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1. Introduction

Glaucoma is one of the principal causes of blindness in the world1. It is an illness which has
an asymptomatic form until advanced stages, thus early diagnosis represents an important
objective to achieve with the aim that people who present Glaucoma maintain the best visual
acuity throughout life, thereby improving their quality of life.
An Artificial Neural Network (ANN) is proposed for the diagnosis of Glaucoma. Automated
combination and analysis of information from structural and functional diagnostic techniques
were performed to improve Glaucoma detection in the clinic.
In our work we contribute the inclusion of Artificial Intelligence and neuronal networks in
the diverse systems of clinical exploration and autoperimetry and laser polarimetry, with the
objective of facilitating the adequate staging in a rapid and automatic way and thus to be able
to act in the most adequate manner possible.
Data from clinical examination, standard perimetry and analysis of the nerve fibers of the
retina with scanning laser polarimetry (NFAII;GDx) were integrated in a system of Artificial
Intelligence. Different tools in the diagnosis of Glaucoma by an automatic classification
system were explained based on ANN. In the present work an analysis of 106 eyes, in
accordance with the stage of glaucomatous illness was used to develop an ANN. Multilayer
perceptron was provided with the Levenberg-Marquardt method. The learning was carried
out with half of the data and with the training function of gradient descent w/momentum
backpropagation and was checked by the diagnosis of a Glaucoma expert ophthalmologist. A
correct classification of each eye in the corresponding stage of Glaucoma has been achieved.
Specificity and sensitivity are 100%. This method provides an efficient and accurate tool for
the diagnosis of Glaucoma in the stages of glaucomatous illness by means of AI techniques.

2. Clinical, structural and functional examination in Glaucoma

Glaucoma is one of the principal causes of blindness in the world. Glaucoma is an ocular
disease and it is the second leading cause of blindness worldwide and responsible for 20% of
blindness in Europe. Glaucoma is also an age related disease and has age-adjusted prevalence
of 1.55%, therefore the increase in elderly population in the world will increase the number of
patients with Glaucoma in the coming decades. This increase in patients with Glaucoma will
enlarge the socioeconomic cost associated to visual deficient diseases. Therefore efforts should

1 Research supported by Spanish project DESAFIOS10 TIN2009-14599-C03-01.
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2 Glaucoma book

be made to improve the diagnosis and treatment of this disease (European Glaucoma Society,
2008; Gordon et al., 2002; Huang & Chen, 2005; Quigley, 1985).
Glaucoma is an optic neuropathy characterized by progressive loss of retinal ganglion cells,
changes in the optic nerve head and associated visual field loss (Fig. 1). There are a variety
of risk factors for Glaucoma, the most important of which is intraocular pressure, IOP
(Quigley et al., 1994). Primary open angle Glaucoma has an adult onset, is usually bilateral,
and has no symptoms until late in the disease when patients lose their central vision. An
understanding of the etiology and anatomical changes associated with Glaucoma is critical
for early diagnosis of the disease and preserving sight (Song et al., 2005). Different studies
have shown that structural and functional techniques for detecting Glaucoma often identify
different Glaucoma patients when Glaucoma severity is not too advanced (Bowd et al., 2001;
Zangwill et al., 2001), and that combining structural and functional techniques can improve
Glaucoma detection (Caprioli, 1992; Mardin et al., 2006; Shah et al., 2006).
A variety of risk factors may predispose an individual to either the development of Glaucoma
or disease progression. The Ocular Hypertension Treatment Study (Gordon et al., 2002)
suggested that several factors predisposed patients who had ocular hypertension without
ophthalmoscopic or perimetric evidence of Glaucoma to develop Glaucoma. Patients who
were older, had a larger cup-disc ratio at the start of the trial, greater elevation of IOP, or
thinner corneas appeared to be more likely to develop Glaucoma. Pressure-independent
factors that may predict the onset of Glaucoma or ocular hypertension may include genetic
predisposition, altered optic-nerve microcirculation, systemic hypotension, race, or myopia
(Gordon et al., 2002).
Quigley and collaborators observed histological evidence that there is a substantial loss of
axons of the optic nerve before the first defects in the visual field appear (Quigley, 1985).
Other studies have found clinical evidence of this same fact (Quigley et al., 1989; Sommer
et al., 1991).
The functional studies performed today in clinical practice, fundamentally the conventional
computerized perimetry (static, threshold, white stimulus on white background), do not
appear to be optimal nor sufficiently sensitive to detect early functional damage in many
individuals (Fig. 2). A high number of ocular hyper tense subjects and suspect of Glaucoma
with normal standard visual fields present alterations of the visual function in other tests
(Johnson et al., 1993; Sample et al., 1993).

Fig. 1. Optic disc of a right and left eye from a patient with advanced glaucoma.
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Fig. 2. Example for standard automated perimetry: Humphrey field analyzer test.

The single most effective method of diagnosing Glaucoma, therefore, is evaluating the optic
nerve to determine if any injury has occurred. Direct examination of the optic nerve fibers
at the optic nerve is essential in the diagnosis of Glaucoma, but is another non sensitive
technique, in addition, normal eyes may have an optic nerve indistinguishable from those
of incipient stages of Glaucoma. Other exploratory techniques are objective and reliable to
detect Glaucoma before visual field loss, where search includes the technical photographic
study of the layer of the retinal nerve fiber.
Today there is almost total unanimity in that the structural changes in the fiber layer of the
retina and the neuro-retinal ring of the optic papilla precede the development of losses of
visual field and it is admitted that the demonstration of specific alterations in the nerve fiber
layer of the retina or in the papilla of the optic nerve allows the identification of a simple
chronic Glaucoma in the most incipient phase of its clinical evolution independently of the
ocular pressure and still in the absence of loss of visual field (Sharma et al., 2008; Tjon-Fo-Sang
et al., 1996; Uchida et al., 1996; Weinreb et al., 1995).
Until now, the most universally accepted finding to establish a definitive diagnosis of
Glaucoma was loss of visual field, but it is now considered that, even with more sophisticated
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techniques, it requires a significant loss of optic nerve fibers to document the visual field loss
(Sample et al., 1993). In Glaucoma optic neuropathy a progressive loss of retinal ganglion cells
occurs and consequently a decrease in thickness of retinal nerve fibers layer. It is known that
the decrease of these fibers begins up to five years before it functional damage established
with perimetry can be detected. Functional and structural injury in Glaucoma is present and
the measurements of changes in the optic nerve could be correlated with damage observed in
the visual field. The availability of devices to allow the analysis of the thickness of the fibers
layer is very important (Bowd et al., 2001; Shah et al., 2006).
As glaucomatous structural injury progresses, changes develop in the contour of the optic
nerve. These features of glaucomatous optic neuropathy include diffuse or focal thinning of
the neuroretinal rim, enlargement of the cup, notching, and/or excavation. Different methods
have been used to document the status of the optic nerve and retinal nerve fiber layer, RNFL
(Lin et al., 2007). The evaluation of the nerve fiber layer of the retina with photographic
techniques has shown to have technical limitations and the possibility of high frequencies
of false positives (Peli et al., 1986).
The direct exploration of the fibers by digital videoophthalmolgraphy of the peripapillar
area described by Caprioli (Caprioli, 1990; Caprioli & Miller, 1988; 1989; Caprioli et al.,
1989) was one of the first attempts to achieve an objective measure based on the digitalized
images of the Rodenstock analyser. From the images of the retina surface and of a plane
of reference in the retina surface itself the thickness of the RNFL is inferred. With this
procedure Caprioli himself described, for the first time, the typical pattern of “camelÕs
hump”. Among the inconveniences the necessity of the reference plane is outstanding, which
supposes the exigence that this be constant so that the measures of monitoring are valid since
they originated a great variability of the measures obtained. This variability, nonetheless,
is less than that of the measurements of the papilla structures performed in the comparative
study of Miller & Caprioli (1991), which though it limits its clinical applications, demonstrates
its utility.
Currently there are commercially available versions of optical imaging techniques (Figures
3 and 4): scanning laser polarimetry with variable corneal compensation (GDx VCC),
confocal scanning laser ophthalmoscopy (HRT II, Heidelberg Retina Tomograph), and optical
coherence tomography (Stratus OCT) to discriminate between healthy eyes and eyes with
glaucomatous visual field loss. The sensitivities at high specificities were similar among the
best parameters from each instrument (Medeiros et al., 2004).
Scanning laser polarimetry (SLP) is a technology used to assess the RNFL in order to detect
early glaucomatous damage. This technology has several potential advantages. Because
less biological variability is expected in the region of the RNFL than the optic-nerve head,
clinicians have the ability to define a narrower range of normal RNFL measurements. SLP has
another advantage, that of being independent of a reference plane. Therefore, the retardation
value that is measured by SLP refers to the RNFL and is not dependent upon measurements
of any other ocular region when considering change over a period of time (Medeiros et al.,
2004; Weinreb et al., 1995).
Laser polarimetry is a technology that uses a polarized laser diode as light source (780
nm). It is a confocal ellipsometric laser measuring a total delay of light reflected from the
retina and from these data determines the thickness of the RNFL (microns) point by point in
the peripapillary region. Currently apparatus is being presented as a novelty compared to
previous versions that can compensate corneal birefringence on an individual basis for each
patient (Zhou, 2006).
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Using Artificial Neural Networks to Identify Glaucoma Stages 5

Fig. 3. Analysis with laser polarimetry for the measurement of the thickness of the layer of
retinal nerve fibres using the NFA-II, GDX fibres analyser for a normal patient.

Scanning laser ophthalmoscopy. which is embodied in the Heidelberg Retinal Tomograph
(Heidelberg Instruments, Inc., Heidelberg, Germany), is a highly reproducible technology that
provides a means of obtaining objective measurements of optic-nerve topography. However,
this technology was not fundamentally designed to generate RNFL assessments and there are
limitations in relying on topography to detect glaucomatous progression (Bowd et al., 2002;
Zangwill et al., 2001).
Another technology that has recently been utilized for Glaucoma detection is optical
coherence tomocraphy, OCT (Fig. 5). OCT is a high resolution technology that generates
direct measurements of the retina and RNFL thickness with a high degree of test-retest
variability. However, few normative data for this technology exist at this time. OCT generates
a single optical slice through the peripapillary RNFL, which may provide less information
than a broad sampling of the entire RNFL profile provided by Scanning laser polarimetry
(Burgansky-Eliash et al., 2005; Ferreras et al., 2008; Huang & Chen, 2005; Lu et al., 2008;
Medeiros et al., 2005; 2004; Zangwill et al., 2001).
Glaucoma diagnosis is based on a range of normal measurements with the objective of finding
eyes that are outside what is considered normal. There are two challenges for physicians when
using structural testing. The first is diagnosis of the disease and the second is monitoring the
known disease for progression.
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Fig. 4. Analysis with laser polarimetry for the measurement of the thickness of the layer of
retinal nerve fibres using the NFA-II, GDX fibres analyser for a glaucomatous patient with
stage 5 Glaucoma.

3. Diagnosis of Glaucoma by automatic systems

In ophthalmology applications of ANN have been used for the interpretation of the visual
field for recognition and evaluation of the cell population of corneal endothelium (Ruggeri
& Pajaro, 2002) and recognition of retinographs and angiofluorescent graphs in diabetic
retinopathy (Gardner et al., 1996; Sivakumar et al., 2005).
Goldbaum et al. (1994) used the models of neuronal networks of multi-layer perceptron
trained by retropropagation in the interpretation and classification of visual fields.
The methods of perimetric examination have contributed indices to analyze the visual field,
but in no case was a clinical diagnosis included. The expert systems were the following step
and were formed by programs specially designed to solve problems and to give diagnoses,
taking into account the human experience accumulated. Based on the curve of accumulated
defect, the indices and the influence of the false positives and negatives on the indices, they
have been able to carry out classifications of the normal, doubtful or pathological visual fields
in different degrees (Antón et al., 1995).
Other more complete programs integrated the analysis of the family and personal antecedents,
the intraocular pressure, the papilla excavation indice and the state of the visual field, to
similarly emit a clinical judgment.
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Using Artificial Neural Networks to Identify Glaucoma Stages 7

Fig. 5. Optical coherence tomography (OCT).

For the classification and diagnosis of the defects in the visual field a problem of
discrimination into diagnostic categories has been proposed in accordance with the
distribution and profundity of the lesions and, therefore, it is necessary to know the
characteristics or patterns that allow the classification of each case. Moreover, the method
chosen must be capable of treating qualitative and quantitative variables and perform with
asymmetric variables of distribution or that are very distanced from a normal distribution.
With these premises the list of usable procedures have been discriminant with logistic
regression and the neuronal networks.
Antón et al. (1997) used the ANN for the interpretation of the incipient perimetric lesions
produced in glaucoma and conclude that both the networks and the logistic regression
are capable of differentiating between the incipient perimetric lesions produced by the
glaucoma and those produced by other illnesses with important precision. They add that
if these methods were applied to the PALOC, or another perimetric test, more sensitive to
glaucomatous functional lesions than conventional perimetry, it would be a great aid for the
identification and interpretation of the defects produced by this neuropathy.
Brigatti et al. (1996) also use the ANN to classify patients into normal or glaucomatous. They
include automated data of the visual field, such as average defects, variances of corrected
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losses and fluctuation in the short term, and structural data such as radius of excavation,
volume of disc and thickness of the nerve fiber layer. On including the data for the visual
field and the structural data the results are better than when the data are used separately. The
sensitivity with the data together was 90% and the specificity 84%. Only with the structural
data a sensitivity of 87% and specificity of 56% were achieved and the results were 84% and
86% respectively if only the functional data were trained.
Recently, the Ocular Hypertension Treatment Study has shown that approximately 50% of
individuals who convert to glaucomatous optic neuropathy do not have detectable changes in
standard automated perimetry. The results suggest that structural change precedes functional
change. Therefore, a significant application of a different type of technology would provide a
means of establishing a diagnosis of glaucoma prior to any detectable functional abnormalities
in vision.
Artificial neural networks were reported to be able to differentiate between glaucoma and
normal visual field status at least as well as trained readers (Bengtsson et al., 2005; Goldbaum
et al., 1994; Lietman et al., 1999).
Artificial neural networks have been trained on different optic nerve head imaging analyzer
parameters to classify eyes as glaucomatous or healthy in accordance with confocal scanning
laser ophthalmoscopy (Brigatti et al., 1996; Uchida et al., 1996). Using this method, the neural
network classifier is trained to detect a relationship between input (parameters of structural
study) and a predefined gold-standard diagnosis by comparing its prediction with the labeled
diagnosis and by learning from its mistakes.
Neural network techniques differ from basic statistical techniques such as linear discriminant
function because they can adapt to the distribution of the data rather than assume a predefined
distribution. The success of statistical or neural network classification methods is most often
measured by reporting areas under the receiver operating characteristic curve or by reporting
sensitivity at different specificities.
It was also reported that machine learning classifiers discriminate better between normal and
glaucomatous fields than do global visual field indices (Goldbaum et al., 2002; Lietman et al.,
1999). Global visual field indices are far from ideal as diagnostic tools, however, because they
condense all threshold data into one number, resulting in loss of valuable spatial information,
and visual field indices are not particularly sensitive to early localized glaucomatous visual
field loss (Asman et al., 1992; Chauhan et al., 1989).
Disc topography data have also been added to visual field data to improve the diagnostic
ability of ANNs (Brigatti et al., 1996).
Lietman et al. (1999) has determined a feed-forward neural network with a single hidden
layer and was trained to recognize visual field defects previously collected in a longitudinal
follow-up glaucoma study, and then tested on fields taken from the same study but not used
in the training. The receiver operating characteristics of the network were then compared with
the previously determined performance of other algorithms on the same data set.
ANNs have been suggested as tools for interpretation of automated visual field test results in
patients with glaucoma (Goldbaum et al., 1994; Lietman et al., 1999). Other types of machine
learning classifiers, such as support vector machines or committee machines, have also been
reported to interpret visual fields adequately (Gordon et al., 2002).
Using the optic disc topography parameters of the Heidelberg Retina Tomograph
neural network techniques can improve differentiation between glaucomatous and
non-glaucomatous eyes. Trained neural networks, with global and regional Heidelberg
Retina Tomograph parameters used as input, improve on previously proposed parameters for
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Using Artificial Neural Networks to Identify Glaucoma Stages 9

discriminating between glaucomatous and nonglaucomatous eyes (AIGS, 2004; Bowd et al.,
2002; 2001; 2004).
Neural networks and other machine classifiers seem to have a great potential to become a
useful clinical tool in the diagnosis of glaucomatous visual field loss, and may be of value
in the study of the performance of a range of types of data inputs with different machine
classifiers.

4. Developing an artificial neural network

4.1 Neural networks

Rumelhart & McClelland (1986) presented the backpropagation learning algorithm in a year that
can be considered the cornerstone of the ANNs recent history. ANN models have been
extensively studied and applied in recent years in the hope of reaching human performance in
different fields, including, for instance, automatic speech recognition, image processing, and
biomedical applications (Arbib, 1995; Azuaje et al., 1999; Chan et al., 2002; Hernández Galilea
et al., 2007; Lippmann & Kukolich, 1995; Lippmann & Shahian, 1997; Papalolukas et al.,
2002; Peña Reyes & Sipper, 2000; Santos-García, 1990; Santos-García et al., 2004; Tu et al.,
1998; Villar-Gómez & Santos-García, 1994; Widrow & Lehr, 1990). Actually, neurocomputing
is blossoming almost daily in both theoretical and practical approaches. ANNs are
generally more robust and outperform other computational tools in solving problems such
as: classification, clustering, modeling, forecasting, optimization and association.
There are several models of neural nets according to their relevant features: topology,
type of learning algorithm, degree of learning supervision, and so on. Classical ANN
models are: Hopfield networks, Carpenter-Grossberg networks (Adaptative resonance
theory), Kohonen networks (self-organizing feature maps), and backpropagation multilayer
perceptron networks (Lippmann, 1987).
ANNs are empirical models in nature, however they obtain accurate and robust solutions
for more or less precisely formulated problems and for complex phenomena that are only
understood through experimental data.

4.2 Multilayer perceptron networks

A neural network is defined in mathematical terms as a graph with the following properties:
(1) each node i, called neuron (Fig. 6), is associated with a state variable xi storing its current
output; (2) each junction between two neurons i and k, called synapse or link, is associated
with a real weight ωik; (3) a real threshold θi, called activation threshold, is associated with each
neuron i; (4) a transfer function fi[nk, ωik, θi, (k �= i)] is defined for each neuron, and determines
the activation degree of the neuron as a function of its threshold, the weights of the input
junctions and the outputs nk of the neurons connected to its input synapses. In our case, the
transfer function has the form f (∑k ωiknk − θi), where f (x) is a sigmoidal function, defined
by f (x) = 1/(1 + e(ν−x)), which corresponds to the continuous and derivable generalization
of the step function (Hecht-Nielsen, 1990; Lippmann, 1987; Santos-García et al., 2008).
Multilayer perceptrons are networks with one or more layers of nodes between the layer of
input units and the layer of output nodes; Fig. 7 shows a three-layer perceptron. These layers
contain hidden units or nodes which obtain their input from the previous layer and output
their results to the next layer, to both of which they are fully-connected. Nodes within each
layer are not connected and have the same transfer function.
The strength of the multilayer perceptron originates from the use of non-linear sigmoidal
functions in the nodes. If the nodes were linear elements, then monolayer networks with
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appropriately selected weights could repeat the calculations carried out by a multilayer
network (Widrow & Sterns, 1985). A multilayer perceptron with a non-linear step function
and a hidden layer can solve problems in which the decision regions are open or closed convex
regions. In the case of perceptrons with one hidden layer, problems with arbitrary decision
regions can be solved, but more complex regions will need a greater number of nodes in the
network (Hornik et al., 1995; Ilachinski, 2001).
Fundamental characteristics of a multilayer perceptron network are: (i) it is an adaptative
method which permits the carrying out of non-linear statistics; (ii) fitting is made by a gradient
method using the training data; (iii) a multilayer perceptron with three layers with step
transference functions can solve any problem with arbitrary decision regions; (iv) noise in the
patterns, the same as in the statistical fitting, does not impede their classification; (v) training
of the connection weights must be very great; (vi) backpropagation algorithm usually finds
the global minimum of the error function.

4.3 The backpropagation algorithm

The accuracy of the multilayer perceptron depends basically on the correct weights between
nodes. The backpropagation training algorithm is an algorithm for adjusting those weights
which uses a gradient descent method to minimize the mean quadratic error between the
actual outputs of the perceptron and the desired outputs (Lippmann, 1987).
Let xk

ij and yk
ij be the input and output, respectively, for the i pattern of node j of layer k. Let

ωk
ij be the weight of the connection of neuron j of layer k with neuron i of the previous layer.

By definition of the perceptron by layers, the following relationships are fulfilled

xk
ij = ∑

l

ωk
ljy

k−1
il ; yk

ij = f (xk
ij)

The mean quadratic error function between the real output of the perceptron and the desired
output, for a particular pattern i, is defined as Ei =

1
2 ∑j,k(y

k
ij − dk

ij)
2 , where dk

ij is the desired
output for pattern i of node j of layer k. In order to minimize the error function we use
the descending gradient function, considering the error function Ep and the weight sequence
ωk

ij(t), started randomly at time t = 0, and adapted to successive discrete time intervals. We

then have ωk
ij(t + 1) = ωk

ij(t)− η ∂El/∂ωk
ij(t), where η is the so-called learning rate constant.

We can conclude that wij(t + 1) = wij(t) + ηδjx
′
i , where x′i is the output of neuron i, and δj is

an error term for node j. For output neurons, it must be δj = yj(1 − yj)(dj − yj) . For a hidden
node j, δj = x′j(1 − x′j)∑k δkwjk , where k ranges over all neurons in the layers above neuron j.
Internal node thresholds are adapted in a similar manner.

Fig. 6. Behaviour of an artificial neuron.
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Fig. 7. A fully-connected, three-layer feed-forward perceptron neural network.

The high performance usually achieved with this backpropagation algorithm is rather
surprising if we take into account the fact that the gradient method, of which the
backpropagation training algorithm is a generalization, can find a local minimum of the error
function instead of the desired global minimum. Some ideas for improving performance and
reducing the appearance of local minimums are, for example, the addition of new nodes in
the hidden layers, the lowering of the gain term used for the adaptation of weights and, above
all, the initial training with a different set of random weights.

4.4 Matlab and Toolbox Neural Networks

Matlab (The MathWorks Inc, Natick, MA) is a high-level technical computing language and
interactive environment for algorithm development, data visualization, data analysis, and
numeric computation. It can be used in a wide range of applications, including signal
and image processing, and computational biology. In an easily used environment Matlab
integrates numerical analysis, the computation of matrices, the processing of signals and
graphics, where the problems and solutions are expressed in a similar way to how they are
expressed mathematically, avoiding the traditional programming. Matlab is an interactive
system whose basic element of data is the matrix, which does not require to be dimensioned.
The Matlab language is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming features. It allows
both programming in the small to rapidly create quick programs you do not intend to reuse. You
can also do programming in the large to create complex application programs intended for reuse.
Neural Network Toolbox provides tools for designing, implementing, visualizing, and
simulating neural networks. Neural Network Toolbox supports feedforward networks,
radial basis networks, dynamic networks, self-organizing maps, and other proven network
paradigms.
There are other work environments with neuronal networks. Some of them are Neural
Works Professional II (Neural-Ware Inc., Pittsburgh, PA), SAS Enterprise Miner Software (SAS
Institute Inc., Cary, NC), and Neural Connection (SPSS Inc., Chicago, IL).

5. ANN as a tool to identifier Glaucoma stages

For the diagnosis of Glaucoma, we propose a system of Artificial Intelligence that employs
ANNs and integrates, jointly, the analysis of the nerve fibers of the retina from the study with
scanning laser polarimetry (NFAII;GDx), perimetry and clinical data.
The present work shows an analysis of 106 eyes of 53 patients, in accordance with the stage
of glaucomatous illness in which each eye was found. The groups defined include stage 0,
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Fig. 8. Perimetry of a left eye of a normal patient (left image). Perimetry of a left eye of a
patient (right image).

which corresponds to normal eyes; stage 1, for ocular hypertension; 2, for early Glaucoma;
3, for established Glaucoma; 4, for advanced Glaucoma and 5, for terminal Glaucoma. The
developed ANN is a 16–30–1 multilayer perceptron provided with the Levenberg-Marquardt
method (Franco Suárez-Bárcena et al., 2000; Lippmann, 1987; Widrow & Lehr, 1990).

5.1 Stages to classify

To classify the eyes in groups, besides studying IOP (Goldmann tonometry) and the
ophthalmoscopic study of the optic disc by means of biometry using Volk aspheric lens
(Quigley et al., 1994) Dicon TKS 4000 autoperimetry (Fig. 8) has been used for the analysis
of the visual field and laser polarimetry for the measurement of the thickness of the layer of
retinal nerve fibers using the NFA-II, GDX fiber analyser (Figures 3 and 4).
A classification into different groups was performed taking into account each eye of each
patient separately. Thus, and taking into account the classification proposed by Caprioli
(1992):

• Stage 0 (normal eye): Within this group were included patients whose IOP was lower than
21 mmHg and there was no effect on papilla nor the visual field nor of the parameters of
the analyzer of the RNFL.

• Stage 1 (ocular hypertension): Formed by all the eyes that only presented an IOP equal to
or greater than 21mmHg and both the exploration and the functional tests and the analysis
of the RNFL were within normality.

• Stage 2 (early Glaucoma): They were eyes that presented an altered IOP and some of the
following diagnostic data: effect on the papilla, incipient alteration of the visual field,
decrease in the number of retinal nerve fibers.
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• Stage 3 (established Glaucoma): Those eyes had IOP equal to or greater than 21 mmHg
with involvement of the papilla, from moderate to significant alteration of the visual field
as well as alteration of the RNFL analyzer parameters.

• Stage 4 (advanced Glaucoma): Those eyes that presented an IOP superior to 21 mmHg
and an important effect, ophthalmoscopically demonstrable, on the papilla, an important
alteration of the visual field and a significant alteration of the parameters of the analyser
of RNFL.

• Stage 5 (terminal Glaucoma): If as well as the alterations in the IOP (equal to or greater
than 21mmHg) there was papilla excavation with atrophy, the visual field with alterations
proper to the terminal stage and alteration of the parameters of the analysis of the RNFL.

Table 1 shows a basic descriptive statistic by stage of the illness for the variables of study:
Chamber, IOP, Papilla and Mean. These qualitative and quantitative variables are taken from
the history and from the visual field of the individual. The intervals of confidence of the mean
have been considered with a coefficient of confidence of 95%.

5.2 ANN variables

The input neurons receive the values of 16 input variables and the output neuron obtains the
value of the output variable that corresponds with the stage of the Glaucoma for each eye.
The definition of the 16 variables of input of the neuronal network consists of:

• AGE. Age of the patient.

• CHAMBER. Depth of the anterior chamber of the ocular globe.

• IOP. Intraocular pressure—expressed in millimetres of mercury.

• OPTIC DISC. Cup-to-disc ratio. If the result was less than 0.4, 0 was assigned; if between
0.4–0.5, 1 was assigned; if between 0.5–0.6, 2 was assigned and if between 0.7–0.9, 3 was
assigned.

CHAMBER IOP PAPILA MEDIA
Depth of the Intraocular Evaluation of Total mean of

chamber pressure the papilla (E/P) isopters of
(category) (mmHg) (category) 15◦, 20◦, 25◦, 30◦

STAGE 0 2, 00 ± 0, 00 20, 00 ± 0, 00 0, 00 ± 0, 00 42, 61 ± 0, 83
(normal eye)
STAGE 1 2, 00 ± 0, 36 22, 29 ± 0, 70 0, 00 ± 0, 00 41, 70 ± 1, 85
(ocular hypertension)
STAGE 2 2, 22 ± 0, 51 22, 55 ± 1, 34 0, 11 ± 0, 25 41, 61 ± 1, 28
(early Glaucoma)
STAGE 3 2, 13 ± 0, 25 23, 96 ± 0, 89 0, 93 ± 0, 10 40, 39 ± 1, 32
(established Glaucoma)
STAGE 4 1, 92 ± 0, 39 22, 76 ± 2, 62 1, 61 ± 0, 31 41, 17 ± 0, 99
(advanced Glaucoma)
STAGE 5 1, 93 ± 0, 21 25, 21 ± 2, 61 1, 54 ± 0, 31 39, 07 ± 2, 80
(terminal Glaucoma)
UNIVERSE 2, 02 ± 0, 12 23, 63 ± 0, 89 0, 94 ± 0, 16 40, 49 ± 1, 00

Table 1. Basic descriptive statistics by stage of illness for the variables of study: Chamber,
IOP, Papilla and Mean. The intervals of confidence of the mean with coefficient of confidence
of 95%.
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• FIXATION. Fixation losses by the patient from all those performed during the
autoperimetry testing of visual field examination.

• NS, TS, NI, TI. Average of the values of the visual field in the superior nasal, superior
temporal, inferior nasal and inferior temporal quadrant, respectively.

• MEAN. Mean of all the values of the visual field.

• NORMAL DEVIATION SUPERIOR, INFERIOR, TEMPORAL, NASAL. Difference of
the thickness of the nerve fibre layer employing the GDX program in the superior, inferior,
temporal and nasal quadrant, respectively, for our patient compared with the normal
patient of the same race and age.

• NUMBER. Experimental number extracted from all the values on acquiring an image
employing NFA-II, GDX.

• MEAN THICKNESS. Mean of the thickness of all the pixels of the image; utilising the
65,536 points in an image considered valid.

The unaffected patients present a constant value in the variable of depth of the anterior
chamber. The Mann-Whitney test establishes that there are no significant differences between
the stage of illness groups for this variable. The graph of error for the variable chamber reveals
that the different trustworthiness intervals of the affected patients overlap.

5.3 ANN results

The used ANN is a multilayer perceptron with backpropagation with a hidden layer provided
with the Levenberg-Marquardt method. The input layer consists of 16 neurons, the hidden
layer has 30 neurons and the output layer is a single neuron. The single neuron output
layer with a logistic transfer function provided the network output: glaucomatous stage
of the eye. The implementation of the ANN model has been carried out by means of the
scientific computation platform R2010 Matlab, using the toolbox of Neural Networks (The
MathWorks Inc, Natick, MA). Once the model had been defined, half the data were randomly
employed to train the ANN. The learning was carried out with half of the data and with the
training function of gradient descent w/momentum backpropagation and was checked by the
diagnosis of an ophthalmologist, expert in glaucoma. The evolution of the process of learning
is shown in Figure 9.
The model of neuronal network has been evaluated from the other half of the data. A 100%
correct classification of each eye in the corresponding stage of glaucoma has been achieved.
Therefore, the specificity and sensitivity are 100%.
With regard to the variable IOP, the unaffected patients take a constant value. There is
a significant difference between the group of patients without illness and those affected
regarding the variable IOP (p=0,001), according to the Mann-Whitney test. The graph of error
for the variable IOP (Fig. 10) shows that the different intervals of confidence of the affected
patients are overlapped among themselves.
The unaffected and ocular hypertense patients, which is to say, belonging to groups 0 and 1
do not present variation in the variable of relation excavation/papilla. There is a significant
difference between the groups of subjects without illness and those affected with regard to the
variable PAPILLA (p=0,004) according to the Mann-Whitney test.
Regarding the variable of mean, which represents the perimetric functional capacity and
corresponds to the mean of all the values obtained from the visual field by autoperimetry
there is a significant difference between the group of subjects without illness and the affected
patients with respect to the mean variable (p=0,022), according to the Mann-Whitney test.
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Fig. 9. Training evolution of our proposed ANN model.

Fig. 10. Graph of error of the variable IOP referring to the Intraocular Pressure in mmHg for
each of the groups (0,00 Stage 0 (normal eye): IOP was inferior to 21 mmHg; 1,00 Stage1
(ocular hypertension ≥ 21 mmHg; 2,00 Stage 2 (early Glaucoma); 3,00 Stage 3 (established
Glaucoma); 4,00 Stage 4 (advanced Glaucoma); 5,00 Stage 5 (terminal Glaucoma)) of illness.
The confidence intervals of the mean of coefficient of confidence of 95%.

6. Discussion

Glaucoma constitutes a pathology of multifactorial etiology, thus establishing an objective
alteration in the different diagnostic tests represents the principal element for the performance
of a certain diagnosis of glaucoma. This fact is especially transcendent in those situations in
which the possible precocious diagnosis entails a therapeutic action which in a fundamental
way affects the prognosis of the illness.
At present no diagnostic test can be considered alone and constitute in itself a diagnostic
criterion. It is accepted that IOP is a risk factor, without being considered a specific and
discriminatory element of glaucoma, in addition, when the term of normotensional or low
pressure glaucoma has been established to define a variant in which the glaucomatous
neuropathy takes place without the participation of an elevated pressure. Nonetheless,
it continues to represent an objective clinical parameter and highly reproducible, clearly
correlated with the development of the illness, being, moreover, one of the factors of risk
which can be medically and surgically acted upon.
It is evident that in spite of the increase of specificity and sensitivity of the diagnostic
tests which are applied to glaucoma, such as computerised perimetry or the analysis of the
nerve fibers of the retina, clinical judgment persists as the primordial element, based on the
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phenotypic characteristics of the patient, the clinical signs and monitoring, all performed by
an expert evaluator in glaucoma.
With regard to the clinical significance, the most relevant datum of the exploration in
glaucoma is the ophthalmoscopic evaluation of the papilla (Sommer et al., 1991). It is simple
for an ophthalmologist to recognize a glaucomatous alteration of the papilla in the case of
terminal (G4) or advanced (G5) glaucoma and even, in its case, to discriminate the papilla
alteration for the group of established glaucoma (G3). Nevertheless, incipient alterations
entail a greater difficulty in discrimination.
The cup-to-disc ratio has been considered a valid parameter to discriminate between normal
and glaucomatous subjects as well as to quantify the progress of the disease. At present,
however, another series of findings are included that complete the clinical evaluation, as are
the disc haemorrhages in splinter, the presence of optic head notch, more frequent on the
temporal side. This last has been considered as a relatively specific parameter of incipient
glaucomatous damage (Fingeret et al., 2005).
The structural alterations produced in glaucoma can be determined through the study of
clinical signs and the ophthalmic examination of the papilla. Nonetheless, the functional
alterations are more precocious. These alterations are demonstrated in the study of the visual
field which contributes the translation of the damage of ganglion cells of the retina in the
context of glaucomatous illness.
We therefore consider that even when the mean functional capacity is not the only parameter
to be evaluated it results, in our study to be a relatively non-specific datum as it is unable to
differentiate between the different groups in accordance with the stages of the glaucomatous
illness. Nevertheless, and even when the criteria of selection were sufficient to not include
defects of refraction, opacities of lens or artefacts, due to other pathologies, this fact has not
influenced, in a fundamental manner, the results of the autoperimetry.
The variability of the perimetry as an exploratory method, as well as the lack of
reproducibility, is one of its principal inconveniences. Perhaps the most important is that
it is a subjective test that, moreover, depends on the training and collaboration of the patient.
This fact is even more important in the present forms of perimetry whose test is of greater
complexity than that of the conventional one (Racette et al., 2008; Sakata et al., 2007).
Autoperimetry is a very simplified method regarding training of the patient and monitoring
of the test, allowing its management by unqualified personnel. Moreover, it is performed in a
short period of time. The interpretation of the field is relatively simple and comparable with
conventional perimetries, using a more simple series of algorithms, they cannot be compared
with the more diffused standards of the computerized perimeters, nonetheless permit a rapid
interpretation.
The evaluation of the campimetric defects, however, are not exclusively based on the
quantitative results, but also on the qualitative characteristics, such as the location, shape
and extension of the scotomas. The diagnostic efficiency is greater when the indexes that
incorporate these characteristics are considered (Sommer et al., 1991).
The incipient lesions do not present a high specificity, thus the interpretation of a visual
field lacks objectivity and is based both on the clinical experience from which the results are
analysed and from the evaluation of the contralateral eye and the performance of the test on
more occasions.
For all these reasons the use of a system of Artificial Intelligence has been proposed so
that analysing the parameters obtained in the perimetry such as the indexes and spatial
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considerations it will be possible to produce a diagnosis (Burgansky-Eliash et al., 2005; Henson
et al., 1997; Huang & Chen, 2005).
Diverse authors have developed neuronal networks and confirmed their utility in the
differentiation and spatial classification of the perimetric defects, after training the neuronal
network and an index of specificity and sensitivity of over 80% has been established in the
different studies (Antón et al., 1997; Henson et al., 1997).
In our study, and commencing from the efficacy of the systems of neuronal networks applied
to the recognition of the visual fields in glaucomatous pathology we have performed the
design of a neuronal network with the objective of, employing the great quantity of indexes,
parameters, variables and algorithms derived from the autoperimetry and the analysis of the
CNFR by laser polarimetry, being able to carry out an assignation of patients in the diverse
subgroups of evolution of the primary glaucoma of open angle.
At present the clinical exploration does not contribute sufficient data to produce a diagnosis
or establish the adequate stage of evolution. Equally it is not possible to differentiate among
the group of ocular hypertension Those who should be treated, since later they develop a
glaucoma. This possibility of discrimination at present settles in an essential manner, in
functional tests like perimetry or in the objective quantification of the structural damage of the
optic nerve. Similarly, none of these tests can be considered in an isolated fashion, as we have
mentioned previously. Even when both possess a high index of correlation it is not possible
to forego the data from clinical exploration to perform a certain diagnosis. In addition, in the
interpretation of the clinical and quantitative data it is necessary in all cases that an expert
participates which in many cases is found in the context of the exploration (Bowd et al., 2002;
2005; Goldbaum et al., 2005; Shah et al., 2006; Zhu et al., 2010).
In the neuronal network designed for our study a total of 16 variables of work were
used which formed the inputs for the neuronal network, establishing the diagnosis as the
only variable of output of the model. The layer of neurons of input was composed by
indices of polarimetry together with parameters from the autoperimetry and those derived
from the clinical exploration. The occult/hidden layer was composed by thirty nodes or
neurons and a single output to constitute a neuronal network of multilayer perceptron with
retropropagation.
For the function of training the data of 50% of the patients of our data base were used
including normal and glaucomatous patients in diverse stages at random, achieving with a
total of 8000 cycles an adequate model to achieve the threshold of mean error of the neuronal
network. The performance of classification of the designed network was validated with the
remainder of the data of the other 50% of the patients of the database.
We have been able to prove that the assignation to each of the subgroups of evolution of
glaucoma was 100% achieving a specificity and sensitivity of 100%. Mutlukan & Keating
(1994) achieves similar percentages with a neuronal network of retropropagation designed
for the identification of visual fields with three layers with a hidden layer of 40 nodes.
The updating and improvement of technological tools of systems like Bayesian machine
learning (Boden et al., 2007; Bowd et al., 2008) or the neuronal networks where the
interpretation of structural methods such as optical coherence tomography or GDx
polarimetry and functional ones such as standard automated perimetry can be combined will
increase the yield in the detection of glaucoma and its progression.
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