedure has to be applied. As a result 
of frequency dependent matrices, the eigenvectors are not orthogonal. If they are used in the 
modal superposition method for determining forced response, full modal stiffness and mass 
matrices are generated. Since the inertia terms are much smaller than the deformation ones 
in Eqs. (24) and (25), the off-diagonal elements in modal stiffness and mass matrices are very 
small compared to the diagonal elements and can be neglected. 
It is obvious that the usage of the physically consistent non-orthogonal natural modes in the 
modal superposition method is not practical, especially not in the case of time integration. 
Therefore, it is preferable to use mathematical orthogonal modes for that purpose. They are 
created by the static displacement relations yielding from Eqs. (24) and (25) with 0ǚ  , that 
leads to 1ǂ ǈ  . In that case all finite element matrices, defined with Eqs. (37) and in 
Appendix A, can be transformed into explicit form, Appendix B.  

9. Cross-section properties of thin-walled girder 

Geometrical properties of a thin-walled girder include cross-section area A, moment of inertia 
of cross-section Ib, shear area As, torsional modulus It, warping modulus Iw and shear inertia 
modulus Is. These parameters are determined analytically for a simple cross-section as pure 
geometrical properties (Haslum & Tonnessen, 1972, Pavazza, 1991, 2005, Vlasov, 1961). 
However, determination of cross-section properties for an open multi-cell cross-section, as 
for instance in case of ship structures, is quite a difficult task. Therefore, the strip element 
method is applied for solving this statically indetermined problem (Cheung, 1976). That is 
well-known and widely used theory of thin-walled girders, which is only briefly described 
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here. Firstly, axial node displacements are calculated due to bending caused by shear force, 
and due to torsion caused by variation of twist angle. Then, shear stress in bending Ǖb, shear 
stress due to pure torsion Ǖt, shear and normal stresses due to restrained warping Ǖw and ǔw, 
respectively, are determined. Based on the equivalence of strain energies induced by 
sectional forces and calculated stresses, it is possible to specify cross-section properties in 
the same formulation as presented below. Furthermore, those formulae can be expressed by 
stress flows, i.e. stresses due to unit sectional forces (Senjanović & Fan, 1992, 1993). 
Shear area: 
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b b
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. (76) 

Torsional modulus: 
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T Ǖ
I g

TǕ dA g dA
  
 

. (77) 

Shear inertia modulus: 

 
2

2 2

1
,  w w

s w

ww w

A A

T Ǖ
I g

TǕ dA g dA
  
 

. (78) 

Warping modulus: 

 
2

2

2 2

1
,  ;      w w

w w w

w Aw w

A A

B ǔ
I f I w dA

Bǔ dA f dA
     

. (79) 

The above quantities are not pure geometrical cross-section properties any more, since they 
also depend on Poisson's ratio as a physical parameter. 
The mass parameters can be expressed with the given mass distribution per unit length, m, 
and calculated cross-section parameters, i.e. 

 0,  ,  b b t p w w

m m m
J I J I J I

A A A
   . (80) 

where p by bzI I I   is the polar moment of inertia of cross-section. 

10. Illustrative numerical examples 

For the illustration of the procedure related to engine room effective stiffness determination, 
3D FEM analysis of ship-like pontoon has been undertaken. The 3D FEM model is 
constituted according to 7800 TEU container ship with main dimensions 

x x x x319 42.8 24.6ppL B H   m, and detailed desciption given in (Tomašević, 2007). The 
complete hydroelastic analysis of the same ship has been performed. 
Stiffness properties of ship hull are calculated by program STIFF, based on the theory of 
thin-walled girders (STIFF, 1990), Fig. 11. 
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Fig. 11. Program STIFF – warping of ship cross-section 

Influence of the transverse bulkheads is taken into account by using the equivalent torsional 
modulus for the open cross-sections instead of the actual values, i.e. * 2.4t tI I . This value is 
applied for all ship-cross sections as the first approximation.  

9.1 Analysis of ship-like segmented pontoon 

Torsion of the segmented pontoon of the length L = 300 m, with effective parameters is 
considered. Torsional moment Mt = 40570 kNm is imposed at the pontoon ends. The 
pontoon is considered free in the space and the problem is solved analytically according to 
the formulae given in Section 4. The following values of the basic parameters are used: 

10.1a   m, 19.17b   m, 
1 0.01645t   m, 221Dw    m2, 267Bw   m2, 14.45tI   m4, 

1.894k  . As a result 22.42C  , Eq. (59), and accordingly 338.4tI   m4, Eq. (58a), are 
obtained. Since 0.36t tI I , effect of the short engine room structure on its torsional stiffness 
is obvious. 
 

 
Fig. 12. Deformation of segmented pontoon, lateral and bird view 
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Fig. 13. Lateral, axial, bird and fish views on deformed engine room superelement 

 
 

 
Fig. 14. Twist angles of segmented pontoon 
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The 3D FEM model of segmented pontoon is made by commercial software package SESAM 
and consists of 20 open and 1 closed (engine room) superelement. The pontoon ends are 
closed with transverse bulkheads. The shell finite elements are used. The pontoons are 
loaded at their ends with the vertical distributed forces in the opposite directions, 
generating total torque Mt = 40570 kNm. The midship section is fixed against transverse and 
vertical displacements, and the pontoon ends are constrained against axial displacements 
(warping). Lateral and bird view on the deformed segmented pontoon is shown in Fig. 12, 
where the influence of more rigid engine room structure is evident. Detailed view on this 
pontoon portion is presented in Fig. 13. It is apparent that segment of very stiff double 
bottom and sides rotate as a “rigid body”, while decks and transverse bulkheads are 
exposed to shear deformation. This deformation causes the distortion of the cross-section, 
Fig. 13. 
Twist angles of the analytical beam solution and that of 3D FEM analysis for the pontoon 
bottom are compared in Fig. 14. As it can be noticed, there are some small discrepancies 
between  1 2 D

Ǚ   and 3 ,D bottomǙ , which are reduced to a negligible value at the pontoon ends 

Fig. 14 also shows twist angle of side structure and the difference 
3D,bottom 3D,sideǅ Ǚ Ǚ   

represents distortion angle of cross-section which is highly pronounced. As it is mentioned 
before, the problem will be further investigated. 

9.2 Validation of 1D FEM model 
The reliability of 1D FEM analysis is verified by 3D FEM analysis of the considered ship. For 
this purpose, the light weight loading condition of dry ship with displacement Δ=33692 t is 
taken into account. The equivalent torsional stiffness of the engine room structure, as well as 
equivalent stiffness of fore and aft peaks is not taken into account in this example for the 
time being. However, it will be done in the next step of investigation. The lateral and bird 
view of the first dominantly torsional and second dominantly horizontal mode of the wetted 
surface, determined by 1D model, is shown in Fig. 15. 
 
 

 
 

Fig. 15. The first and second mode, lateral and bird view, light weight, 1D model 

The first and second 3D dry coupled natural modes of the complete ship structure are 
shown in Fig. 16. They are similar to that of 1D analysis for the wetted surface. Warping of 
the transverse bulkheads, which increases the hull torsional stiffness, is evident. 
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The first four corresponding natural frequencies obtained by 1D and 3D analyses are 
compared in Table 1. 
 

Mode 
no. 

Vert. Horiz. + tors. 
Mode no. 

1D 3D 1D 3D 

1 7.35 7.33 4.17 4.15 1(H0 + T1) 

2 15.00 14.95 7.34 7.40 2(H1 + T2) 

3 24.04 22.99 12.22 12.09 3(H2 + T3) 

4 35.08 34.21 15.02 16.22 4(H3 + T4) 
 

Table 1. Dry natural frequencies, light weight, ǚi [rad/s] 

 

 
 

Fig. 16. The first and second mode, lateral and bird view, light weight, 3D model 

Quite good agreement is achieved. Values of natural frequencies for higher modes are more 
difficult to correlate, since strong coupling between global hull modes and local 
substructure modes of 3D analysis occurs. 

9.3 Hydroelastic response of large container ship 
Transfer functions of torsional moment and horizontal bending moment at the midship 
section, obtained using 1D structural model, are shown in Figs. 17 and 18, respectively. The 
angle of 180° is related to head sea. They are compared to the rigid body ones determined by 
program HYDROSTAR. Very good agreement is obtained in the lower frequency domain, 
where the ship behaves as a rigid body, while large discrepancies occur at the resonances of 
the elastic modes, as expected. 
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Fig. 17. Transfer function of torsional moment, ǘ=120°, U=25 kn, x=155.75 m from AP 

 

 
Fig. 18. Transfer function of horizontal bending moment, ǘ=120°, U=25 kn, x=155.75 m from 
AP 

10. Conclusion 

Ultra large container ships are quite elastic and especially sensitive to torsion due to large 
deck openings. The wave induced response of such ships should be determined by using 
mathematical hydroelastic models which are consisted of structural, hydrostatic and 
hydrodynamic parts. 
In this chapter the methodology of ship hydroelastic analysis is briefly described, and the 
role of structural model is discussed. After that, full detail description of the sophisticated 
beam structural model, which takes shear influence on torsion, as well as contribution of 
transverse bulkheads and engine room structure to the hull stiffness, is given. Numerical 
procedure for vibration analysis is also described and determination of ship cross-section 
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properties is explained. The developed theories are illustrated through the numerical 
examples which include analysis of torsional response of a ship-like segmented pontoon, 
free vibration analysis of a large container ship and comparison with the results obtained 
using 3D FEM model, and complete global hydroelastic analysis of a container ship. 
It is shown that the used sophisticated beam model of ship hull, based on the advanced 
thin-walled girder theory with included shear influence on torsion and a proper 
contribution of transverse bulkheads and engine room structure to its stiffness, is a 
reasonable choice for determining wave load effects. However, based on the experience, 
stress concentration in hatch corners calculated directly by the beam model is 
underestimated. This problem can be overcome by applying substructure approach, i.e. 
3D FEM model of substructure with imposed boundary conditions from beam response. 
In any case, 3D FEM model of complete ship is preferable from the viewpoint of 
determining stress concentration. Concerning further improvements of the beam model, 
the distortion induced by torsion is of interest. 
The illustrative numerical example of the 7800 TEU container ship shows that the developed 
hydroelasticity theory, utilizing sophisticated 1D FEM structural model and 3D 
hydrodynamic model, is an efficient tool for application in ship hydroelastic analyses. The 
obtained results point out that the transfer functions of hull sectional forces in case of 
resonant vibration (springing) are much higher than in resonant ship motion. 
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12. Appendix A – consistent finite element properties (frequency dependent 
formulation) 

The stiffness and mass matrices, Eqs. (37), are expressed with one or two integrals, which 
can be classified in three different types. For general notation of shape functions 

  ,      1,2,3, 4;    0,1,2,3k
i ikg g Ǐ i k   , (A1) 

where ikq  are coefficients and /x l , one finds the solutions of integrals in the following 

form: 

 

       

   

   

0

0 0

0 0 1 0 0 1 2 0 1 1 0 2

0 3 1 2 2 1 3 0 1 3 2 2 3 1

, d d

1 1
                   

2 3
1 1
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1

                    +

l l
k k

ij ik jk i j ik jk

i j i j i j i j i j i j

i j i j i j i j i j i j i j

I g g g g x g Ǐ Ǐ x g

l g g g g g g g g g g g g

g g g g g g g g g g g g g g

 
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 2 3 3 2 3 3

1
6 7i j i j i jg g g g g g

  

 (A2) 
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       

 
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0 0
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2 2 2 3 3 2 3 3

dd
, d d

d d

1
                   

4 3 9
                    +

3 2 5

l l
j ki

ij ik jk ik jk

i j i j i j i j i j
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 (A3) 
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 
 (A4) 

Thus, the finite element properties can be written in the following systematic way suitable 
for coding. 
Stiffness matrices 

 

       
       
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k EI I d d GI I e e

k GI I d d
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 (A5) 

Mass matrices 
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Load vectors 
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 (A7) 

13. Appendix B – simplified finite element properties, from appendix A 
(frequency independent formulation) 

Stiffness matrices: 
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Mass matrices: 
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Stiffness ratios: 

 2 2,  .b w
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GA l GI l
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