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1. Introduction 

A structural element having one dimension many times greater than its other dimensions 

can be a rod, a bar, a column, or a beam. The definition actually depends on the loading 

conditions. A beam is a member mainly subjected to bending. The terms rod (or bar) and 

column are for those members that are mainly subjected to axial tension and compression, 

respectively. 

Beams are one of the fundamental structural or machine components. Composite beams are 

lightweight structures that can be found in many diverse applications including aerospace, 

submarine, medical equipment, automotive and construction industries. Buildings, steel 

framed structures and bridges are examples of beam applications in civil engineering. In 

these applications, beams exist as structural elements or components supporting the whole 

structure. In addition, the whole structure can be modeled at a preliminary level as a beam. 

For example, a high rise building can be modeled as a cantilever beam, or a bridge modeled 

as a simply supported beam. In mechanical engineering, rotating shafts carrying pulleys and 

gears are examples of beams. In addition, frames in machines (e.g. a truck) are beams. 

Robotic arms in manufacturing are modeled as beams as well. In aerospace engineering, 

beams (curved and straight) are found in many areas of the plane or space vehicle. In 

addition, the whole wing of a plane is often modeled as a beam for some preliminary 

analysis. Innumerable other examples in these and other industries of beams exist. 

This chapter is concerned with the development of the fundamental equations for the 

mechanics of laminated composite beams. Two classes of theories are developed for 

laminated beams. In the first class of theories, effects of shear deformation and rotary inertia 

are neglected. This class of theories will be referred to as thin beam theories or classical 

beam theories (CBT). This is typically accurate for thin beams and is less accurate for thicker 

beams. In the second class of theories, shear deformation and rotary inertia effects are 

considered. This class of theories will be referred to as thick beam theory or shear 

deformation beam theory (SDBT).  

This chapter can be mainly divided into two sections. First, static analysis where deflection 
and stress analysis for composite beams are performed and second dynamic analysis where 
natural frequencies of them are assessed. In many applications deflection of the beam plays 
a key role in the structure. For example, if an aircraft wig tip deflection becomes high, in 
addition to potential structural failure, it may deteriorate the wing aerodynamic 
performance. In this and other applications, beams can be subjected to dynamic loads. 
Imbalance in driveline shafts, combustion in crank shaft applications, wind on a bridge or a 
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structure, earthquake loading on a bridge or a structure, impact load when a vehicle goes 
over a pump are all examples of possible dynamic loadings that beam structures can be 
exposed to. All of these loads and others can excite the vibration of the beam structure. This 
can cause durability concerns or discomfort because of the resulting noise and vibration. 

2. Stiffness of beams 

Figure 1 shows a free body diagram of a differential beam element. Beams are considered as 
one dimensional (1D) load carriers and the main parameter for analysis of load carrier 
structures is stiffness. 
 

 

Fig. 1. Free body diagram of a differential beam element 

In general for composite laminates, stiffness matrix composed of ABD parameters is used to 
relate the stress resultants to strains. 
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 (1) 

where regular ABD stiffness parameters for beams are defined as (Qatu, 2004). 
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Note here that the above definitions are different from those used for general laminate 
analysis in the literature. The beam width is included in the definitions of these terms, while 
it is customary to leave this term out in general laminate analysis. In 1D analysis of beams, 
as we will see later, only parameters in x direction are considered and other parameters are 

www.intechopen.com



 
Mechanics of Composite Beams   

 

529 

ignored. So instead of 6X6 stiffness matrix for general laminate analysis we will have a 2X2 
matrix for CBT and 3X3 matrix for SDBT. This formulation has the disadvantage of not 
accounting for any coupling. To overcome this problem, we propose that instead of normal 
definition of A11, B11, and D11, one can use equivalent stiffness parameters that include 
couplings. That is why we will deal with stiffness parameters first. 

2.1 Equivalent modulus  

One approach for finding equivalent modulus for the whole laminate was proposed by 

finding the inverse of the ABD matrix (J matrix) (Kaw, 2005). The laminate modulus of 

elasticity is then defined as  

 1

44

[ ]
b

E J ABD
I J

−= =  (5) 

where J44 is the term in 4th row and 4th column of the inverse of the ABD matrix of the 

laminate and I is the moment of inertia. If one wants to use this approach for finding 

parameters A11, B11, and D11 the following formulas derived by authors should be used. 
 

 11
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b
A

J
=  (6) 

 11
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1
B

J
=  (7) 

 11
44

b
D

J
=  (8) 

2.2 Equivalent stiffness parameters by Rios and Chan 

Another approach using compliance matrix can be done by the following formulation (Rios 

and Chan, 2010). 
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where a11, b11, and d11 are relevant compliance matrix terms. Similar to previous section we 

have a11=J11, b11=J14, d11=J44. 
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2.3 Equivalent stiffness parameters by Vinson and Sierakowski 
Finding equivalent modulus of elasticity of each lamina and using normal definition of 
ABDs leads to the following formulation (Vinson and Sierakowski, 2002). 

 ( ) ( ) ( ) ( )4 4
2 212

11 12 11 22

cos sin1 1 2
cos sink k

k kk
x E G E EE

θ θυ θ θ
⎛ ⎞

= + − +⎜ ⎟
⎝ ⎠

 (12) 

Equivalent A11, B11 and D11 using these formulas would be 
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N
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3. Static analysis 

In static analysis section we will consider composite beams loaded with classical loading 
condition and derive differential equations for displacements. Those equations would be 
solved with classical boundary conditions of both ends simply supported and both ends 
clamped. We will use the static analyses to find deflection and stress of composite beams 
under both CBT and SDBT. 

3.1 Classical beam theory  

Applying the traditional assumptions for thin beams (normals to the beam midsurface 
remain straight and normal, both rotary inertia and shear deformation are neglected), 
strains and curvature change at the middle surface are: (Qatu, 1993, 2004) 

 0
0

u

x
ε

∂
=
∂

, 
2

2

w

x
κ ∂
= −

∂
 (16) 

where u, w are displacements in x and z directions, respectively. Normal strain at any point 
would be 

 0 zε ε κ= +  (17) 

Force and moment resultants are calculated using  

 11 11 0

11 11

N A B

M B D

ε
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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 (18) 

The equations of motion are 
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M
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www.intechopen.com



 
Mechanics of Composite Beams   

 

531 

 
x

N
p

x

∂
= −

∂
 (20) 

where px and pz are external forces per unit length in x and z direction, respectively. 
The potential strain energy stored in a beam during elastic deformation is 

 ( )00

1 1

2 2

l

V
PE dV N M dxσε ε κ= = +∫ ∫  (21) 

writing this expression for every lamina and summing for all laminate we have 

 ( )( )2 2
11 0 11 0 110

1
2

2

l
PE A B D dxε ε κ κ= + +∫  (22) 

substituting kinematic relations to equation (22) it will become 
 

 

22 2 2
0 0

11 11 112 20

1
2

2

l u u w w
PE A B D dx

x x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∫  (23) 

 

The work done by external forces on beam would be 

 ( )00

1

2

l

x zW p u p w dx= +∫  (24) 

The kinetic energy for each lamina is 
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∫ ∫  (25) 

where ( )kρ  is the lamina density per unit volume, and t is time. The kinetic energy of the 
entire beam is 
 

 
2 2

01

02

l uI w
KE dx

t t

⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠
∫  (26) 

 

where I1 is the average mass density of the beam per unit length. These energy expressions 
can be used in an energy-based analysis such as finite element or Ritz analyses. 

3.1.1 Euler approach 
Inserting displacement relations in equations of motion will result in (Vinson and Sierakowski, 
2002) 
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Solving these two equations for u and w will result in the following differential equations. 
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Stress in the axial direction in any lamina can be found by the following equation 

 ( )
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0
11 0 11 2x
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σ ε κ
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 (31) 

Different loading and boundary conditions can be applied to these equations in order to find 
equations for u and w. These boundary conditions are 

Simply supported: 0, 0w M= =  

Clamped: 0, 0
dw

w
dx

= =  

Free: 0, 0V M= =  
where V and M are shear force and bending moment and are linearly dependent on third 
and second derivative of w respectively. Here, we propose solution for both ends simply 
supported and both ends clamped with constant loading q0. The reader is urged to apply 
other boundary conditions and find the equations for deflection. For specific case of simply 
supported boundary conditions at both ends and assuming u0(0)=0 we have 
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For clamped boundary conditions at both ends we have 
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One should note that for simply supported boundary condition the maximum moment and 
consequently maximum stress occurs at middle of the beam, while for the clamped case 
maximum stress occurs at two ends.  

3.1.2 Matrix approach 

Inserting the strain and curvature relations in the force and moment resultants equations 
and using those in the equations of motion, one can express the equations of motion in 
terms of displacements. Expressing those equations in matrix form we have 

 11 12 0
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0
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where 
2
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∂
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∂
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3

12 21 11 3
L L B

x

∂
= = −

∂
. 

The beam is supposed to have simply supported boundary condition. So we have on x=0, a. 

 0 0x xw N M= = =  (41) 

The above equations of motion as well boundary terms are satisfied if one chooses 
displacements functions as 

 [ ] [ ]
1

, cos( ), sin( )
M

m m m m
m

u w A x C xα α
=

= ∑  (42) 

where /m m aα π=   and a is the beam length. The external forces can be expanded in a 
Fourier series in x 

 [ ] ( ) ( )
1

, sin , cos
M

x z xm m zm m
m
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Substituting these equations in the equations of motion we have the characteristic equation 
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where 2
11 11mC Aα= − , 4

22 11mC Dα= , 3
21 12 11mC C Bα= − = . Stress in the axial direction would be 

found using the following procedure.  
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 ( )11 0x Q zσ ε κ= +  (47) 

3.2 Shear deformation beam theory 

The inclusion of shear deformation in the analysis of beams was first made in early years of 
twentieth century (Timoshenko, 1921). A lot of models have been proposed based on this 
theory since then. In this chapter a first order shear deformation theory (FSDT) approach is 
presented to account for shear deformation and rotary inertia (Qatu, 1993, 2004). 

 0 0,u u z w wψ= + =  (48) 

Strains and curvature changes at the middle surface are: 
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x
γ ψ∂
= +
∂

 (49) 

where 0ε is middle surface strain, γ  is the shear strain at the neutral axis and ψ is the 
rotation of a line element perpendicular to the original direction. Normal strain at any point 
can be found using equation 17. Force and moment resultants as well as shear forces are 
calculated using  
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 (50) 

where for A55 we have (Vinson and Sierakowski, 2002). 
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The equations of motion considering rotary inertia and shear deformation would be 
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∂
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The potential strain energy stored in a beam during elastic deformation is 
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Writing this expression for every lamina and summing for all laminate we have (Vinson and 
Sierakowski, 2002) 

 ( )( )2 2 2
11 0 11 0 11 550

1
2

2

l
PE A B D A dxε ε κ κ γ= + + +∫  (56) 

substituting kinematic relations to equation (56) it will become 
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⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∫  (57) 

The work done by external forces on beam is found by equation (24). Finding the kinetic 
energy for each layer and then summing for all layers yield the kinetic energy of the entire 
beam. 
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∫  (58) 

These energy expressions can be used in an energy-based analysis such as finite element or 
Ritz analyses. 

3.2.1 Euler approach 

Inserting displacement relations in equations of motion will result in 
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Taking second derivative of equation (60) and solving for 
3

3x

ψ∂
∂

 from equations (59, 61) will 

result in following equations. 
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For specific case of pz(x)=q0 with simply supported boundary conditions we have 

 
4 3 24 2

0 011
2

5511 11 11

( ) 2
24 2

q l q lA x x x x x
w x

l l l A l lA D B

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦
 (65) 

 
3 23

0 011
2

5511 11 11

( ) 1 4 6
24 2

q l q lA x x
x

l l AA D B
ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦
 (66) 

 

( ) ( )
22 2

0 0
11 11 112

5511 11 11

2

2
x

q l q l zx x
Q B zA

l l AA D B
σ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− ⎢ ⎥⎣ ⎦

 (67) 

maximum deflection would occur at middle of the beam and it would be 

 
4 2

0 011
max 2

5511 11 11

5

384 8

q l q lA
w

AA D B

⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠

 (68) 

The first term in equation (68) is deflection due to bending and the second term is due to 
shear. For clamped boundary condition one can use the term due to bending from CBT 
analysis and add the term due to shear. 

3.2.2 Matrix approach 

Expressing equations of motion in terms of displacement we have in matrix form 

 
11 12 13 0

21 22 23 0

31 32 33

0

0

0 0

x

z

L L L u p

L L L w p

L L L ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (69) 

where
2 2 2 2

11 11 22 55 33 11 55 13 31 112 2 2 2
,  ,  ,  L A L A L D A L L B

x x x x

∂ ∂ ∂ ∂
= = − = − = =

∂ ∂ ∂ ∂
,

23 32 55 12 21,  0L L A L L
x

∂
= = − = =

∂
. The following simply supported boundary conditions are 

used on x=0, a 

 
0 0xw N

x

ψ∂
= = =

∂
 (70) 

The above equations would be satisfied if 

 [ ] [ ]0 0
1

, , cos( ), sin( ), cos( )
m

m m m m m m
m

u w A x C x B xψ α α α
=

= ∑  (71) 

Substituting these equations in the equations of motion we have the characteristic equation 

 

1
11 12 13

12 22 23

13 23 33 0

m xm

m zm

m

A C C C p

C C C C p

B C C C

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (72) 
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where 2
11 11mC Aα= − , 2

22 55mC Aα= , 2
33 11 55mC D Aα= − − , 2

31 13 11mC C Bα= = − , 

23 32 55 mC C A α= − = , 21 12 0C C= = . 

4. Dynamic analysis 

To the knowledge of authors, there is no simple approach for dynamic analysis of composite 
beams considering all kinds of couplings. A review was conducted on advances in analysis 
of laminated beams and plates vibration and wave propagation (Kapania and Raciti, 1989. 
Another review was done on the published literature of vibrations of curved bars, beams, 
rings and arches of arbitrary shape which lie in a plane (Chidamparam and Leissa, 1993). 
Among FSDT works, some were validated for symmetric cross-ply laminates that have no 
coupling (Chandrashekhara et al., 1990; Krishnaswamy et al., 1992; Abramovich et al., 1994). 
In some other models, symmetric beams having fibers in one direction (only bending-
twisting coupling) were considered (Teboub and Hajela, 1995; Banerjee 1995, 2001; Lee at al., 
2004). Some FSDT models were validated for cross-ply laminates that have only bending-
stretching coupling (Eisenberger et al. 1995; Qatu 1993, 2004).   
Higher order shear deformation theories (HSDT) were also developed for composite beams 
to address issues of cross sectional warping and transverse normal strains. Some were 
validated for cross-ply laminates (Khdier and Reddy, 1997; Kant et al., 1998; Matsunaga, 
2001; Subramanian, 2006). Other theories like zigzag theory (Kapuria et al. 2004) were used 
to satisfy continuity of transverse shear stress through the laminate and showed to be 
accurate for natural frequency calculations of beams with specific geometry and lay-up 
(symmetric or cross-ply laminates). Another theory was global-local higher order theory 
(Zhen and Wanji, 2008) that was validated for cross-ply laminates. 
In this section, classic and FSDT beam models will be evaluated for their accuracy in a 
vibration analysis using different approaches for stiffness parameters calculation. Their 
results will be compared with those obtained using a 3D finite element model for different 
laminates (unidirectional, symmetric and asymmetric cross ply and symmetric and 
asymmetric angle-ply). The accurate model presented would then be verified for composite 
shafts. 

4.1 Classical beam theory  

Equations of motion for dynamic analysis of laminated beams would be 

 
2 2

12 2 z

M w
I p

x t

∂ ∂
= −

∂ ∂
 (73) 

 
2

1 2 x

N u
I p

x t

∂ ∂
= −

∂ ∂
 (74) 

where ( )( )
1 1

1

N
k

k k
k

I b h hρ −
=

= −∑ . Expressing those equations in matrix form we have for free 

vibration 

 
2

11 12 0 1 0

2
21 22 0 1 0

0 0

0 0

L L u I u

L L w I wt

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (75) 
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The equations of motion as well as simply supported boundary terms are satisfied if one 
chooses displacements as 

 [ ] [ ]
1

, cos( ), sin( ) sin( )
M

m m m m
m

u w A x C x tα α ω
=

= ∑  (76) 

Substituting these equations in the equations of motion we have the characteristic equation 
 

 11 12 12

21 22 1

0
0

0
m m xm

m m zm

C C A I A p

C C C I C p
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (77) 

The nontrivial solution for natural frequency can be found by setting the determinant of 
characteristic equation of matrix to zero. 
One should note here that if the laminate is symmetric, the B11 term vanishes and the 
bending frequencies are totally decoupled from axial ones. As a result, the following well-
known formula for the natural frequencies of a symmetrically laminated simply supported 
composite beam can be applied: 

 
2

11
n

n D

A

πω
ρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠`

 (78) 

where ρ is density, `  is length and A is the cross section area of the beam.  As we will see 
later it cannot be used for thick laminates and those that have any kind of coupling.  

4.2 Shear deformation beam theory 

The equations of motion considering rotary inertia and shear deformation would be (Qatu, 
1993, 2004) 

 
2 2

1 22 2 x

N u
I I p

x t t

ψ∂ ∂ ∂
= + −

∂ ∂ ∂
 (79) 

 
2

1 2z

Q w
p I

x t

∂ ∂
− = −
∂ ∂

 (80) 

 
2 2

2 32 2

M u
Q I I

x t t

ψ∂ ∂ ∂
− = +

∂ ∂ ∂
 (81) 

where ( ) ( ) ( ) ( )( ) 2 2 3 3
1 2 3 1 1 1

1

1 1
, , , ,

2 3

N
k

k k k k k k
k

I I I b h h h h h hρ − − −
=

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑ . So by expressing 

equations of motion in terms of displacement we have in matrix form (for free vibration) 

 
11 12 13 0 1 2 02

21 22 23 0 1 02

31 32 33 2 3

0 0

0 0 0

0 0

L L L u I I u

L L L w I w
t

L L L I Iψ ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (82) 

Equations of motion as long as simply supported boundary condition would be satisfied if 
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 [ ] [ ]0 0
1

, , cos( ), sin( ), cos( ) sin( )
M

m m m m m m
m

u w A x C x B x tψ α α α ω
=

= ∑  (83) 

Substituting these equations in the equations of motion we have the characteristic equation 

 
11 12 13 1 2

2
12 22 23 1

13 23 33 2 3

0

0 0 0

0 0

m m xm

m m zm

m m

C C C A I I A p

C C C C I C p

C C C B I I B

ω
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (84) 

The nontrivial solution for natural frequency can be found by setting the determinant of 
characteristic equation matrix to zero. 

5. Case studies 

5.1 Rectangular beam 

A rectangular cross section beam model having 1 m length, 0.025 m width, and 0.05 m 
height was considered and modeled in ANSYS® finite element code. Solid elements were 
used to apply 3D elasticity. A convergence study was done and the convergent model had 8 
elements in thickness, 4 elements in width direction and 160 elements in length direction. 
Ratio of length to height of 20 was selected to be at the border of thin beams. Figure 2 shows 
the model.  

 

 

Fig. 2. 3D finite element model in ANSYS 

The simply supported boundary condition was modeled by applying constraint on z 
direction at middle line of end faces. The material properties are E1 = 138 GPa, E2 =8.96 GPa, 
υ12=0.3, G12= 7.1 GPa, ρ =1580 kg/m3. 
Both static and modal analyses are done and the results of CBT and SDBT with different 
stiffness parameters are compared with 3D FEM in order to find the most accurate model. 

www.intechopen.com



 
Advances in Composite Materials - Analysis of Natural and Man-Made Materials 

 

540 

5.1.1 Static analysis 
A load of 250000 N/m were applied to the beam and the resulting deflection for cross-ply 
and angle-ply laminates were assessed using different models. The simply supported beam 
maximum deflection using Euler approach and matrix approach are given in Tables 1 and 2. 
Maximum normal stress is also presented in Table 3. Since the stress due to shear is low the 
results for CBT is not presented. The maximum deflection and stress in clamped beam are 
presented in Tables 4 and 5. 
 

CBT SDBT FEM 
Laminate 

(S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

[0]4 0.0901 0.0906 0.0906 0.0906 0.0988 0.0993 0.0993 0.0993 0.1000 

[0/90]s 0.1019 0.1026 0.1022 0.1022 0.1107 0.1113 0.1109 0.1109 0.1116 

[45]4 0.2753 0.7980 0.7980 0.7980 0.2840 0.8067 0.8067 0.8067 0.7824 

Table 1. Maximum deflection of a SS beam (Euler aproach) 

 

CBT SDBT FEM 
Laminate 

(S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

[0]4 0.0908 0.0913 NA* 0.0913 0.1002 0.1008 NA 0.1008 0.1000 

[0/90]s 0.1028 0.1034 NA 0.1031 0.1123 0.1129 NA 0.1125 0.1116 

[45]4 0.2776 0.8046 NA 0.8046 0.2870 0.8140 NA 0.8140 0.7824 

* Ill conditioning observed 
Table 2. Maximum deflection of a SS beam (Matrix aproach) 

 

Maximum Stress 
Laminate 

(S11) (S11)VS matrix FEM 

[0]4 3.000E+08 3.000E+08 3.000E+08 3.04E+08 

[0/90]s 3.397E+08 3.397E+08 3.397E+08 3.42E+08 

[45]4 3.000E+08 3.000E+08 3.000E+08 3.12E+08 

Table 3. Maximum axial stress of a SS beam (at middle point) 

 

CBT SDBT FEM 
Laminate 

(S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

[0]4 0.01801 0.01812 0.01812 0.01812 0.02673 0.02684 0.02684 0.02684 0.02658 

[0/90]s 0.02039 0.02051 0.02044 0.02044 0.02911 0.02923 0.02916 0.02916 0.0286 

[45]4 0.05506 0.1596 0.1596 0.1596 0.06378 0.1683 0.1683 0.1683 0.1654 

Table 4. Maximum deflection of a clamped beam (Euler aproach) 
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Maximum Stress 
Laminate 

(S11) (S11)VS matrix FEM 

[0]4 1.000E+08 1.00E+08 1.000E+08 1.00E+08 

[0/90]s 1.132E+08 1.132E+08 1.132E+08 1.16E+08 

[45]4 1.000E+08 1.00E+08 1.000E+08 1.00E+08 

Table 5. Axial stress at middle of a clamped beam 

The results show that Euler and matrix approaches have very close results. In general, using 
SDBT along normal ABD parameters can cause problems in laminates where coupling 
exists. However using equivalent ABDs from Vinson and Sierakowski or Chan’s 
formulation one can get the most accurate results for deflection. This formulation is valid for 
any laminate having bending-twisting coupling. 

5.1.2 Dynamic analysis 

Different approaches for calculating the natural frequencies of the first 5 modes were 
evaluated. Five different stacking sequences were selected to cover different kinds of 
composite beams. These include unidirectional, symmetric cross-ply, asymmetric cross-ply, 
angle-ply and general laminates. The results are given in Table 6. 
The results show that the classic beam model using normal ABD parameters is only valid for 
1st mode of cross-ply laminates. The effective length becomes less on higher modes and the 
thin beam assumption no longer applies leading to inaccurate results. Although the [45]4 
laminate is symmetric; it has bending twisting coupling and using the normal ABD 
formulation leads to inaccurate results. The equivalent ABDs by equivalent stiffness 
parameters improve the classic approach for unsymmtric laminates but still not accurate 
enough for higher modes since the shear deformation is not included. 
Using FSDT approach for thick beams (Qatu, 1993, 2004) along Vinson and Sierakowski 
equivalent modulus of elasticity for calculation of ABD parameters (Eqs. 13-15) one can 
reach accurate results for higher modes. This approach does not have coupling problems 
and accurate results for all laminate is achieved. The overall range of error is about 1 
percent. The other equivalent parameters defined by compliance matrix are not as accurate 
as Vinson and Sierakowski and even do not have real results in some cases. 

5.2 Tubular beam 

Experimental results of a tubular boron/epoxy beam (Zinberg and Symonds, 1970) are used 
in this section to verify the accuracy of the model for tubular cross section. The laminate was 
[90/45/-45/06/90] from inner to outer layers. The following equations were used for 
stiffness parameters. 
 

 ( )2 2
11 1

1

N
k
x k k

k

A E r rπ −
=

⎡ ⎤= −⎣ ⎦∑  (85) 

 ( )4 4
11 1

14

N
k
x k k

k

D E r r
π

−
=

⎡ ⎤= −⎣ ⎦∑  (86) 
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[04] 

n CBT SDBT FEM 

 (S11)* (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

1 9.898 9.869 9.869 9.869 9.431 9.406 9.406 9.406 9.373 

2 39.593 39.477 39.477 39.477 33.413 33.343 33.343 33.343 32.978 

3 89.084 88.824 88.824 88.824 64.529 64.428 64.428 64.428 63.28 

4 158.372 157.909 157.909 157.909 98.109 97.996 97.996 97.996 95.77 

5 247.457 246.733 246.733 246.733 132.196 132.082 132.082 132.082 128.67 

[0/90]s 

n CBT SDBT FEM 

 (S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

1 9.302 9.275 9.291 9.291 8.910 8.886 8.901 8.901 8.873 

2 37.207 37.098 37.163 37.163 31.931 31.861 31.903 31.903 31.651 

3 83.716 83.472 83.618 83.618 62.369 62.266 62.327 62.327 61.51 

4 148.829 148.394 148.653 148.653 95.659 95.540 95.611 95.611 93.91 

5 232.546 231.865 232.271 232.271 129.705 129.583 129.656 129.656 126.88 

[02/902] 

n CBT SDBT FEM 

 (S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

1 4.688 4.674 NA 4.680 4.637 4.624 NA 4.630 4.609 

2 18.718 18.663 NA 18.688 17.950 17.901 NA 17.924 17.651 

3 41.990 41.867 NA 41.924 38.413 38.319 NA 38.362 37.251 

4 74.337 74.120 NA 74.219 64.164 64.025 NA 64.088 61.354 

5 115.526 115.188 NA 115.343 93.493 93.316 NA 93.397 88.302 

[454] 

n CBT SDBT FEM 

 (S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

1 5.6613 3.3251 4.5402 4.5402 5.5659 3.3033 4.4890 4.4890 3.3540 

2 22.6450 18.1610 13.3005 18.1610 21.2317 12.9626 17.3840 17.3840 12.970 

3 50.9513 40.8622 29.9262 40.8622 44.5592 28.3035 37.2377 37.2377 28.316 

4 90.5801 72.6439 53.2021 72.6439 72.9229 48.4101 62.2926 62.2926 48.321 

5 141.5314 113.5062 83.1283 113.5062 104.2553 72.3163 90.9410 90.9410 71.93 

[302/602] 

n CBT SDBT FEM 

 (S11) (S11)VS (S11)Kaw (S11)Chan (S11) (S11)VS (S11)Kaw (S11)Chan 3D 

1 5.1433 3.4403 NA 4.8010 5.0735 3.4173 NA 4.7449 3.4830 

2 20.5549 13.7558 NA 19.1791 19.5074 13.3998 NA 18.3329 13.458 

3 46.1795 30.9295 NA 43.0585 41.3688 29.2239 NA 39.1346 29.222 

4 81.9230 54.9322 NA 76.3072 68.4318 49.9103 NA 65.1941 49.857 

5 127.6498 85.7212 NA 118.7286 98.7990 74.4320 NA 94.7571 73.97 

Table 6. Nondimensional natural frequencies 2 2
112 /a E hω ρΩ = of rectangular simply 

supported beams. a/h = 20, b/h =0.5, Graphite/Epoxy, E1/E2 = 15.4, G12/E2 = 0.79, υ 12 = 0.3 
(subscript stands for formulation in deriving ABDs) 
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A number of researchers have worked on this beam with different beam and shell models 
and their results are shown in Table 7. 
 

Author Method used Frequency (Hz) 

Zinberg, Symonds, 1970 Measured experimentally 91.67 

dos Reis et al., 1987 
Bernoulli–Euler beam theory. Stiffness 
determined by shell finite elements 

82.37 

Sanders shell theory 97.87 
Kim and Bert, 1993 

Donnell shallow shell theory 106.65 

Bert and Kim, 1995 Bresse–Timoshenko beam theory 96.47 

Singh and Gupta, 1996 Effective Modulus Beam Theory 95.78 

Chang et al. 2004 Continuum based Timoshenko Beam 96.03 

Finite element analysis using ABAQUS 95.4 
Qatu and Iqbal, 2010 

Euler–Bernoulli beam theory 102.47 

Finite element analysis using ANSYS 95.89 

CBT using V-S 96.12 present study 

SDBT using V-S 94.71 

Table 7. Tubular Boron-epoxy beam fundamental natural frequencies (Hz) by different authors 
(E11 = 211 GPa, E22 = 24 GPa, G12 = G13 = G23 = 6.9 GPa, υ  = 0.36, density = 1967 kg/m3),  
length = 2470 mm, mean diameter = 126.9 mm, thickness = 1.321 mm. (90, 45, -45,0,0,0,0,0,0,90) 
laminate (from inner to outer) 

The results show that most of the models can predict the natural frequency of this beam 
with good accuracy. Only the models by dos Reis et al. predicted results that are far from 
those obtained by experiment. However the FSDT used in this paper is the most accurate 
model for this case.  
The effect of ply orientation on reduction of stiffness and consequently natural frequency of 
a graphite-epoxy tube is presented in Table 8 (Bert and Kim, 1995).  
  

Lamination angle 
Theory 

0 15 30 45 60 75 90 

Sanders Shell  92.12 72.75 50.13 39.77 35.33 33.67 33.28 

Bernoulli-Euler  107.08 89.88 71.15 52.85 38.20 31.42 30.22 

Bresse-Timoshenko  101.20 86.82 69.95 52.38 37.97 32.90 30.05 

Present FEM analysis  100.28 68.80 45.51 35.90 31.96 30.57 30.27 

Present CBT approach 108.42 71.12 46.05 36.15 32.17 30.78 30.50 

Present SDBT approach 104.43 70.50 45.91 36.06 32.09 30.70 30.36 

Table 8. Effect of lamination angle on fundamental natural frequencies of tubular a graphite-
epoxy beam. (E11 = 139 GPa, E22 = 11 GPa, G12 = G13 = 6.05 GPa, G23 = 3.78 GPa, ν = 0.313, 
density = 1478 kg/m3) 

These results are for the first natural frequency of a graphite epoxy tubular beam with the 
same geometry of the previous one. Results of the present CBT, SDBT and FEM using shell 
elements are presented. 
Results show a good agreement between this study and the previous ones. It shows the 
decrease in natural frequency by lowering stiffness and also bending twisting coupling. 

www.intechopen.com



 
Advances in Composite Materials - Analysis of Natural and Man-Made Materials 

 

544 

6. Conclusion 

Different approaches for static and dynamic analysis of composite beams were proposed 
and a modified FSDT model that accounts for various laminate couplings and shear 
deformation and rotary inertia was validated. The method was verified using 3D FEM 
model. The results showed good accuracy of the model for rectangular beams in static 
analysis for laminates having bending-twisting coupling and in dynamic analysis for all 
kinds of laminates. Also the model was verified for dynamic analysis of tubular cross 
section beams (or shafts) and the results were accurate compared to experimental ones and 
other models. This model provides an accurate approach for calculating the natural 
frequencies of beams and shafts with arbitrary laminate for engineers and scientists. 
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