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1. Introduction 

Although SONAR systems have been in practical use since the turn of the 20th century, the 

Titanic tragedy in Apr. 1912 has become an inflection point for SONAR system and 

development of its derivations in which SONAR system can be considered as one of the 

most developed engineering systems. SONAR systems development during especially 

World War II is undeniable in terms of applications of SONAR systems, SONAR signal 

processing either in active or in passive systems, however, signal processing in the new area 

of underwater wireless networks are mainly based on academic research around the world. 

The main research subjects have concerned with detection/ classification, tracking and 

telecommunication tasks. In this chapter, we discuss research in signal processing for 

SONAR systems and underwater wireless networks including classic and modern 

approaches based on intelligent methods. Each method has been briefly discussed as more 

details can be found through the references at the end.  

Detection/Classification task of SONAR signals, especially in the passive SONAR system, is 

one of the most challenging areas in this field. In passive SONAR system, received noises 

with SNR as low as -15dB are very common at the receiver (Urick 1983). Added 

reverberation and scattering, which are similar to phenomena as clutter in RADAR are 

responsible for complexity in this task of a SONAR system. There are differences between 

RADAR and SONAR signal processing. The challenge of SONAR signal processing is to 

detect/classify targets with very weak noises whereas the challenge of RADAR signal 

processing is to discriminate Target-of-Interest (ToI) among many uninteresting tracks. In 

signal processing literature, SONAR signal can be classified to wide range of applications 

according to the SONAR mode, i.e. active or passive SONAR system, and the nature of 

received signal, i.e. radiated acoustic noise of marine vessels, received active SONAR ping’s 

echo from ships, bats’ echo or marine mammals’ sound, and so on. The passive SONAR 
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plays an important role in the modern naval battles. In addition to the long range detection, 

this mode of SONAR systems works covertly so the underwater surveillance systems utilize 

these two advantages of passive SONAR to stealthily monitor the surface and sub-surface 

marine vessels. The “class” of marine vessels is defined according to the application of 

surveillance system for example surface and sub. For decades, the trained people classified 

and recognized the class of marine vessels by listening to their radiated noise. Substituting 

these people with intelligent systems for classifying marine vessels based on their acoustic 

radiated noise is one of the hot topics in signal processing and artificial intelligence. In this 

chapter, we will present a brief introduction on radiated and background noise in the sea. In 

addition, we present a literature review and some case studies.  

One of the best techniques in the classic era was Matched-Field Processing (MFP), which 

was originally developed for SONAR signal processing but has subsequently been 

transitioned to the RADAR applications. Another method based on Hidden Markov Model 

(HMM), inspired from speech processing (Becchetti 1999) researches, was exploited to 

recognize the noises of desired targets. The main idea was determining similarity among 

detected signals, which were enhanced during processing and recoded noises of desired 

targets as data. Approaches using the classic methods were eligible to cooperate with 

human experts to detect/ classify the targets. The well-known classic methods are explained 

in this chapter. Nevertheless, we show that the classic methods did not have capability of 

consistency especially when the new techniques to silence targets were exploited as used for 

atomic submarines. On the other hand, Artificial Neural Networks (ANN) attracted several 

interests again in academic/industrial areas around the world after landmark article of 

Hopfield (Hopfield 1982), and Rumelhart and McClelland book on Parallel Distributed 

Processing (Rumelhart 1987). In the decade of 90th, research on intelligent processing of 

SONAR signals has been increasingly grown. We will discuss research headlines on 

intelligent processing of SONAR signals in the past two decades, which we named as 

modern methods. We considered two different types of neural networks and their 

expansions for SONAR signal processing. 

Although intelligent methods outperformed classic methods in SONAR signal processing 

using the same data, they need to large amount of real data for learning the artificial neural 

networks, thus a considerable number of research papers are based on simulations of 

SONAR signals and environments. In addition, new trends on mixing classic and modern 

methods have been introduced. In fact, mixed methods strengthen advantages of each 

approach and reduce their disadvantages. For instance, the hybrid method of HMM/ANN 

models has produced significant results in SONAR signal processing in which considerable 

research papers have been published in this area. We will also explain some robust 

similarity measure named Hausdorff Similarity Measure (HSM), which can be exploited in 

both classic and modern methods for detection/ classification task.  

Target tracking as another important part of SONAR systems will be discussed. In a target 

tracking problem, the tracker sequentially estimates the target parameters of interest based 

on the sensor observations. The application of target tracking is in variety of scientific and 

engineering including SONAR, RADAR, biomedical imaging, computer vision, etc. In an 

active SONAR system, a transmitter sends signals, or pings, in the surveillance region, and 

receivers look for the return signals. In a passive SONAR system, the receiver collects the 

incoming signals with power greater than a preset threshold. In both active and passive 
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SONAR systems, the measured signals, known as contacts, are reflected either from targets 

or from other undesired sources. In the latter case, the measured signal is known as a false 

alarm or clutter as mentioned before. In a SONAR target tracking system, the existence of 

clutter measures, nonlinear relation between the observation signal and the target 

parameters, and low detectable target signals add more uncertainty in the tracking system 

and must be addressed by the tracker. 

Finally, in the last section of the chapter, one application of signal processing methods for 

underwater wireless networks including wireless telecommunication networks have been 

explained. Since, enhanced Digital Signal Processor (DSP) hardware modules are needed for 

modems of underwater wireless networks, fast, robust and reliable methods have been 

exploited to implement such hardware. The new area of security in underwater wireless 

networks will be discussed at the end of the chapter. 

1.1 The literature review 

Some studies on this special topic of SONAR systems use real data of passive SONAR to 

evaluate the performance of their suggested system while the SONAR data acquisition is a 

time and money consuming project, so most of works use the simulated data. The selection 

of discriminating features and classifiers are two important issues, as well. Implementation 

issues for HMM can be find in (Becchetti 1999) which implementation issues of Markov 

Chains have been also considered. To develop a sensor-adaptive Autonomous Underwater 

Vehicle (AUV) technology specifically directed toward rapid environmental assessment and 

mine countermeasures in coastal environments a low-frequency SONAR system has been 

introduced in Generic Ocean Array Technology Sonar (GOATS) joint research program at 

MIT (Eickstedt 2003). 

The discriminating features introduced in (Lourens 1988) are the locations of poles of the 

second order Autoregressive (AR) model. These are used for classifying the noises of three 

propulsion systems (High speed diesel, Low speed diesel and Turbine). The authors in 

(Rajagopal 1990) defined four classes of marine vessels. These classes can be recognized by 

the vessels speed, the blade rate of propeller, the location of tonal components of machinery, 

the gear noise, the injector noise and the low frequency radiation from hull of marine 

vessels. All of these features could be extracted from Power Spectral Density (PSD) (Stoica 

2005) of radiated noise.  

The algorithm suggested in (Li 1995) uses six parameters extracted from power spectrum. In 

this method, a standard feature vector is obtained for each category of ships. Then, the 

weighted distance between each standard vector and the extracted feature vector from test 

data is calculated. This distance determines the category to which the test data belongs. 

There are nine unknown parameters in the feature extraction process and the weighted 

distance calculation that their values must be selected. Nothing is suggested about selection 

of these parameters in (Li 1995). So, the implementation of this method is difficult or even 

impossible.  

The discriminating features suggested in (Soares-Filho 2000) are based on power spectral 

density of radiated noise of four different classes of ships. In this paper the background 

noise has been estimated using Two-Pass Split-Window (TPSW) (Nielsen 1991) and the 

tonal components were extracted by subtracting the ambient noise from total power spectral 

density.  
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The neural network is the suggested classifier in this paper. The suggested method in (Ward 
2000) is based on the Short Time Fourier Transform (STFT) as features and Finite Impulse 
Response Neural Network (FIRNN) as classifier. For performance evaluation, the authors 
have utilized the recorded data by Defense Research Establishment Atlantic using 
underwater sonobuoys in the Bedford Basin off Nova Scotia, Canada. The authors of 
(Farrokhrooz 2005) represented the acoustic radiated noise of ships by an AR model with 
appropriate order and coefficients of this model are used for classification of ships. A 
Probabilistic Neural Network (PNN) (Duda 2000) is used as the classifier and the AR model 
coefficients are used as the feature vector to this classifier. The performance of this method 
is examined by using a bank of real data files.  
The authors of (Xi-ying 2010) have analyzed the advantages and disadvantages between 
discriminating features extracted from power spectral density and higher order spectrum, 
and then combined the power spectrum density estimation and higher order spectrum to 
extract the distinguishable characteristics synthetically. The proposed classifier is a kind of 
Back Propagation (BP) neural network (Duda 2000) with some modifications. Two sets of 
discriminating features proposed in (Farrokhrooz 2011). The first set of features is extracted 
from AR model of radiated noise and the other is directly extracted from power spectral 
density of radiated noise. The proposed classifier is the modified probabilistic neural 
network, which is referred to Multi-Spread PNN (MS-PNN) and a method for estimating the 
parameters of classifier.  
Advanced technologies in SONAR systems have been thoroughly presented in (Silva 2009), 
the underwater wireless telecommunication networks challenges, signal processing 
techniques and current studies have been discussed in (Stojanovic 2006, Stojanovic 2008), 
State-of-the-Art in underwater acoustic sensor networks have been studied in (Akyildiz 
2006) and a survey on underwater networks can be found in (Peterson 2006). In addition, 
hardware issues have been considered in (Benson 2008) as pioneer works of underwater 
acoustic networks researches and developments. A secure technique for underwater 
wireless networks has been recently introduced by (Peyvandi 2010). 

2. Classic approaches 

2.1. Basic Concepts 

SONAR systems are divided into two main categories – active and passive. Passive SONAR 

system (figure 1: (a)) provides monitoring the undersea environment without sending 

energy through the water. On the other hand, active SONAR system can act same as 

RADAR using responses from signals sent towards targets.  

Underwater signals obtained from passive SONAR contain valuable clues for source 
identification even in high noisy environments. Attempts on detection/classification of 
acoustic signals based on spectral characteristics have met little success in early era of 
SONAR system development (Urick 1963).  
In addition, finding the rules to classify objects in underwater is more difficult than those for 
surface vessels.  
Understanding the nature and characteristics of ambient noise and the acoustic radiated 
noise of vessels is of great importance in selecting the discriminating features and the 
classification algorithms.  
Therefore, we present a brief explanation about sources of ambient and radiated noises and 
their spectral characteristics. 
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The ambient noise  

The major sources of ambient noise are as follows (Urick 1963, Burdic 1991):  

 Seismic disturbances 

 Biological organisms' activities 

 Oceanic turbulence 

 Distant shipping 

 Wind 

 Thermal noise 
The distant shipping and wind are usually the main sources of ambient noise in the passive 

SONAR system. The level of these two kinds of noise depends on the distance from 

shipping lines and the sea state, respectively. In deep waters the distant shipping noise is 

dominant in frequencies from about 10-20 Hz to about 200-300 Hz, and wind noise is 

dominant in frequencies from about 200-300 Hz to several tens of kHz. The power spectral 

density of ambient noise is relatively smooth in the acoustic region. Some studies show a 

Gaussian distribution for ambient noise but other studies claim that it has a non-Gaussian 

distribution (Wenz 1962).  

 

 

Fig. 1. (a) Passive and (b) Active modes of SONAR system (Physics Online) 

The acoustic radiated noise 

The acoustic radiated noise produced by the vessel's machinery and its motion in sea, 

consists of broadband and narrowband components. The propeller and the hydrodynamic 

turbulence produce a broadband noise. The narrowband components are produced by the 

propeller, propulsion system and auxiliary machinery. Generally, the spectrum of acoustic 

radiated noise varies with the change of speed (Urick 1963).  
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Indeed, two main reasons for making the research in this area, challenging back to the 
nature of acoustic radiated noises which have: 

 Rapid changes of characteristics over the time in both frequency and time 

 Variations in Signal to Noise ratio (SNR) due to multipath propagation 

2.2 Hidden markov model 

The Hidden Markov Model (HMM) approach to classify the SONAR signals is a promising 
technique, which has proven capability of detection/classification as well as applications in 
speech recognition (Rabiner 1989). 
In fact, the HMM is a stochastic model for speech applications as classifier of spoken words. 
Most current speech recognition algorithms are mainly based on HMM. In these models, 
speech signals are modeled as sequences of states with probabilities assigned to state 
transitions.  
Probability densities are associated with the observation of acoustic parameters. These 
parameters are considered from spectra or cepstra corresponding to the states or state 
transitions. The states are identified with the phonemes. A left-to-right HMM topology is 
mainly used for speech recognition. Nevertheless, a fully connected HMM topology which 
the transition from any state to other states is possible, can be more useful in our application 
of SONAR signal detection/classification. The left-to-right topology of HMM is known as 
Bakis model and the fully connected topology is known as Ergodic, as well.  
Exploiting the HMM approach to classify the signals consists of two main problems:  

 Feature extraction of signals for training the models 

 Preparing each model with training to classify the signals 

Feature extraction 

AR and cepstral coefficients are sensitive to the SNR of signals but the spectra components 
are more robust to variation of signals over time. However, AR model parameters can be 
used in stationery conditions, or even in short period SONAR signal processing. Therefore, 
they are preferred spectral features as input data to train the models. Using the spectra 
features, derived algorithms based on HMM are often robust. For an example, a typical 
spectrum of a diesel submarine noise is illustrated in figure 2.  
 

 

Fig. 2. A typical spectrum of a diesel submarine 
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Though the SONAR signal received from such targets may be varied in time with respect to 

their SNR, interferences or even reverberation, but the spectrum features are mainly 

remained unchanged in which they can be used as main input data for training of HMM 

models. However, in severe conditions of ambient noise, detecting the main features is not 

so easy and may produce wrong amplitude or positions of main features. 

HMM Training 

Considering a first order, N-state Markov model (Rabiner 1989) in which state sequence Q is 

a realization of Markov model with probability:  

  

(1)

 

where; 

  

(2)

 

As a property of HMM, states of model cannot be directly observed, but can be  
estimated through a sequence of observations. In our purpose, it should be considered 
observations with continuous probability density. Thereafter, observation density vector 
will be: 

  

(3)

 

where;  
  specifies an HMM, completely. 

By a number of observations of SONAR signals, we are able to train an HMM as optimal 
model. A density function of O is given by: 

  
(4)

 

By using above formula we can compute density function of any observation  

and discriminate among related classes. The procedure of above-mentioned description is:  

 Given a set of acoustic training data that is phonetically labeled (possibly with errors); 

train an estimator to generate the data density for any hypothesized state: i.e. train an 

estimator for the emission probability density. 

 Given a probability estimator for the data likelihood of each state, use the dynamic 
programming to find the most likely sequence through the states in all possible 
sequences. This step is sometimes called forced Viterbi algorithm (Viterbi 1967).  
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The latter procedure can be proved that converges to a local optimum, however, in practice 
the stopping criterion can be modified by a threshold level. Thereafter, when an O of 
unknown class is given, we compute: 

  
(5)

 

where; 
p* is optimal model and Q* is optimal state sequence and we can classify the source signal as 
belonging to the class p*. 
For instance, we considered simulated data of SONAR and applied previously mentioned 
model to evaluate the capability of HMM in detection/classification of SONAR signals. 
However, lack of real data has prevented to evaluate the different models. We considered 
two classes of submarines and simulated their noises.  
Figure 3 illustrates two examples of related spectra. We used feature vectors extracted from 
spectra for training two HMMs, nevertheless above vectors might be noisy in real SONAR 
systems. As simulation stage, we produced data with different SNR ranged from -20dB to 
20dB in order to check robustness of algorithm. Therefore, we had at least two HMMs with 
optimal number of states.  
 

   
           (a)                              (b) 

Fig. 3. Two spectra of simulated noises in frequency band of [10Hz, 1000Hz]: (a) Spectrum of 
simulated data in class#1, (b) Spectrum of simulated data in class#2 

Now, for evaluation of method we consider another set of simulated data in order to 
provide test data. This procedure is iteratively continued until statistical results are 
provided. These statistical results are shown in figure 4. In this figure, all 24 results of 
classification scores have been graphically illustrated. The scores have been converted to 
grayscales, i.e., bright color means high score of classification. 
As shown in this figure, the class two has higher scores (brighter parts) then, as per majority 
vote to make a decision for received data over time, class #2 will be selected. In the first 
image, we considered simulated data from class #1. After preparing model (both stages of 
training test have been completed), a procedure similar to the test stage (named: evaluation 
stage) is iterated for 12 times. Therefore, we have 24 probability scores, which have been 
finally produced by two HMMs. The argument of the highest score determines class of 
input data.  
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HMM Classification Results: Black: Low Score, Gray: Mediocre, White: High Score 

Fig. 4. The simulation result for classification of SONAR signals based on HMM method: 
{White: High, Grays: Medium, Black: Low} scores as model outputs  

Some promising results: 

 Using HMM as a new method increases robustness of algorithm against fluctuations of 
SNR in received signals.  

 At low and fixed SNR (< 0dB) has a better performance in recognition of sounds; for 
instance, we obtained 5.6% increase in performance at SNR=-12dB. Almost the same 
performance is obtained at high and fixed SNR in compare with the normal 
classifier. 

Meanwhile, new method needs only more computations and therefore faster processors. We 

used a new method based on HMM, moreover implemented it in new area, which may 

increase our insight about underwater signal processing. 

3. Modern approaches 

The neural network method is widely used due to its capability of learning and clustering 

(Gosh 1992, Kundu 1994). Amongst them, Radial Basis Function Neural Network (RBFNN) 

has more advantages such as fast convergence in train mode and low computations in both 

train/ evaluation modes. In regular function of RBFNN kernels, Euclidean measure has 

been used to discriminate membership of an input feature vector. Euclidean measure is 

extremely sensitive to magnitudes of input values and ignores their separations, totally. This 

is why two vectors with the same values but in different locations produce a high Euclidean 

measure score. In contrast, Hausdorff Similarity Measure (HSM) is able to combat with this 

separation and discriminate the similarity, as well.  

3.1 RBF Neural Network (RBFNN) 

As depicted in figure 5, RBFNN has two major layers, the processing layer with arbitrary 

neurons therein and the output layer that weights the outputs of previous layer and 

represent the final approximated value.  

Theoretically, there is no constraint for number of neurons. In normal RBFNN Euclidean 

measure scores the current input vector similarity respect to the central trained vector of 

neurons. The radial basis function may be defined as following:  
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Hausdorff Similarity Measure (HSM) 

HSM is normally used for 2-D features (Basalto 2007). To replace Euclidean, it is needed to 
consider another axis of input features such as frequencies bins separations (in our study) 
that insert information of bins locations to the evaluation process. HSM for two vectors with 
arbitrary lengths is defined as: 

 ( , ) { [ ( ( , ), ( , ))]}i jHSM A B Max Sup Inf Dist a B Dist A b  (7) 

In (7), ( )A ai  and ( )B bj are input vectors and (.)Dist  is Euclidean measure. 

Methodology  

We modified kernel functions of considered RBFNN from Euclidean to Hausdorff. Then we 

trained the modified RBFNN over several SONAR signals, including few real data and other 

simulated ones. While spectral features of mentioned data have been exploited as input 

vectors of networks, we considered three major networks in order to classify three different 

classes of gathered data. The final output score of every network has been evaluated in test 

mode and satisfied scores are considered for classification process.  

 

 
Fig. 5. RBF Neural Network topology with single output 

Feature selection  

The required features for the classifier are extracted from the spectral densities. We noted 
that spectral densities have more robustness rather than cepstral coefficients and statistical 
or parametric models. But using a regular approach to the spectral densities can produce 
incorrect results in front of real data, due to high variations in spectral frequencies within 
each class of data. These variations may cause high values of Euclidean measures and then 
incorrect detection/ classification of SONAR signals. 

Simulation results 

Simulation was based on above methodology for both new approach and normal RBFNN. 
Two separated sets of data as train and test were considered. In train mode, processing was 
continued for three classes until the fluctuations of learning curves were negligible. 
Reported results for train mode are based on the final classification rates. Processing in the 
test mode was done over long term time series including ambient noises and gathered data, 
randomly. All simulation procedures and algorithms have been written in MATLAB. Table I 
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represents a comparison result between two RBFNN classifier with normal and modified 
kernels in both train/ test modes.  
 

Method 
RBFNN 

(NORMAL) 
RBFNN 
(HSM) 

Class No. 
TRAIN 

(%) 
TEST (%) 

TRAIN 
(%) 

TEST 
(%) 

#1 93 87.4 95 92.5 

#2 90 83.6 93 90.4 

#3 88 74.0 88 83.7 

Table 1. Classification Results 

Although the results in train mode of both normal and modified networks are not 

distinguishable, but there is a reasonable difference in test mode, (The less numeric 

precision is due to the lack of real data in the train mode). Sample spectral used in our 

approach is depicted in figure 6.  

The required diversity of each class samples was produced by changing the frequency bins 

amplitudes, moving them within a random interval and also adding ambient noise ranged 

from SNR=-20dB to SNR=0dB. As a result, the new method produces a better classification 

and target detection rates of simulated SONAR signals even in low SNR. In the next section, 

we present a complimentary study based on PNN and some new results for the 

classification of Persian Gulf data set.  

 
 

 
 

Fig. 6. Spectrum of class #1 in train mode 
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3.2 Probabilistic Neural Network (PNN) 

There are three layers in a PNN structure including: input, hidden and output layers. The 

length of feature vectors determines dimension of input layer. If we use d discriminating 

features for classification, the input layer dimension will be d. The hidden and the output 

layers consist of n patterns and c classes, respectively. Number of patterns n is chosen such 

that the convergence is guaranteed. Each pattern is d-dimensional and the output of the 

PNN is chosen from the set of classes  1 2, ,..., c     . PNN is based on the Bayes decision 

rule, i.e. a trained PNN will decide i if:  

 ( | ) ( ) ( | ) ( ) ;  1,...,           i i j jp P p P j c and j i      x x  (8) 

Where, 1 2{ , ,  ... , }dx x xx  is the 1 d  feature vector, and ( | )ip x  and ( )iP   are the d-

dimensional conditional Probability Density Function (PDF) and prior probability obtained 

from the training data for i-th class, respectively. ( )iP   is estimated by: 

 
      

( )          ; 1,... ,    
     

i

number of training data for i'th class
P i c

total number of training data
    (9) 

( | )ip x is estimated using Parzen windows. The Parzen (or Kernel) method is a non-

parametric approach for PDF estimation. In this method, a symmetric d-dimensional 

window, which is usually a Gaussian window, is centered on each training sample. The 

windows corresponding to i-th class are superposed and appropriately normalized to 

give (x| )ip  . The normalization is such that: 

 1... (x| ) ...  1     i dp dx dx
 

 

    (10) 

The conventional PNN needs an input parameter which is called the spread parameter. This 

parameter must be chosen by the user. The standard deviation of the Gaussian Parzen 

window is proportional to the spread parameter and it is identical for all samples in all 

classes. The most important disadvantage of the conventional PNN is the difficulty in 

selecting an appropriate spread value. The classification performance depends significantly 

on selecting an appropriate spread value. Too small spread values give very spiky PDF's 

and, too large spread values smooth out the details. To show this disadvantage of 

conventional PNN, consider a distribution of two dimensional feature vectors as shown in 

figure 7.  

The estimated PDF for set of points shown in figure 7 will be different for different values of 

spread parameter (the standard deviation of Gaussian windows). For example, using 1, 0.06 

and 0.02 as values of the spread parameter, the estimated PDFs will be as shown in figures 

8(a)-8(c), respectively.  

Although there are some approaches such as cross-validation for estimating an appropriate 

spread value, but they need a large number of data and high processing time. Thus, we 

determined the spread parameter by the trail and error. Another disadvantage of the 

conventional PNN is using the same spread parameter for all classes, which decreases the 

degree of freedom of the PDF estimator.  
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Fig. 7. The scatter plot of an exemplar set of two dimensional feature vectors. 
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(c) 

Fig. 8. The estimated PDF for feature distribution of figure 7 using a spread value equal to 
(a) 1, (b) 0.06, and (c) 0.02. 
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To overcome these disadvantages, a multi-spread PNN that uses a different spread 
parameter for each class has been recently introduced (Farrokhrooz 2011). Consider an 
exemplar classification problem with two discriminating features that is illustrated in figure 
9. As it is shown in this figure, the distances between samples of the first class are typically 
more than those of the second class. Obviously, the appropriate spread parameter for the 
first class is different from that of the second class. Therefore, it is better to use two different 
spread values for these two classes of feature vectors. The MSPNN is a Probabilistic Neural 
Network, which can estimate PDF of the training data using Gaussian Parzen windows with 
a different spread parameter for each class. Using a different spread parameter for each class 
causes an increment in degree of freedom of the neural network. Thus, the MSPNN is more 
flexible than the conventional PNN in the current application. 
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Fig. 9. The scatter plot for an exemplar classification problem. 

Data bank 

The conventional PNN and MSPNN have been used for classification of three classes of 

marine vessels, i.e., heavy ships, medium ships, and boats. The data set of heavy ships 

includes 29 radiated noise files from five different merchant ships (supertanker, container 

ship …). The data set of medium ships consists of 26 files from three different medium 

ships, and the data set of boats includes 16 files from four boats. The main criteria for 

dividing vessels into these three categories have been their size and weight. The number of 

data files in each subset is shown in Table II.  

 

Subset 1st 2nd 3rd 4th 5th 

Heavy 7 4 3 3 12 

Medium 13 5 8 - - 

Boat 7 2 1 6 - 

Table 2. The number of data files in each subset of each class of vessels. 
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Each subset of files corresponds to one vessel. All files have been recorded in the Persian 
Gulf at low sea states. The time length of each file is five seconds and the recording 
sampling frequency equals 2560 samples/second. All data files have contents only in the 
125-500Hz frequency band. 

Feature selection 

The set of selected features for classifying the radiated noises of ships can be divided into 
two categories: the features extracted from AR model of signals and the features directly 
extracted from the estimated PSD of signals. The first category contains the coefficients of 
AR model of signals with AR order 15 or 13, and the poles of AR model with order 2. The 
second category of discriminating features includes 6 features directly extracted from PSD of 
signals.  

Performance evaluation  

In this section, we evaluate the classification performance of conventional PNN and 

MSPNN with the method in (Farrokhrooz 2011) for spread estimation by applying them to 

the bank of real acoustic radiated noises of marine vessels. We define the performance of a 

classifier for a class as the probability of correct decision for the data of that class. 

In order to evaluate the performance of the classifiers, we divided the data bank into two 

parts, the training data set and the test data set. After feature extraction, the extracted 

features of training data set are used for classifier training and the features of test data set 

are used for evaluating the performance of the classifier. We used a training data set as 

introduced in Table III. In each of the performance evaluations in this section, this data set of 

Table III is used for training and the rest of data bank files are used as the test data set. In 

each performance evaluation, the performance of conventional PNN will be shown versus 

spread parameter values and the performance of MSPNN will be demonstrated versus the 

multiplier x. 

 

Subset 
used for 
training 

heavy ship file 
medium ship 

file 
boat file 

Training 
data set 

7 randomly 
selected files 

from all 
subsets 

6 randomly 
selected files 

from all 
subsets 

4 randomly 
selected files 

from all 
subsets 

Table 3. The number of data files in each subset of each class of vessels 

In this subsection the performance of conventional PNN is evaluated using various sets of 

features. Figure 10 shows the performance evaluation of conventional PNN when the 

discriminating features are spectral features. As shown in this figure, selecting a proper 

spread value causes high probability of correct decision for heavy and medium ships. 

However, the probability of correct decision for boats is not high in these cases. In the next 

performance evaluation, the six spectral features directly extracted from PSD, and the 

coefficients of AR(15) model are used as discriminating features. The evaluated 

performances are shown in figure 11.  
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It can be seen that the performance of the classifier in this case is approximately similar to 

the previous case. In the last performance evaluation, the six spectral features directly 

extracted from PSD, the poles of AR(2) model, and the coefficients of AR(15) model are used 

as discriminating features. The evaluated performances are shown in figure 12. Again, it can 

be seen that the performance of the classifier in this case is approximately similar to the 

previous cases. The performance of Multi-Spread PNN is evaluated using various sets of 

features. figure 13 shows the performance evaluation of MSPNN when the discriminating 

features arespectral features. It can be seen from figure 13 that the performance of MSPNN 

is not so good in this special range.  

In the next performance evaluation, the six spectral features directly extracted from PSD, 

and the coefficients of AR(15) model are used as discriminating features. The evaluated 

performances are shown in figure 14. It can be seen from this figure that, the performance of 

MSPNN is good for all three classes of ships in a special range of multiplier values. In the 

last performance evaluation, the six spectral features directly extracted from PSD, the poles 

of AR(2) model, and the coefficients of AR(15) model are used as discriminating features. 

The evaluated performances are shown in figure 15.  

It can be seen from this figure that, the performance in most cases is good for all three 

classes of ships in a special range of multiplier values. 
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Fig. 10. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD as discriminating features. 
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Fig. 11. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD and coefficients of AR model as 
discriminating features. 
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Fig. 12. The performance of conventional PNN in classifying heavy and medium ships and 
boats using the six features directly extracted from PSD and poles and coefficients of AR 
model as discriminating features.  
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Fig. 13. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD as discriminating features. 
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Fig. 14. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and AR coefficients as discriminating features. 
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Fig. 15. The performance of MSPNN in classifying heavy and medium ships and boats using 
the six features directly extracted from PSD and poles and coefficients of AR model as 
discriminating features. 

4. Target tracking 

The goal in target tracking problem is to sequentially estimate the target parameters of 

interest from the sensor observations. The target parameters of interest are modeled by the 

state vector  and the sensor observations are modeled by the observation set 

 where; k denotes the time index (or scan index) and  denotes the 

number of sensor observations at the k-th scan. In SONAR target tracking systems, the 

system state vector may contain information about the location and speed of the target; 

observations are the signal strength, bearing, and arrival time of the returned signal.  

Dynamic state space model 

Dynamic state space model (DSSM) has been widely used for modeling a target tracking 

problem. The dynamic state space model formulates variations of the system state and 

observations using two processes: the system state process and the observation process. In 

the system state process, variations of the target state vector  in different scans k are 

modeled using a first order Markov process (Rabiner 1989) as follows: 

   
(11)

 

where; 
is the known state transition function and  denotes the state transition noise, which is 

modeled by a random vector with known statistics. The observation model or measurement 

model relates the observed target signal  to the target state vector  by:  

  
(12)

 

where; 
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represents the observation function and  denotes the observation noise, assumed to 

be independent of the state transition noise . The target observation vector  may appear 

in the observation set  with the probability of . While the target observed signal is 
related to the target state vector by (12), the clutter generated observations are assumed to 
be uniformly distributed in the surveillance region. The number of clutter generated 
contacts is modeled using a Poisson distributed random variable with parameter of CV 
where C denotes the clutter density or the average number of clutter per unit volume and V 
denotes the volume of the surveillance region. 

Bayesian filtering 

To simplify the tracking problem, it can be assumed that there is no clutter contact and the 

target is always detected at the receiver, i.e. . The Bayesian filter (Anderson 1979, 

Stone 1999) provides the optimum solution to the state space model with respect to the 

Maximum A Posteriori (MAP) criterion. The Bayesian filtering technique implements the 

Bayes’ rule and provides a recursive formula for estimating the posterior probability density 

of the target state vector given the sensor observations.  The estimation of the posterior 

probability density function is through two steps; the motion update step and the 

observation update step.  The motion update step implements the target motion model in 

(11) and provides a prediction estimate to the posterior probability density function by: 

  
(13)

 

where; 
 denotes all the observations up to scan k−1. The observation update process uses recent 

sensor observations and the target observation model to refine the predicted posterior 
probability density function in (13) by: 

  

(14)

 

By setting the initial posterior probability distribution of the target state vector 

 and following (13) and (14), the posterior probability density function of 
the target state can be estimated. Equations (13) and (14) do not require the system state 
space models provided in (11) and (12) to be linear. Therefore, the Bayesian filter estimates 
the posterior probability density function in the general case that is known as the general 
non-linear tracking. Kalman filtering technique (Kalman 1960) is one of the most famous 
special cases in which the system state space models are linear and the noise vectors v and w 
are additive and Gaussian. This case is known as the linear-Gaussian state space model and 
is represented using the following equations: 

  
(15)

 

  
(16)

 

where;  is the state transition matrix,   is the state process noise with zero mean and 

covariance matrix of Q, G is a transform matrix,  is the transition matrix from the target 
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state space to the observation space, and  is the Gaussian additive observation noise with 

zero mean and covariance matrix of R. Using the linear-Gaussian model, the target state 

vector is the linear combination of the Gaussian distributed vector v then is Gaussian. This is 

the Key assumption in deriving the Kalman filter equations. The estimation of the target 

state vector, denoted by  is computed as follows: 

  
(17)

 

  
(18)

 

  
(19) 

  
(20)

 

where; 

  
(21)

 

is the covariance matrix of  and, 

  
(22)

 

is known as the Kalman gain. The Kalman filter provides the expected value  and the 

covariance matrix  of the posterior probability density function . In a linear-

Gaussian state space model, Kalman filter is the optimum solution in the senses of the 

Minimum Mean Square Error (MMSE), Maximum Likelihood (ML), and Maximum A 

Posteriori (MAP) criteria (Anderson 1979, Kalman 1960). Because of the efficiency and 

simple implementation of the Kalman filter, many approaches have been developed that 

focus on linearization of state space model and applying Kalman filtering to the linear 

model. The most popular approach in this group is the well known extended Kalman filter 

(EKF) (Bar-Shalom 1988, Kailath 2000) which makes the state space model linear using 

Taylor series expansions of the nonlinear functions. While the EKF performs well under 

mild nonlinearity, it suffers from performance loss under sever nonlinearities. Another 

approach to linearization of state space model, presented in (Norgaard 2000), implements 

the polynomial approximation of a nonlinear function. This technique, known in the 

literatures as the central-difference Kalman filter (CDKF), can replace the EKF in some 

practical applications in which linearization using Taylor series is not so accurate. For both 

EKF and CDKF techniques, there is an implicit Gaussian prior assumption on the posterior 

density function due to applying the Kalman filter. Another group of proposed techniques 

assumes an explicit prior form (normally Gaussian) for the posterior density function.  

Perhaps the most famous approach in this group is the unscented Kalman filter (UKF) 

(Julier 2000, Julier 2004) which uses a novel nonlinear transformation of the mean and 

covariance matrices. In this approach, the mean and covariance matrices of the assumed 

Gaussian posterior density are parameterized by a set of samples, and these samples are 

updated through processing by a nonlinear filter. In the Quadrature Kalman filter (QKF) (Ito 

2000, Arasaratnam 2007) the assumed Gaussian posterior density is parameterized through 
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a set of Gauss-Hermite quadrature points, and the nonlinear process and observation 

functions are linear using statistical linear regression (SLR). The Cubature Kalman Filter 

(CKF) (Cubature 2009) uses a spherical-radial cubature rule for numerical computation of 

the multivariate moment integrals that appear in the Bayesian filter formulation. The 

Gaussian posterior density function is the key assumption in this numerical computation. 

Some existing approaches do not have explicit assumptions on the posterior distribution. 

Instead, they estimated a discrete set of parameters and used them to approximate the 

posterior density function. The Gaussian mixture filter (Alspach 1972), for example, 

estimates a set of discrete weight parameters and implements these weights to approximate 

the posterior density function using a weighted sum of Gaussian density functions. It is 

shown in (Sorenson 1971) that any practical density function can be represented by a 

weighted sum of Gaussian density functions and as the number of Gaussian densities 

increases, the approximation will converge uniformly to the desired density function. 

Recently, particle filtering (PF) (Djuric 2003) has become popular in many applications of 

statistical signal processing.  In particle filtering, a desired posterior density function is 

estimated through a set of particles and associated weights. At each time update, new 

particles are generated via sampling from an importance function, and the weight 

associated with each particle is updated. With fast development of powerful computational 

systems, the numerical approach to solve the Bayesian inference equation that was first 

introduced in (Bucy 1971) has renewed its attraction through the point mass approach 

(Simandl 2006). In the point mass approach, a regular grid discretizes the system state, and 

the Bayesian filter is evaluated numerically on the discrete points. The tree search target 

tracking technique, introduced in (Nelson 2009, Roufarshbaf 2009) approximates the 

Bayesian filtering recursions by generating a tree of possible target state variations and 

finding the solution by navigating the search tree using the Stack algorithm. 

Data association techniques 

Thus far, we assumed that there are no clutter observations at the receiver and the target is 

detected in each scan. When clutter observations appear at the receiver, the above 

techniques cannot be performed directly for tracking the target and the observation contacts 

must be associated to either the target(s) or clutter. In this section, we discuss the most 

famous techniques for data association. We also consider the cases in which the target 

contact is not detected at the receiver. The early work on target tracking that addresses the 

challenge of data association was introduced in (Sittler 1964). The approach splits a track 

whenever more than one measurement is present. Then it calculates the likelihood function 

for each track and the tracks with likelihoods less than a predefined threshold are deleted.  

In the nearest neighbor Kalman filter (NNKF) approach (Singer 1971, Sea 1971, Singer 1973), 

the contact that has the smallest statistical distance to the predicted target track is 

considered as a true target observation and the others are considered as clutter. The 

probabilistic data association filter (PDAF) introduced in (Bar-Shalom 1975), provides a 

suboptimal Bayesian approach for data association in the single target tracking problem.  In 

this approach, the target track is updated using the weighted sum of all possible track 

updates from each data association hypothesis of the current scan. When a single target is 

present, the optimal Bayesian approach for data association considers all possible 

association hypotheses from the target initiation time index to the current time and updates 

the target track using sum of the all possible track updates weighted by evaluated 
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association probabilities (Bar-Shalom 1988). Since the optimal Bayesian method is 

computationally intractable, suboptimal approaches have been suggested. The joint 

probabilistic data association filter (JPDAF) (Fortmann 1983) is an extension to the PDAF 

algorithm for multiple target tracking. In this approach, all possible association hypotheses 

of the current time are evaluated for all targets, and the tracks are updated by a weighted 

sum of all possible track updates from the data association hypotheses. Other data 

association algorithms implements either MAP or ML approaches to find the best sequence 

of measurements that can be associated to each target. The Viterbi algorithm (Viterbi 1967, 

Wolf 1989) and the Expectation Maximization (EM) algorithm (Gauvrit 1997) have been 

widely used for this purposed. Multi-hypothesis tracking (MHT) (Blackman 2004) is a MAP 

estimator in which at each scan, instead of combining the hypotheses like JPDAF or 

selecting the best hypothesis like nearest neighbor (NN), the algorithm makes a tree of 

possible association hypotheses and decides based on the future observations through a 

MAP estimator. All of the data association approaches discussed above is combined with a 

tracking technique such as EKF, to estimate the target track within the clutter observations. 

As an example, we discuss the details of the PDAF algorithm which is one of the most 

common approaches in SONAR target tracking. In the PDAF technique, the data association 

probabilities  and j =  are defined for each scan as the probability that the jth 

observation of the scan is generated by the target and others are related to the clutter. The 

special case  is defined as the probability that all the observations are generated by clutter 

and the target generated observation is not detected. Using the data association probabilities 

in the Kalman filter, it is sufficient to change the equations (19) and (20) as follows: 

  
(23)

 

  
(24)

 

where; 

  
(25)

 

  
(26)

 

  
(27) 

The association probabilities  have been calculated in literatures and the results are as 

following: 

  
(28)

 

  

(29)
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where; 

  
(30)

 

and M denotes the dimension of the observation vector . 

Recent techniques 

Some recent techniques in target tracking including sequential Monte Carlo techniques and 

the tree search techniques combine the data association problem and the target tracking 

problem as a unified problem. Sequential Monte Carlo approaches (Hue 2002) have been 

introduced in target tracking problems for both track estimation and data association.  In the 

approach presented in (Hue 2002), Gibbs sampling is implemented to solve the data 

association problem, and particle filtering is used for target track estimation. The algorithm 

is developed for the cases of single target, multiple targets, single receiver, and multiple 

receiver systems for both fixed and variable number of targets (Hue 2002, Arulampalam 

2002). Recently the stack-based tree search algorithm (Roufarshbaf 2011, Nelson 2009, 

Roufarshbaf 2009), has been developed for tracking the targets in non-linear environments 

with high clutter density.  The approach is classified as a sub-optimum Bayesian approach 

for both track estimation and data association and is implemented for linear/non-linear 

state space models as well as Gaussian/non-Gaussian additive noise. The stack algorithm 

was originally developed as a sequential method for decoding error-correcting 

convolutional codes in digital communications (Jelinek 1969). It has more recently been 

suggested as a lower-complexity alternative to trellis-based techniques, e.g. the Viterbi 

algorithm (Viterbi 1967), for ML sequence detection of data transmitted over a dispersive 

channel (Xiong 1990, Nelson 2006). In target tracking applications, the stack algorithm 

navigates a tree in search of the target path with the largest likelihood, or metric.  A set of 

possible paths and their associated metrics are stored in a list (or stack), and at each 

iteration, the algorithm extends the path with the largest metric. A simple example of the 

stack algorithm for target tracking is given in figure 16. The algorithm starts from an initial 

target estimate and makes a search tree of possible target movements from its currently 

approximated locations. At the end of the observation, the target path that has the highest 

probability among the extended paths of the search tree is selected as the estimated target 

track. 

As a single example, consider a target that follows a linear motion model. The target state 

vector is defined by , where; (x, y) denotes the position of the target in 

Cartesian coordinates, and (x˙, y˙) denotes the target velocity in Cartesian coordinates. The 

parameters of the target motion model (15) are set as follows: 

  

(31)

 

where;   is the time between scans.  In this model, the state transition noise vector  
determines the acceleration (in the x and y directions) over the time interval and the 
covariance matrix of   is set to  where I denotes the identity matrix. The 
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system is assumed to be an active SONAR and a single transmitter and receiver is placed at 
(0, 0) in Cartesian coordinates. The receiver measures the angle of arrival (bearing angle) 
and the range of reflecting subjects. Therefore, the observation transform function in (12) 
will be: 

  
(32) 

 
 

 
 

Fig. 16. A tree search target tracking structure 

We assume that the measurement noise covariance matrix is given by: 

  

(33)

 

We also assume that the target generated contact is detected at the receiver with the 

probability of . Figure 17 shows an ensemble of the generated target and the 

estimated path using the EKF-PDAF technique and the tree search technique. The target 

initially starts its path from (10, 10) and follows its linear motion model. The clutter 

observations are uniformly distributed in the surveillance region and the average number of 

clutter observations per unit area (C) is set to 1. We can see that both algorithms are able to 

track the target in this special case. In the above example, the target motion model is linear 

and the non-linear transition function in the observation model is well approximated by its 

Taylor series expansion. Therefore, the EKF algorithm performs well in this scenario. 

However, in non-linear target motion models, the performance of the EKF technique 

decreases drastically while the other recent techniques such as tree search technique is able 

to follow the target track (Roufarshbaf 2010, Roufarshbaf 2011). 
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Fig. 17. Example of a target tracking problem. The target starts at initial point and follows 
according to its motion model.  

5. Underwater wireless networks 

Underwater wireless telecommunication, in general, and security and privacy of 

conversations, in particular, are new challenging areas and have recently attracted many 

interests. In spite of the advances in underwater wireless telecommunications (Stojanovic 

2006, Benson 2008), the research on security and privacy of such systems has not been 

conducted. Indeed, despite achievements in navigation, ranging and telecommunication; a 

few researches on security aspects have yet been completed. Nevertheless, continuing study 

on SONAR systems and underwater telecommunication networks, plenty of research 

reports have been published (Peterson 2006, Stojanovic 2008). 

5.1 Security and privacy 

In this section, we concern with security aspect of an underwater telecommunication 

network and a secure scheme. The main idea stems from the fact that all telecommunication 

networks, including underwater networks, have been substantially prepared to transfer 

speech and voice (Kondoz 2005, Peyvandi 2009). As figure 18 depicts, the input voice is 

transformed to the bit stream using a low bit rate encoder. Then, the whole bits are mapped 

to the predefined symbols. Using the secure scheme, the overall bit error rates become 

noticeably low in which there has no any major effect on quality of speech. On the other 

hand, the noises are quite unintelligible for intruders who try to access to the conversations 

through the channel. Produced noises are signals including random scrambled speech-based 

symbols, which make no any sense to the listener. The entire network has been simulated to 

transfer speech to obtain results in an experimental state. 
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Fig. 18. Half-Duplex of underwater telecommunication network 

Methodology 

Figure 18 shows the modular illustration of designed underwater telecommunication 
network including the encryption module, which uses the secure scheme.  
In this figure, at transmitter side, a low bit rate speech encoder is used to produce bit stream 

to the second module. The encryption module encrypts the bit stream in which each frame is 

mapped to a predefined symbol that has been originally designed using hi-fi speech records 

(Peyvandi 2009). In fact, for each frame, 7 bits in this study, a unique symbol is produced. 

Therefore, 128 symbols are needed to be stored in both sides of telecommunication network 

as lookup table. The consequent symbols, produced by encryption module, are windowed, 

filtered and shaped in order to transmit over channel. No more compression or coding is 

used. At receiver, synchronization/ compensation module provides the symbols from 

received samples after preprocessing. Due to severe distortion of signals in underwater 

channels, a Decision-Feedback Equalizer (DFE) at receiver is requisite for compensation. The 

final symbols, with 40 samples in length for 8 KHz, are represented to decryption module, 

which uses pattern recognition (Theodoridis 2006) to measure similarity among final and 

lookup table symbols. Final bit stream are represented to decoding module in order to 

produce speech. 

Simulation results 

All modules of figure 18 have been exploited in simulation of underwater 
telecommunication network and simulated environment for underwater channel as per 
real acoustic data (Shahbazi 2008). In a real system, other modules in order to modulate 
signals, at transmitter, and to demodulate, at receiver, are required; however, they have 
been omitted in the simulation. Using secure scheme over simulated underwater channel 
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Bit Error Rates (BER) has been obtained. The BER results with transmission of three 
different speeches were as low as 1%. In another experiments, the number of bit for each 
underlying frame (BPF) has been changed whilst the number of samples per frame was 
constant.  
Figure 19 shows the BER results, which for 6- and 7-bit are less than 1% and for 8- and 9-bit 

are unacceptable for speech encoding. Thus, 7-bit is considered as optimum BPF.  

 

 

Fig. 19. Bit error rates (BER) for different experiments (BPF) 

Table IV shows the statistical results for several transmission experiments for three different 

speeches with 7-bit BPF. The means and variances are separately shown for three speeches. 

In addition, results of Symbol Error Rates (SER), an important rate in speech 

communication, show that most errors occur non-uniformly.  

Although there are bit errors in transmission of a longtime speech but they have no major 

effect on quality of speeches. Particularly, objective test of quality using NTIMIT dataset 

shows non-meaningful differences in final speeches. TIMIT (Becchetti 1999) dataset are for 

quality test of speeches and NTIMIT data are among the network datasets. Figures 20 and 21 

depict the waveform of two different NTIMIT samples used in quality test. 

The NTIMIT dataset is used for test of speech quality in telecommunication network. 

However, there are differences among original and decrypted samples but these differences 

make no meaningful distortion from auditory point of view. Adding to low bit error rates, 

the other reason is the non-uniform distribution of errors. To evaluate secure scheme under 

real conditions the test bed of figure 22 is considered.  
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Exp. No. 
BER (%) SER (%) 

Mean Variance Mean Variance 

#1 0.96 0.05 0.55 0.09 

#2 1.07 0.07 0.60 0.12 

#3 0.93 0.06 0.52 0.10 

Table 4. Simulation Results 

 
 

 

Fig. 20. NTIMIT dataset sample I (a) Original (b) After decoding 

 
 

 

Fig. 21. NTIMIT dataset sample II (a) Original (b) After decoding 
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In the figure 22, the intruder can access to the underwater telecommunication link, but the 
voices are unintelligible even they are decoded by intruder. As of terrestrial wireless 
telecommunication networks, the public/private keys have been considered in 
coding/decoding modules as a fundamental part of them. Similarly, we should use the 
public/private keys in the security module of underwater wireless networks, as well. The 
private keys can be considered among different underwater networks (Peyvandi 2010). 
 

 

Fig. 22. Schematic diagram of test bed for secure scheme in underwater acoustic network 

6. Conclusion 

In this chapter, we introduced methods for underwater signal processing which are used for 

SONAR systems, either passive or active system, and underwater wireless network as an 

emerging area in the field. Method based on Hidden Markov Model (HMM) has been 

investigated and the simulation results have been released with examples. The capability of 

HMM in modelling different classes of underwater noises is notable even in low SNR, which 

is common in most SONAR systems. Hausdorff Similarity Measure (HSM) as a new 

measure for discriminating different features of classes has been studied in this chapter. 

HSM outperforms the other one-dimentioan measures, i.e, Minkovsky based, in low SNR 

environments when the spectral components are used as features.  

In addition, we explained the necessity of a multi-spread probabilistic neural network. We 

used the method for estimating the spread value for each class in the multi-spread PNN. 

The multi-spread PNN is more flexible than the conventional PNN. This increased flexibility 

is obtained by using a different spread value for each class. Using the proposed method for 

estimating the spread value reduces the need for trial and error approach for spread 

parameter determination. The conventional PNN and the MS-PNN with the proposed 
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method for estimating the spread parameter were applied to the radiated ship noise 

classification problem. A bank of real radiated noise data were used to evaluate the 

performance of the conventional and MS-PNN. In all performance evaluations, which is 

used for conventional PNN as the classifier, selecting a proper spread value caused high 

probability of correct decision for heavy and medium ships. In all performance evaluations, 

which is used for the MS-PNN as the classifier, there is a relatively wide range of multipliers 

in which the best performance occurs. 

We also considered target tracking problem in sonar systems. A target tracking problem was 
modeled using the conventional DSSM. Then, we reviewed the classic Bayesian target 
tracking techniques and its closed form Kalman filtering approach that is optimum for 
linear-Gaussian models. Then, we studied tracking of low observable targets through clutter 
contacts and we reviewed the recent approaches in target tracking that are more efficient in 
non-linear scenarios. Through an example, we show how a classic EKF technique and a 
recent tree search technique are able to track a single target through clutter contacts.   
In the last section in this chapter, we have proposed a new scheme for providing secure 
conversation in underwater telecommunication systems. Although, there are bit errors in 
near all communications, low bit errors with non-uniform distribution have unintelligible 
effect on quality of speeches. The quality test has been provided using NTIMIT dataset 
samples. The results showed that the proposed scheme for underwater wireless 
telecommunication systems is reliable in an experimental state. The environmental test of 
proposed scheme is ongoing. 
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