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1. Introduction

Although the concept of multistatic active sonar (MAS) has been around for over 50 years,
new trends have brought this technology to the forefront of anti-submarine warfare research.
These trends include advancements in sonar sensors and signal processing, advancements
in submarine stealth, and a desire to track targets in noisy and reverberant environments,
such as near-shore or shallow waters. The latest trend is to exploit the really game-changing
capabilities of unmanned and autonomously operating underwater vehicles.
The focus of this chapter is on advances in signal processing enabling especially the tracking
of low signature targets, namely targets with low signal-to-noise ratio (SNR), in a multisensor
environment. In particular, the track-before-detect (TBD) approach and its adaption to
pre-selected contact-based tracking are addressed. The TBD approach is designed to track low
SNR targets. TBD-based procedures jointly process several consecutive pings and, relying on
target kinematics or, simply, exploiting the physically admissible target transitions, declare
the presence of a target and, eventually, its track (Orlando et al., IEEE-TSP 2010). A TBD
algorithm is typically fed by unthresholded data or thresholded data with significantly lower
thresholds than the ones used by conventional trackers. Moreover an important feature of
a TBD scheme is the so-called constant false track acceptance rate (CFTAR) property: if a
TBD scheme ensures the constant false alarm rate property with respect to the unknown
statistics of the disturbance, then it allows controlling the overall false track acceptance rate.
The TBD algorithm herein presented considers a bistatic sonar architecture and is capable
of handling raw hydrophone data (Orlando et al., CIP 2010). Remarkably, it guarantees the
CFTAR property. Performance analysis highlights its potential to implement automatic track
continuation and to prepare automatic classification for temporarily weak targets as these
tasks are usually the challenges that MAS systems have to overcome.
In the context of multistatic sonar, a batch algorithm is also introduced, that jointly processes
measurements provided by multiple sensors over a certain number of consecutive pings
(Orlando et al., FUSION 2010). These measurements are time differences of arrival and
bearing information of a target maneuvering in the surveillance region. This approach
is tested on a benchmark data set provided by METRON in the context of collaborative
international multi-laboratory research that is ongoing in the ISIF Multi-Static Tracking
Working Group (Orlov, Metron Data set 2009).
The remainder of this chapter is organized as follows: the next section is devoted to the
description of bistatic and multistatic sonar systems. Section III focuses on the derivation
of the TBD (or TBD-based) processors. In Section IV a node selection strategy for multistatic
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sonar systems is described on a conceptual level while Section V provides some illustrative
examples. Finally, Section VI contains concluding remarks and hints for future work.

2. Multistatic sonar

When low frequency active sonar was first used to find and track underwater targets, the
required hardware for both the acoustic source and the acoustic receiver was installed onboard
a single unit. The deployed part (or wet-end) of the system is quite heavy and large in
extend and there has to be a synchronization between the activating source and the receiving
hydrophones. Hence, the natural approach is to use such a monostatic system (source and
receiver collocated) in order to avoid the necessity and cost for multiple units involved and
data synchronization issues. However, looking at the cylindrical structure of the target it turns
out that approaching or opening aspects of the target result in very low detection probabilities
for those monostatic systems.
An enormous improvement in performance is possible if multiple acoustic sources and
receivers are deployed in a spatially distributed manner. Multiple units have to be used and
data synchronization has to be solved in order to implement these so called multistatic active
sonar systems. A multistatic architecture can provide:

• short latency (due to effective Doppler processing);

• high precision (due to triangulation);

• fewer false alarms;

• anti-stealth.

These benefits can only be exploited by automatic fusion and tracking of the multistatic
data. Automatic tracking algorithms use the information from consecutive measurements to
discriminate between physically feasible movements and random movements of prospective
targets. By this discrimination the overall false alarm rate can be reduced, especially when
different bistatic aspects on the target are combined within the tracking algorithm. It is
possible to summarize the major issues of MAS as follows:

1. estimation task: non-linear and noisy measurements and variable sound channels;

2. multi-target issue: false alarms, clutter targets, and bottom reflections;

3. non-cooperative evader: stealthy target with evading actions;

4. multi-agent coordination whereby communication between sensors needed, but not
always present.

In this chapter, two TBD-based techniques are introduced in order to overcome limitations
due to the issues 1 and 2.
Before proceeding further, notice that a multistatic system consists of multiple sources and
multiple receivers and, hence, it can be viewed as composed of different bistatic subsystems.
For this reason, the bistatic configuration is first introduced in Subsection 2.1, then the
description of the multistatic architecture is given in Subsection 2.2.

2.1 System description: the bistatic architecture

The bistatic sonar scenario involves a projector and a receiver, placed at a different location
and equipped with an array of sensors, a point-like target at a certain “distance” from the
array (range), and a signal that travels from the projector to the target and from the target to
the receiver. The system under consideration utilizes a planar array (see Figure 1) consisting of
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Na arms; each of them contains Ns identical sensors spaced d meters apart from one another.
The total number of sensors is

N = Na(Ns − 1) + 1, (1)

where we are accounting for the fact that the arms share the central sensor. Moreover, let
θa = 2π/Na be the separation angle between two consecutive arms, θr the azimuthal angle of
the impinging target echo, measured clockwise from the reference arm, and

θi = θr − (i − 1)θa, i = 1, . . . , Na, (2)

the angle of arrival with respect to the ith arm.
Suppose that the projector omnidirectionally transmits the following pulse waveform

Re
{

Aejφ p(t)ej2π fct
}

, t ∈ [0, Tp[, (3)

where

p(t) =
1√
Tp

ejπkt2
(4)

is a frequency modulated waveform of duration Tp, A > 0 is an amplitude factor related to
the transmitted power, φ ∈ [0, 2π[ is the initial phase of the carrier signal, fc is the carrier
frequency, Re{z} denotes the real part of the complex number z, and k = B/Tp, with B the
pulse bandwidth. In the next subsection, we derive the discrete-time form for the received
signal.

Fig. 1. The planar array and the associated reference system: each sensor is represented by a
filled circle.
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Fig. 2. Bistatic geometry

2.1.1 Discrete-time sensor model

Consider the geometry depicted in Figure 2 and suppose that a prospective (point-like) target
is moving within the surveillance area with a velocity vector v ∈ R2×1. The received signal at
the nth sensor of the ith arm is given by

rn,i(t) = Re

{
α√
Tp

ejπk(t−τn,i(t))2
ej2π fc(t−τn,i(t))

}
+ nn,i(t), (5)

where

• α ∈ C is a complex and unknown (deterministic) factor accounting for the transmitted
power, the transmitting and receiving gain, the two-way path loss, and the sonar
cross-section of the target; hereafter α denotes any proper modification of the previous
constant;

• τn,i(t) is the time delay between the transmission by the source and the arrival of the target
echo at the nth sensor of the ith arm;

• nn,i(t) is the overall disturbance component; in the sequel we use the above symbol to
denote any modification of the noise components.

Now observe that τn,i(t) consists of three components

τn,i(t) = τ1(t) + τ2(t)−
d(n − 1)

c
cos θi, (6)

where1 c (≫ ‖v‖) is2 the speed of sound in water, τ1(t) is the travel time of the transmitted
signal from source to target, and τ2(t) is the travel time of the target echo from target to
receiver3.
For the sake of convenience, it is worth defining the following time difference of arrival

τ′(t) = τ1(t) + τ2(t)− τ3, (7)

where τ3 = D3/c is the travel time from source to receiver (D3 is the distance between the
source and the receiver). It follows that equation (5) can be recast as

rn,i(t) ≈ Re
{

αejπk(t−τ′(t)−τ3)2
ej2π fctej2π(n−1)νie−j2π fcτ3 e−j2π fcτ′(t)

}
+ nn,i(t), (8)

1 Recall that d is the interelement spacing
2 ‖ · ‖ denotes the Euclidean norm.
3 To be more precise, τ2(t) is the travel time of the target echo from the target to the origin of the reference

system which coincides with the center of the receiver (see Figure 1).
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where

νi =
d

λ
cos θi (9)

is the spatial frequency with respect to the ith arm. An equivalent monostatic range D′(t),
corresponding to τ′(t), can be defined as follows

D′(t) =
cτ′(t)

2
= D′ − v′

(
t − τ′(t)

2

)
, (10)

where D′ is the initial equivalent monostatic range and (Willis, Scitech Pub. 2005)

v′ = ‖v‖ cos θTB cos
β

2
(< ‖v‖ ≪ c). (11)

Equation (11) can be obtained by writing D′(t) as follows

D′(t) =
[

D1(t) + D2(t)− D3

2

]
, (12)

where D1(t) is the source-target distance and D2(t) is the receiver-target distance, and
evaluating its first derivative with respect to t, namely

d

dt
D′(t) =

1

2
‖v‖(cos θTR + cos θTS), (13)

where

θTR = θTB − β/2, (14)

θTS = θTB + β/2. (15)

It is not difficult to show that knowledge of D′ and θr allows to evaluate the initial
receiver-target distance, D2 say. Indeed, from Figure 2 the following relation among the initial
source-target distance, D1 say, D2, and D3 holds true

D2
1 = D2

2 + D2
3 − 2D2D3 cos γ. (16)

Then, solving the next equation

D′ =
D1 + D2 − D3

2
(17)

with respect to D1 and substituting the solution into (16) yields

D2 = D′
[

1 + D3/D′

1 + (D3/D′)(1 − cos γ)/2

]
. (18)

The above equation allows us to recast the expression of the received signal in terms of the
equivalent monostatic quantities v′, D′, and τ′(t). More specifically, from equation (10) we
obtain

τ′(t) ≈ 2D′

c
− 2v′t

c
= τ′ − 2v′t

c
, (19)

where4

τ′ =
2D′

c
. (20)

4 Remember that c ≫ v′.
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Then, inserting (19) into (8) yields

rn,i(t) ≈ Re
{

αejπk(t−τ′−τ3)
2
ej2π fctej2π(n−1)νiej2π f ′Dt

}
+ nn,i(t), (21)

where

f ′D = 2
fcv′

c
. (22)

After complex baseband conversion, the output of a filter matched to p(t) is given by (see
(Bandiera at al., M&C 2009))

yn,i(t) = α

∫ +∞

−∞
ejπk(u−τ′−τ3)2

ej2π(n−1)νiej2π f ′Due−jπk(t−u)2
du + nn,i(t). (23)

Let u1 = u − τ′ − τ3, then

yn,i(t) = αej2π(n−1)νi

∫ +∞

−∞
ej2π f ′Du1 ejπku2

1 e−jπk[u1−(t−τ′−τ3)]2du1 + nn,i(t)

= αχp(t − τ′ − τ3, f ′D)e
j2π(n−1)νi + nn,i(t), (24)

where again α and nn,i(t) denote a proper modification of the target response and of the noise
component, respectively, and χp(·, ·) is the (complex) ambiguity function of p(t).
In order to generate the vector of the noisy returns corresponding to the lth range gate, l =
1, . . . , L, the output of the matched filter yn,i(t) is sampled at

tl = tmin + (l − 1)TB, (25)

where tmin denotes the beginning of the sampling process and TB = 1/B. The time samples
are grouped to form an N-dimensional vector (recall that N = Na(Ns − 1) + 1), as follows

zl = [y1,1(tl) · · · yNs,1(tl) y2,2(tl) · · · yNs,2(tl) · · · y2,Na
(tl) · · · yNs,Na

(tl)]
T

= sl + nl , (26)

where

• T denotes transpose;

• sl ∈ CN×1 is the useful signal vector5;

• nl ∈ CN×1 is the noise vector.

It is important to stress here that the bistatic range resolution is conventionally taken to be

δ = c
TB

2
. (27)

However, two targets lying on the isorange contours must be at least physically separated by
a distance given by

cTB

2 cos(β/2)
(28)

to generate a separation δ at the receiver (Willis, Scitech Pub. 2005).

5
sl incorporates the complex amplitude α
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Now, assuming that
τ′ + τ3 ∈ [tmin, tmin + (L − 1)TB ], (29)

it follows that
∃l̄ ∈ {1, . . . , L − 1} : τ′ + τ3 = tmin + (l̄ − 1)TB + ǫ′, (30)

0 ≤ ǫ′ ≤ TB, and, hence, that

sl =

⎧
⎨
⎩

αχp(−ǫ′, f ′D)v(θr), l = l̄,
αχp(Tp − ǫ′, f ′D)v(θr), l = l̄ + 1,
0, l 
= l̄, l̄ + 1,

(31)

where 0 is a null vector of proper dimensions and

v(θr) =
[
1 ej2πν1 · · · ej2π(Ns−1)ν1 · · · ej2πνNa · · · ej2π(Ns−1)νNa

]T
(32)

is the spatial steering vector.
In the following we assume that the target is located at the center of the lth range gate, namely
that there is no spillover of target energy to adjacent matched filter samples. Thus, equation
(31) becomes

sl =

{
αv(θr), l = l̄,
0, l 
= l̄.

(33)

A remark is now in order. Observe that the zl’s (equation (26)) are usually processed to
generate the contacts used by conventional trackers. An alternative to the traditional approach
consists in feeding the zl ’s to a TBD processor that operates with raw data (see Subsection 3.1).

2.2 Contact-based multistatic architecture

This subsection is devoted to the description of a multisensor surveillance sonar system
that processes thresholded data to track prospective targets. In particular, we focus our
attention on a sensor network which provides a set of time difference of arrival (TDOA) and
bearing information on M consecutive pings. Notice that each network node makes hard
decisions and transmits these results to the fusion center for track estimate. In other words,
we consider a parallel fusion network employing centralized fusion architecture (Varshney,
Springer 1997).
The considered system consists of multiple acoustic sound sources and multiple receivers,
more precisely

• Nsr sources that alternately illuminate the surveillance region with a ping occurring every
Tpg seconds; the Nsr-source ping schedule is

nsr = [(m − 1) mod Nsr] + 1, (34)

where nsr is the index of the transmitting source at the mth ping and [a mod b], a, b ∈ N,
is the remainder of the division a/b.

• Nr synchronous omnidirectional receivers.

Source and receiver positions are known. Each receiver provides a set of measurements (or
contacts), denoted as follows

Zi,m = {zi,1,m, . . . , zi,Ni,m,m}, i = 1, . . . , Nr, m = 1, . . . , M, (35)

35Advances in Multistatic Sonar
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where M is the total number of consecutive illuminations and Ni,m is the number of
measurements collected by the ith receiver at the mth ping. As to the zi,j,m’s, they are
2-dimensional vectors defined as

zi,j,m =

[
di,j,m

φi,j,m

]
∈ R

2×1, (36)

where φi,j,m is the bearing measured clockwise from the receiver north and di,j,m denotes the
TDOA between the direct blast and the contact.

2.2.1 Sensor model

In the sequel, we assume that when a measurement has originated from the target, the errors
for TDOA and bearing are independent zero-mean Gaussian random variables, namely

∆di,j,m ∼ N 1(0, σ2
d ) and ∆φi,j,m ∼ N 1(0, σ2

φ), ∀i, j, m, (37)

where σd > 0 and σφ > 0 are the respective standard deviations and are supposed known.
On the other hand, when the contacts are due to the noise, we assume that they are uniformly
distributed in the measurement space, i.e.,

di,j,m ∼ U (dmin
i,m , dmax

i,m ) and φi,j,m ∼ U (φmin
i,m , φmax

i,m ), (38)

where

• dmin
i,m and φmin

i,m denote the minimum values for TDOA and bearing, respectively;

• dmax
i,m and φmax

i,m are the maximum values for TDOA and bearing, respectively.

These parameters are tied to the application in question and to the employed technology, more
precisely they can be chosen on the basis of: the surveillance area size, the peculiarities of the
sought target, the quality of the used sensors, etc.
In Subsection 3.2 a tracking algorithm which takes advantage of the above multistatic system
is introduced. In addition, such an algorithm relies on the main idea behind the TBD
paradigm, namely, it jointly processes the available measurements over several consecutive
pings.

3. Target tracking: the track-before-detect approach

Traditional tracking algorithms are designed assuming that the sensor provides a set of
discrete measurements at each scan (or ping). In an activated surveillance system such
measurements could be obtained by thresholding the output of a matched filter fed by
a baseband version of collected data. Then, the tracking algorithm links measurements
across time and estimates the parameters of interest. The threshold value must be low
enough to guarantee a sufficiently high probability of target detection. However, a low
threshold gives rise to a high rate of false alarms. It follows that to avoid false tracks
it is necessary to effectively solve the data association problem (Bar-Shalom & Fortmann,
Academic Press 1988). A reliable means of validating the track estimate as a target-originated
one is also required.
An alternative approach, referred to as track-before-detect (TBD), consists of feeding the
processor with unthresholded data or thresholded data with significantly lower thresholds
than the ones used by conventional trackers. TBD-based procedures jointly process several
consecutive pings (or scans) and, relying on a target kinematics or, simply, exploiting the

36 Sonar Systems
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physically admissible target transitions, jointly declare the presence of a target and, eventually,
its track. A TBD algorithm can improve track accuracy and follow low SNR targets at the
price of an increase of the computational complexity. Moreover, a TBD scheme ensuring the
constant false alarm rate property with respect to the unknown statistics of the disturbance
controls the overall false track acceptance probability and, hence, it is capable of guaranteeing
the constant false track acceptance rate (CFTAR property).
Most of the TBD algorithms existing in the open literature are conceived to be
implemented in optical and radar systems. Their use in connection with sonar systems
has received less attention. For a description of existing results see (Orlando et al.,
IEEE-TSP 2010; Buzzi et al., IEEE-TAES 2005; S. Buzzi et al., IEEE-TAES 2008; Kramer & Reid,
Radar Conference 1990; Wallace, Radar Conference 2002). A family of low-complexity
power-efficient TBD procedures has been presented in (Buzzi et al., IEEE-TAES 2005).
Therein, the continuous-time continuous-amplitude signal collected by a pulse Doppler radar
is discretized to reflect the sectorization of the coverage area and the range gating operation,
and the generalized likelihood ratio test (GLRT) is solved resorting to a Viterbi-like tracking
algorithm. The proposed algorithm has a complexity linear in the number of integrated scans
and in the time on target. The emphasis is on detection performance more than tracking:
in fact, the GLRT does not rely on the target kinematics; it simply takes into account a
maximum target velocity in order to define the admissible target transitions in range and
azimuth (the Doppler is dealt with as a nuisance quantity due to the considered system
and target parameters). However, a rough estimate of the target parameters is obtained
as a by-product of the construction of the target statistic. (Orlando et al., IEEE-TSP 2010)
extends the derivation of (Buzzi et al., IEEE-TAES 2005) to the context of space-time adaptive
processing.
In the next subsection, we focus on a bistatic architecture and describe a proper modification
of the algorithms proposed in (Orlando et al., IEEE-TSP 2010) to handle raw hydrophone data.
In Subsection 3.2 we apply the main idea behind the TBD approach to thresholded data
provided by a sensor network over several consecutive pings.

3.1 Track-before-detect strategies for bistatic sonars

The system considered here has a bistatic configuration and integrates the returns from M
consecutive pings before deciding whether or not a target is present in the surveillance area.
Relying on the mathematical model for the received signal derived in Subsection 2.1.1, we
utilize design criteria based upon the GLRT to derive a class of adaptive detectors which
guarantee the CFTAR property under design assumptions with respect to the overall spectral
properties of the noise. Moreover, at the design stage, we assume that the unknown clutter
covariance matrix can possibly change from ping to ping. The performance assessment
is provided in Section 5. It is carried out resorting to real sonar data collected by the
deployable underwater surveillance system, called DEMUS, of NATO Undersea Research
Centre (NURC).

3.1.1 Detector designs

As stated above, the receiver jointly processes data from M consecutive pings before
discriminating between the noise-only hypothesis and the signal-plus-noise hypothesis. Thus,
the track-before-detect problem at hand can be formulated in terms of a binary hypothesis

37Advances in Multistatic Sonar
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testing problem as follows (Orlando et al., IEEE-TSP 2010)

⎧
⎪⎨
⎪⎩

H0 : zl,m = nl,m, l = 1, . . . , L, m = 1, . . . , M

H1 :

{
zl,m = αmv(θr,m) + nl,m,
zl,m = nl,m,

l = lm, m = 1, . . . , M,
l 
= lm, m = 1, . . . , M,

(39)

where

• l ∈ {1, . . . , L} and m ∈ {1, . . . , M} are integers indexing the range cells and the pings,
respectively;

• zl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are the vectors containing the noisy returns;

• nl,m ∈ CN×1, l = 1, . . . , L, m = 1, . . . , M, are independent and identically distributed
complex normal random vectors with zero mean and unknown covariance matrices Rm ∈
CN×N ;

• θr,m denotes the azimuthal angle of the impinging target echo at the mth ping.

The above assumptions imply that the probability density function (pdf) of the overall data
matrix, denoted by

Z = [z1,1 · · · zL,M], (40)

can be written as

f0(Z; R1, . . . , RM) =
M

∏
m=1

1

πNL det(Rm)L
exp
{
−Tr

[
R
−1
m

(
zlm,mz

†
lm,m + Slm,m

)]}
(41)

under H0 and

f1(Z; R1, . . . , RM, α) =
M

∏
m=1

1

πNL det(Rm)L
exp
{
−Tr

[
R
−1
m

(
ulm,mu

†
lm,m + Slm,m

)]}
(42)

under H1, where

• det(·) and Tr[·] denote the determinant and the trace of a square matrix, respectively;

• Slm,m ∈ CN×N is (L − 1) times the sample covariance matrix of the noise based on the
available data over the mth ping, but for the lmth range cell, namely

Slm,m = ∑
l 
=lm

zl,mz
†
l,m; (43)

• α = [α1 · · · αM]T is the vector of target responses and6

ulm,m = zlm,m − αmvm(θr,m). (44)

In the following we apply the so-called two-step GLRT-based design procedure
(Kelly & Nitzberg, IEEE-TAES 1992) in order to come up with a class of fully-adaptive
detectors. To be more precise, the following rationale is adopted

• first assume that the covariance matrices of the noise are known ∀m and implement the
GLRT maximizing the likelihood functions over the unknown parameters;

6 Recall that vm is defined by (32)

38 Sonar Systems

www.intechopen.com



Advances in Multistatic Sonar 11

• then, replace the unknown matrices Rm, m = 1, . . . , M, with proper estimates.

Thus, the GLRT under the assumption that the Rm’s are known is given by

max
D∈S

max
α

f1(Z;D, α, R1, . . . , RM)

f0(Z; R1, . . . , RM)

H1
>

<

H0

η, (45)

where

• D = {(l1, θr,1), . . . , (lM, θr,M)} ∈ S is the sequence of points occupied by a prospective
target in the Range-Azimuth domain, with S the set of all physically admissible target
trajectories;

• η is the threshold value to be set in order to ensure the desired probability of false alarm
(Pf a).

Performing the maximization of (45) with respect to α yields

max
D ∈ S

M

∑
m=1

∣∣∣v(θr,m)†
R
−1
m zlm,m

∣∣∣
2

v(θr,m)†R
−1
m v(θr,m)

H1
>

<

H0

η. (46)

An adaptive version of decision scheme (46) can be obtained by replacing the Rm’s with
proper estimates, R̂m’s say. The most common estimate of Rm is the sample covariance matrix
based upon the available data at the mth ping, namely

R̂m =
1

L

L

∑
l=1

zl,mz
†
l,m. (47)

The above estimate can be alternatively modified in order to exclude range cells contaminated
by useful echoes as follows

R̂m =
1

K ∑
l∈ΩR\ΩT

zl,mz
†
l,m, (48)

where

• ΩR = {1, . . . , L};

• ΩT is the set of consecutive integers indexing the range cells contaminated by target
returns;

• K is the cardinality of ΩR \ ΩT , namely the set containing the elements of ΩR that do not
belong to ΩT.

3.1.2 Implementation issues

This subsection is aimed at discussing some implementation issues concerning the above TBD
algorithm. In fact, an adaptive version of (46) is time consuming since it requires maximization
with respect to the sequence D of pairs (lm, θr,m). In order to overcome this limitation, observe
that maximization over D cannot be conducted separately with respect to the (lm, θr,m) pairs:
indeed, physical constraints on the target trajectory imply that (lm+1, θr,m+1) depends upon

{(l1, θr,1), . . . , (lm, θr,m)}, m = 1, . . . , M − 1. (49)

39Advances in Multistatic Sonar
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Moreover, let us partition the azimuth region as follows

ΩA =

{
1

q
2π,

2

q
2π, . . . , 2π

}
, (50)

where q ∈ N is a parameter which controls the accuracy of the azimuthal angle estimate.
With these simplifications in mind, it is possible to recast detector (46) as follows

max
D ∈ (ΩR × ΩA)

M

(lm, θr,m) ∈ P((lm−1, θr,m−1))

M

∑
m=1

∣∣∣vm(θr,m)†
R
−1
m zlm,m

∣∣∣
2

vm(θr,m)†R
−1
m vm(θr,m)

H1
>

<

H0

η, (51)

where

• × denotes the Cartesian product;

• (ΩR × ΩA)
M is the Mth Cartesian power of the set (ΩR × ΩA);

• P((lm−1, θr,m−1)) denotes the set of elements of (ΩR × ΩA) that can be reached from
(lm−1, θr,m−1) under the upper bounds VR and VA on the radial velocity and on the
tangential velocity of the target, respectively.

The above optimization problem can be solved constructing an expanded trellis diagram,
whose states are the elements of ΩR × ΩA and hence using a Viterbi-like procedure to
find the best path metric in this expanded trellis (Buzzi et al., IEEE-TAES 2005; Forney,
IEEE Proc. 1973). The Viterbi algorithm would require determining (at most) Lq paths in the
expanded trellis diagram of depth M, with a consequent maximum complexity7 O(LqM)
(linear in the number of ping). Finally, it is easy to prove that (51) coupled with (47) or (48)
ensures the CFTAR property with respect to the unknown noise parameters.

3.2 A batch tracking algorithm for multistatic sonars

In this subsection, a tracking algorithm for multistatic sonars is derived, that borrows the main
idea of the TBD approach by jointly processing thresholded data over several consecutive
pings. The considered system is described in Subsection 2.2. In order to estimate the target
trajectory, the likelihood function of the measurements (that depends on the target position at
each ping) is maximized by resorting to a Viterbi-like procedure (see Subsection 3.1). For the
reader’s ease, recall that

Zi,m = {zi,1,m, . . . , zi,Ni,m,m} (52)

denotes the set of measurements transmitted to the fusion center by the ith receiver at the mth
ping, where

zi,j,m =

[
di,j,m

φi,j,m

]
(53)

with di,j,m the TDOA and φi,j,m the bearing. In the following, we assume the presence of one
maneuvering target with deterministic motion in the surveillance region.
Let us start denoting by

Z = {Z1,1, . . . , Z1,M, . . . , ZNr,1, . . . , ZNr,M} (54)

7 We resort to the usual Landau notation.
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the overall data set and defining a grid G of Nx Ny points8, that covers the entire surveillance
region. At the mth ping the nominal position of the target is given by

xm =

[
xm

ym

]
, (xm, ym) ∈ G. (55)

Now, assuming that, given the sequence of the nominal target positions over M consecutive
pings, denoted by

X = {x1, x2, . . . , xM}, (56)

the measurements are independent of each other, it is not difficult to show that the pdf of Z
can be written as follows

f1(Z; X, J) =
M

∏
m=1

Nr

∏
i=1

{
(1 − Pi,m)

(Ui,m)
Ni,m

+ Pi,m

fz(zi,ji,m,m; xm)

(Ui,m)
Ni,m−1

}
, (57)

where Pi,m is the probability of detection of the ith receiver at the mth ping9, ji,m ∈ N is an
integer indexing the target originated contact for the ith receiver at the mth ping,

J = {J1, . . . , JM}, with Jm = {j1,m, . . . , jNr,m}, (58)

Ui,m = (dmax
i,m − dmin

i,m )(φmax
i,m − φmin

i,m ). (59)

Finally, fz(·; ·) is given by

fz(zi,ji,m,m; xm) =
1

2π[det(R)]1/2

× exp

{
− 1

2

(
zi,ji,m,m − ζ(xm, ri, snsr)

)T
R
−1
(

zi,ji,m,m − ζ(xm, ri, snsr)
)}

, (60)

where

R =

[
σ2

d 0

0 σ2
θ

]
, ri =

[
rx,i

ry,i

]
∈ R

2×1, and snsr =

[
sx,nsr

sy,nsr

]
∈ R

2×1 (61)

are the covariance matrix of zi,ji,m,m, the position of the ith receiver, and the position of the

nsrth source10, respectively, and ζ(·, ·, ·) is a vector valued function such that

ζ(xm, ri, snsr) =

⎡
⎢⎢⎣

1

c
(‖snsr − xm‖+ ‖xm − ri‖ − ‖ri − snsr‖)
π

2
+ π(1 − u(x))− tan−1

(ym − ry,i)

(xm − rx,i)

⎤
⎥⎥⎦ , (62)

where11 u(·) is a step function taking value 1 over the interval [0 + ∞[. In other words,
ζ(·, ·, ·) converts coordinates (xm, ym) into the corresponding values of TDOA and bearing
with respect to the ith receiver and the nsrth source.

8 Nx, Ny ∈ N
9 The Pi,m’s are assumed known.

10 nsr is given by equation (34).
11 Recall that ‖ · ‖ denotes the Euclidean norm of a vector and c is the sound propagation velocity.
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Dividing equation (57) by the pdf of Z under the noise-only hypothesis, given by

f0(Z) =
M

∏
m=1

Nr

∏
i=1

1

U
Ni,m

i,m

, (63)

we obtain the likelihood ratio

Λ(Z; X, J) =
M

∏
m=1

Nr

∏
i=1

{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
, (64)

which, by taking the logarithm, becomes

Λ(Z; X, J) =
M

∑
m=1

Nr

∑
i=1

log
{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
. (65)

Observe that the likelihood ratio (65) is a function of the target state sequence X and of the
target originated measurement indexes J, which are unknown and, consequently, have to
be estimated. To this end, the likelihood ratio (65) is maximized with respect to X and J.
The optimization with respect to jm, m = 1, . . . , M, is straightforward and solves the data
association problem; in fact, given the ping index m and the target state xm, for each receiver

it is possible to select that measurement index12, ĵi,m say, which minimizes the following
Mahalanobis distance

ĵi,m = arg min
ji,m∈Jm

(
zi,ji,m,m − ζ(xm, ri, snsr)

)T
R
−1
(

zi,ji,m,m − ζ(xm, ri, snsr)
)

. (66)

It follows that (65) can be recast as

Λ(Z; X, Ĵ) =
M

∑
m=1

Nr

∑
i=1

log
{
(1 − Pi,m) + Pi,m f (z

i, ĵi,m,m
; xm)Ui,m

}
, (67)

where
Ĵ =

{
Ĵ1, . . . , ĴM

}
with Ĵm =

{
ĵ1,m, . . . , ĵNr,m

}
. (68)

Finally, in order to estimate the sequence of target positions, it is worth taking into
consideration physical constraints on the target trajectory, that limit the maximum number
of point transitions throughout G between two consecutive pings. With this assumption in
mind, an estimate of X can be obtained as follows

X̂ = arg max Λ(Z; X, Ĵ),
X

xm ∈ P(xm−1)
(69)

where P(xm−1) denotes the set of target states that can be reached from xm−1 under an upper
bound on the target velocity. The above optimization problem can be solved by resorting to a
Viterbi-like procedure to find the best path metrics in an expanded trellis diagram of depth M
whose states are the points of G (see Figures 3). In Section 5 some illustrative examples show
the effectiveness of the above approach.

12 Recall that the Jm’s are finite discrete sets.
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Fig. 3. The expanded trellis whose states are the points of G.

4. Sensor selection strategies for multistatic sonars

This section describes on a conceptual level a method to select those sensors whose
measurements will be fed to the batch algorithm presented in Subsection 3.2. Consider the
sensor network described in Subsection 2.2 and assume that SNR measurements, SNRi,j,m say,
are also available at the fusion center. The statistical distribution of the SNR measurements is
assigned as follows

SNRi,j,m ∼ N 1(μi,m, σ2
SNR), (70)

i = 1, . . . , Nr, j = 1, . . . , Ni,m, m = 1, . . . , M, (71)

where σSNR > 0 is the standard deviation and (Urick, McGraw-Hill 1983)

μi,m =

{
SL + TLST

m + TLTR

i,m + TS(ψi,m), if the contact is originated from the target,

γi,m, otherwise.
(72)

In (72), γi,m ∈ R, SL is the source level, TLST
m is the transmission loss between the nsrth source,

with nsr given by (34), and the target, TLTR

i,m is the transmission loss between the target and the

ith receiver, and TS(ψi,m) is the target strength which depends on the aspect angle of the target,
ψi,m say, with respect to the ith receiver. The transmission loss TLAB between two points A and
B spaced D meters apart from one another is defined as follows (Urick, McGraw-Hill 1983)

TLAB =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 log10

(
1

D2

)
, in case of spherical spreading of the sound wave,

10 log10

(
1

D

)
, in case of cylindrical spreading of the sound wave.

(73)

The likelihood function of the SNR for the ith receiver at the mth ping can be written as follows

f i,m
SNR(αi,m; ji,m, ψi,m) =

(1 − Pi,m)

(
√

2πσSNR)Ni,m
exp

{
− 1

2σ2
SNR

Ni,m

∑
k=1

(SNRi,k,m − γi,m)
2

}

+ Pi,m

exp

⎧
⎨
⎩− 1

2σ2
SNR

⎡
⎣

Ni,m

∑
k=1,k 
=ji,m

(SNRi,k,m − γi,m)
2 + (SNRi,ji,m,m − C − TS(ψi,m))

2

⎤
⎦
⎫
⎬


(
√

2πσSNR)Ni,m
, (74)
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where

• αi,m =
{

SNRi,1,m, SNRi,2,m, . . . , SNRi,Ni,m ,m

}
;

• ji,m ∈ {1, . . . , Ni,m} is the index of the target-originated measurement;

• C = SL +TLST
m + TLTR

i,m.

In (74), ji,m and ψi,m are not known and have to be estimated from the observables. To this end

f i,m
SNR(·; ·, ·) is maximized with respect to such parameters. More specifically, observe that

ψ̂i,m = arg max
ψi,m∈[0, 360)

f i,m
SNR(αi,m; ji,m, ψi,m) = arg max

ψi,m∈[0, 360)
TS(ψi,m) (75)

and that maximization over ji,m can be performed in the same manner as pointed out for (66).
Next, we arrange the likelihood functions at the mth ping in ascending order, namely

f
i1,m,m
SNR < f

i2,m,m
SNR < . . . < f

iNr,m ,m
SNR (76)

and select the last K to form the following set of indexes13

Sm = {iNr−K+1,m, iNr−K+2,m, . . . , iNr,m} . (77)

Once sensors have been selected, the target trajectory can be estimated as follows

X̂ = arg max

[
max

J
Λ1(Z; X, J)

]
,

X
xm ∈ P(xm−1)

(78)

where

Λ1(Z; X, J) =
M

∑
m=1

∑
i∈Sm

log
{
(1 − Pi,m) + Pi,m f (zi,ji,m,m; xm)Ui,m

}
. (79)

Observe that (78) is less time-demanding than (69) since the maximizations over J and X are
performed processing data from K < Nr receivers.

5. Illustrative examples and discussion

5.1 Track-before-detect approach for raw data

The TBD approach described in Subsection 3.1 leads to a class of algorithms capable of
handling raw hydrophone data. This subsection is aimed at proving the feasibility and
the effectiveness of such algorithms using experimental bistatic sonar data collected by the
NURC’s DEMUS sensor array in the course of PreDEMUS’06 sea trial.
The setup of PreDEMUS’06 is shown in Figure 4 and involves a transmitter, three receivers
and as target a towed sound source, called echo-repeater (E-R). The E-R, towed by a surface
vessel at a depth of 80 m, retransmits received source signals with a specified amplification
and a certain delay. The source transmits a frequency-modulated pulse waveform of duration
Tp = 1 sec, bandwidth B = 100 Hz, and carrier frequency fc = 2500 Hz. The resulting range
resolution is about 7 m (we are assuming that c = 1500 m/sec). The receiver is a planar array
(as shown in Figure 1) with Na = 9 arms, Ns = 8 sensors, θa = 40 degrees, and d = 0.289 m.
The total number of sensors is N = 64 (remember that the arms share the central sensor).

13 K may be chosen according to a preassigned criterion.

44 Sonar Systems

www.intechopen.com



Advances in Multistatic Sonar 17

Fig. 4. PreDEMUS’06 setup. The fuchsia circle represents the transmitter, the red triangle
represents the receiver 1, the blue triangle represents the receiver 2, finally the fuchsia
triangle represents the receiver 3. The sequence of green circles is the target trajectory.
[Courtesy M. Daun]

In the sequel, we examine the behavior of the receiver (51) only coupled with (48), where ΩT

is appropriately selected. Moreover, we consider a scenario where the useful signal echoes
are strong enough to guarantee a good number of contacts for traditional tracking systems
(strong-target scenario) and a scenario where the detection performance of the envelope
detector is poor (weak-target scenario). The algorithm processes data corresponding to a little
patch of the surveillance area and the target is moving within such a patch throughout the
entire observation time. The processed patch takes up a region of about 2 seconds in range
and at most 35 degrees in azimuth14 . As to the threshold, it is set in order to have no detection
when the algorithm is fed by noise-only data.
In Figures 5a-5c, we show the performance of the proposed algorithm in terms of target
position estimate when it operates in the first scenario (for more details on the data set see
Figure 4 of (Daun & Ehlers, JASP 2010)); more precisely, we process data from receiver 1 and
pings 91-99 (scenario A1) in Fig. 5a, from receiver 2 and pings 76-84 (scenario A2) in Fig. 5b,
and from receiver 3 and pings 100-108 (scenario A3) in Fig. 5c. The figures also report the
trajectory of the E-R which is taken as reference. Observe that in this case the estimated target
locations, represented by the line markers, closely follow the reference track. Observe that
the estimated tracks exhibit some “fluctuations”. This is partly due to the fact that estimation
errors also depend on the undercurrent which modifies the receiver orientation (heading)
and, consequently, introduces an additional uncertainty in the azimuth estimation. Otherwise
stated, the position of the reference arm of each receiver is time-varying. Such heading errors
can be partly compensated by using data recorded from an on-board compass. In Figure
5d, we plot the estimated target positions returned by the algorithm in the case of a low
observable target; in particular, we consider data from receiver 1 and pings 16-26 (scenario
B1). The figure highlights two important aspects of the TBD approach. First, the proposed
algorithm can detect a low SNR target, whereas the envelope detectors, used by conventional
tracking systems, are completely blind (Daun & Ehlers, JASP 2010). Second, it provides, as a
by product, a rough estimate of the target locations. Notice that also in this figure, the heading
errors make the curve representing the estimated trajectory “convoluted”.

14 A preliminary statistical analysis highlights that such data exhibit a “good” level of homogeneity.
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(a) Scenario A1 assuming M = 9 and K > 2N.

10.153 10.154 10.155 10.156 10.157 10.158 10.159 10.16 10.161 10.162
42.96

42.962

42.964

42.966

42.968

42.97

42.972

42.974

42.976

Longitude (degrees)

L
a

ti
tu

d
e

 (
d

e
g

re
e

s
)

 

 

Estimated track at Rx2

Track of the Echo−Repeater    

(b) Scenario A2 assuming M = 9 and K > 2N.
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(c) Scenario A3 assuming M = 9 and K > 2N.
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(d) Scenario B1 assuming M = 11 and K > 2N.

Fig. 5. Estimated target locations for scenarios A1, A2, A3, and B1.

As a final remark, the estimation of the Rm’s can be automated modifying detector (51) as
follows (Bandiera et al., IEEE-SPL 2006)

max
ΩT

max
D ∈ (ΩR × ΩA)

M

(lm, θr,m) ∈ P((lm−1, θr,m−1))

M

∑
m=1

|vm(θr,m)†
R̂
−1
m zlm,m|2

vm(θr,m)†R̂
−1
m vm(θr,m)

H1
>

<

H0

γ, (80)

where again R̂m is given by (48).

5.2 Contact-based maximum-likelihood tracker

The subsection contains some illustrative examples to show the tracking performance of the
contact-based tracker introduced in Subsection 3.2. Two different scenarios are considered.

5.2.1 Test scenario 1

Consider Nr = 12 hydrophones (Rx) and Nsr = 4 sources (Sr) placed in the positions listed
in Table 1. Moreover, we assume Pi,m = Pd, ∀i, m. The surveillance region is a 16740 × 16740

m2 square with the upper left corner at (37500, 34500) m and it is covered by a grid of 31 ×
31 points 540 m spaced apart. Such a separation corresponds to a nominal target velocity
of 6 knots. The total number of processed ping is M = 20 and the time interval between
consecutive pings is Tpg = 180 seconds. As to the synthetic target, we assume that it moves
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within the surveillance area with a constant velocity of about 6 knots and that after 10 pings
its direction of motion changes and becomes orthogonal to the previous direction.
The standard deviations of target originated measurements are set as follows

σd = 0.4 sec and σφ = 8 degrees, (81)

while for each couple source-receiver the false contacts are distributed uniformly in the bistatic
ellipse that contains the surveillance region.
Finally, the number of false contacts, namely those not originated from the target, obeys to the
Poisson distribution with parameter

λ = Pf aNcell, (82)

where Pf a is the probability of false alarm in any cell and Ncell is the total number of cells. All
simulation results assume Pf a = 0.01 and λ = 9.6.
In Figures 6a-6c we show the estimated tracks from 4 independent trials. Each figure refers to
different values of Pd and reports the actual trajectory of the target (ground truth). Observe
that for low values of Pd (Pd = 0.3) the proposed algorithm is still capable of providing an
estimate of the target positions, even though the estimation error is significant. On the other
hand, for greater values of Pd the estimated target locations closely follow the ground truth.
Such results are confirmed by Figure 6d, where we plot the root mean square (RMS) values
based on 300 independent trials versus the Pd.

5.2.2 Test scenario 2 (from the multistatic tracking working group)

The intent of the multistatic tracking working group (MSTWG) is to foster the exchange of
scientific and technical ideas, problems, and solutions related to multistatic tracking for sonar
and radar. This includes the collaborative analysis of common data sets and culminate in
workshops or special sessions disseminating the results. The MSTWG was founded as an ad
hoc working group in December 2004, with a three year charter. In July 2007, based on mutual
agreement between the International Society of Information Fusion (ISIF) board of directors
and the current group membership, it was agreed to formalize the MSTWG as a working
group under the auspices of ISIF. The objective of the ISIF MSTWG is to promote collaboration
among its members in multisensor fusion and tracking, with a current focus on multistatic
sonar and radar. This collaboration is achieved through regular meetings, participation in
special sessions at conferences, and the analysis of common data sets. One of these data sets is

Rx number X (meters) Y (meters) Rx number X (meters) Y (meters)

1 26752,91 8219,99 10 36033,99 36000

2 26752,91 26740 11 54581,52 17479,99

3 26752,91 45259,99 12 54581,52 36000
4 45285,83 8219,99 Sr number X (meters) Y (meters)

5 45285,83 45259,99 1 17486.46 54520
6 63818,75 8219,99 2 54581,52 17480

7 63818,75 26740 3 54581,52 54520

8 63818,75 45259,99 4 17486.46 17480
9 36033,99 17479,99

Table 1. Sensor coordinates.
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the Metron data set (Orlov, Metron Data set 2009). In the following a brief description of the
data set is given (further details can be found in (Orlov, Metron Data set 2009)).
The operational field is a 72000 × 72000 m2 square with the origin at (0, 0) m. The sensors
are laid out as two concentric square grids centered about (x, y) = (36000, 36000) m. All
sensors are stationary. The first grid consists of 16 sensors, laid out 4 × 4 beginning at (x, y) =
(8220, 8220) m, with four receivers within a row 18520 m apart horizontally and four rows
18520 m apart vertically. All of these sensors are receivers. The second grid consists of 9
sensors, laid out 3 × 3 beginning at (x, y) = (17480, 17480) m, with three receivers within a
row 18520 m apart horizontally and three rows 18520 m apart vertically. The four sensors at
the corners of this grid are co-located source/receiver units, and the remaining five sensors are
receivers. Figures 6e and 6f contain the results obtained by applying the proposed algorithm
to the first MSTWG Metron data set described above.

6. Conclusions and hints for future works

This work has addressed new trends in the field of multistatic sonar systems. Specifically, the
focus is on the design and analysis of tracking algorithms capable of operating in highly noisy
environments. The TBD approach is investigated and it is shown that TBD (or TBD-based)
algorithms can overcome the limitations exhibited by the conventional trackers in case of
low SNR targets or low-quality sensors. In fact, the class of decision schemes described
in Subsection 3.1 guarantees good detection performance of weak moving targets and, as
a byproduct, provides a rough estimate of the target locations, while the batch algorithm
introduced in Subsection 3.2 ensures acceptable performance also when the probability of
detection per sensor is low.
Several important issues would deserve further attention. First, observe that since the spectral
properties of the noise may change with the distance from the sensor, the homogeneity
assumption does not generally hold. In such a case, it would be important to assess the
performance of the TBD algorithm proposed in Subsection 3.1 coupled with other possible
estimates of the noise covariance matrix, like the so-called normalized sample covariance
matrix, introduced in (Conte et al., EUSIPCO 1994), or the one introduced in (Conte et al.,
IEEE-TSP 2002). In addition, the Gaussian assumption is not always met in realistic scenarios
and, hence, it would also be of interest a performance analysis in non-Gaussian disturbance.
Another key point that has not been sufficiently investigated is the design and the analysis
of TBD (or TBD-based) algorithms for extended and/or multiple targets; a first work on
the design of TBD algorithms for multiple targets has been presented in (S. Buzzi et al.,
IEEE-TAES 2008).
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(a) Estimated tracks assuming Pd = 0.3.
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(b) Estimated tracks assuming Pd = 0.5.
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Fig. 6. Estimated tracks from 4 independent Monte Carlo trials, RMS errors, and estimated
tracks from the first MSTWG Metron data set.
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