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1. Introduction  

The in planta production of recombinant proteins is a newly emerging area. The use of 
transgenic crops enjoys several comparative advantages over established heterologous 
protein production systems based on bacteria, yeasts, mammalian or plant cells, particularly 
in terms of cost and practicality. Thanks to the development of effective transformation 
protocols, the generation of recombinant vaccines, antibodies and enzymes in the grains of 
the Triticeae cereals has become a feasible proposition in recent years. A further advantage of 
in planta synthesized recombinant proteins over bacterial and yeast-derived ones relates to 
post-translational modifications, in particular glycosylation. Since the majority of 
pharmaceutically active proteins are glycoproteins, their synthesis in bacteria and yeast is 
not possible. Therefore most of these proteins are currently synthesized in mammalian cell 
cultures.  Since such cultures need complex (and therefore expensive) media, they also bear 
the risks of contamination by human pathogens. At present, about a dozen plant-derived 
pharmaceuticals are in the clinical phase of testing. Beside that a secretory IgA targeting 
tooth decay (CaroRx™-from Planet Biotechnology Inc, Ma et al., 1998, 2005) and a human 
intrinsic factor targeted as a dietary supplement to alleviate vitamin B-12 deficiency 
(Cobento Biotech AS) are already approved for human use (Faye & Gomord, 2010). A 
number of field trials are currently underway to investigate and validate additional 
products (Dunwell, 2009; APHIS, 2011). 
The Triticeae family includes the major temperate crop species barley and wheat, which have 
been intensively bred over many decades to become well adapted to a wide range of 
growing environments. Although the major end-use of the temperate cereal grain is for food 
and feed, a significant focus of certain improvement programmes is aimed at the bioenergy 
market. Barley is seen as a more suitable host than wheat for transgenic applications because 
it is more easily transformed. An important advantage of barley and wheat in the context of 
biosafety is that they are largely self-pollinating, and so have been accorded G.R.A.S. 
(generally recognized as safe) status by the European regulatory agency EFSA. The 
infrastructure associated with cereal grain production, harvest and post-harvest storage is 
well established, and production volume is readily scalable by simply adjusting acreage. A 
number of transgene expression systems are available, some designed to restrict expression 
to the grain, but others allowing ubiquitous expression (for review, see Hensel et al., 2011). 
The purification of heterologous products can be a costly process, although in some 
situations this step is not needed; a good example is provided by the feeding to poultry of 
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transgenic pea expressing an scFv antibody directed against the Eimeria parasite 
(Zimmermann et al., 2009). In dicotyledonous species such as Nicotiana benthamiana, 
pharmaceutical proteins have been produced primarily using virus-based magnICON 
system (ICON Genetics, Germany) in combination with agroinfiltration of the leaf: this 
approach has been exploited by Bayer Innovation GmbH to develop a patient-specific 
tumour-vaccine against non-Hodgkin's lymphoma (NHL) which is at present in the clinical 
phase of testing (Bayer Innovation GmbH, Germany). So far, however, this technology has 
not been usable in Triticeae species. At present either transient expression based on particle 
bombardment or virus vectors, or via stable expression by integration within the nuclear 
genome or the plastome, using Agrobacterium-mediated transformation or particle 
bombardment are used, respectively. 
To date, the main focus of pharma transgenic research in the Triticeae cereals has been 
concerned with the expression of human growth factors in the barley endosperm (Maltagen 
Forschung GmbH, Germany; ORF Genetics, Iceland; Ventria Bioscience, CO). The transgenic 
production of antigens, vaccines and antibodies must abide by GMP (Good Manufacturer 
Practice), which is intended to guarantee the quality and uniformity of the approved 
product. The major challenge that this creates is to provide a uniform product given that 
transgene expression and the accumulation of the transgene product can be affected by 
uncontrollable variation in a field environment. Although it is possible to grow material in a 
closely controlled environment, such as in a sophisticated glasshouse, this forfeits much of 
the advantage of plant production systems, as such facilities are expensive to operate, and 
thus are only appropriate for high value products which require only small production 
volumes. 
Uniform planting material is a necessity, and one means of obtaining this in the cereals is to 
generate doubled haploid plants from immature pollen. In barley, Kumlehn et al. (2006) 
were able by using Agrobacterium-mediated gene transfer into embryogenic pollen cultures 
to produce haploid primary transformants, which were subsequently treated with colchicine 
to diploidize the material, thereby avoiding segregation of the transgene in later progeny. 
This immediate fixation of the transgene is particularly attractive in terms of time-saving in 
winter varieties of wheat and barley. 
This review aims to summarize the current state of the art regarding strategies, targets and 
future challenges in order to achieve high expression levels of Triticeae species-based 
recombinant proteins. 

2. The generation of transgenic plants  

The progress achieved over the past 20 years towards Triticeae cereal transformation has 
been reviewed recently by Kumlehn & Hensel (2009). The various approaches differ from 
one another with respect to the means employed to transfer the alien DNA, and/or in the 
choice of recipient host tissue. Methods include the use of PEG to transfer the DNA into 
isolated protoplasts, the exploitation of a virus as a vector, the biolistic introduction of DNA-
coated particles and Agrobacterium-mediated gene transfer. The two latter methods will be 
described here in some detail, since they have been used intensively in the temperate 
cereals. Most transformation events involve the integration with nuclear DNA, but 
transplastomic Triticeae plants have also been reported (Cui et al., 2011). The commonest 
target tissue has been immature embryos, although isolated ovules have also shown some 
potential (Holme et al., 2008), and embryogenic barley pollen has distinct advantages 
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(Kumlehn et al., 2006). In wheat, Chauhan et al. (2010) have demonstrated that 
Agrobacterium-mediated gene transfer is also feasible for anther-culture derived haploid 
embryos. 

2.1 Biolistic gene transfer 

The biolistic technique involves the bombardment of the recipient tissue with gold or 
tungsten particles coated with the transgene DNA. It has been widely used to achieve 
transient expression, particularly where the purpose has been to assess the functionality of 
gene candidates, the effectiveness of RNAi constructs or the activity of promoter/reporter 
fusions (Onate et al., 1999; Rubio-Somoza et al., 2006). The major advantage of the technique 
is that it can rapidly characterize a large number of sequences (Ihlow et al., 2008). Most 
biolistic protocols seek to effect transfer into either leaf epidermal cells (Douchkov et al., 
2005) or into the scutellar tissue of an immature embryo (Knudsen & Müller, 1991). The first 
stable transgenic wheat plants generated by this means involved the introduction of a gene 
determining herbicide resistance into embryogenic callus (Vasil et al., 1992). Thereafter, the 
method was improved and applied successfully to barley (Wan & Lemaux, 1994), cereal rye 
(Castillo et al., 1994), triticale (Zimny et al., 1995) and macaroni wheat (Bommineni et al., 
1997).  

2.2 Agrobacterium-mediated gene transfer 

Although Agrobacterium-mediated gene transfer is based on a natural process, the Triticeae 
cereals were not originally considered as being amenable to the technique, as they are not 
infected by Agrobacterium spp. in nature. After the first reports of its successful use to 
transform wheat (Cheng et al., 1997) and barley (Tingay et al., 1997), the range of 
transformable species was extended to cereal rye (Popelka & Altpeter, 2003) and triticale 
(Hensel et al., 2009; Nadolska-Orczyk et al., 2005). However, transformation efficiency 
remains still variable and rather genotype dependent. In barley, the most readily 
transformed cultivar is ‘Golden Promise’, which allows an average of >10 independent 
transformation events per immature embryo (Bartlett et al., 2008; Hensel et al., 2009; Murray 
et al., 2004); other cultivars, while being amenable to transformation, show a lower level of 
efficiency (Hensel et al., 2008; Murray et al., 2004). One suggested means of overcoming this 
genotype dependency was to replace immature embryos with isolated ovules as the 
recipient tissue. Holme and colleagues (2008) showed that genotypes with a poor 
regeneration capacity can be transformed by this method, although the efficiency was lower 
but not statistically different from that of ‘Golden Promise’. Kumlehn et al. (2006) preferred 
to target embryogenic cultures of pollen as the target plant tissue for transformation in 
barley. 

3. Expression systems  

A comprehensive summary of the expression systems developed to date has been given by 
Hensel et al. (2011). In the context of the cereal grain, a prime target has been to exploit the 
regulatory system responsible for the expression of the endosperm storage proteins, which 
represent a major proportion of the protein synthesized within the grain. A particularly 
frequently exploited sequence for barley is the HORDEIN D promoter, and for wheat the 
various GLIADIN and GLUTENIN promoters. Vickers et al. (2006) suggested that even 
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higher levels of transgene expression in barley and wheat endosperms could be obtained by 
using the oat GLOBULIN 1 promoter. But till now there is no published study using this 
expression system. One strategy to maximize transgene expression involves the directed 
targeting to a particular cellular compartment, by attaching a signal peptide to the 5’- or 
3’- terminus of the transgene; a second approach exploits promoter sequences that are 
only active during a distinct developmental stage or within a specific tissue. Further 
possibilities involve the use of viral transcriptional enhancer elements or the suppression 
of the recipient's endogenous protein degradation machinery. When transgenes encoding 
either antibodies or vaccines have been expressed in both tobacco and maize, only weak 
accumulation of the recombinant protein occurred in the cytosol, but targeting to the 
endoplasmic reticulum (ER) by attaching a H/KDEL tag led to a dramatically improved 
level of heterologous product accumulation (Schillberg et al., 1999; Streatfield et al., 2003). 
Unfortunately, the choice of the (a) signal peptide remains somewhat empirical, and to a 
large extent varies from one recombinant protein to other. Where glycosylation is 
required, targeting to the ER is essential, but nevertheless it remains necessary to evaluate 
the glycosylation pattern, since this property can itself be polymorphic (Floss et al., 2009). 

4. Targets  

Three major groups of products have been targeted to date for molecular farming. The first 
two consist of human or animal antigens and antibodies, which have applications in disease 
diagnosis, prophylaxis and recovery. The third, which has reached a more advanced stage 
thanks to a lesser regulatory load, is a range of technical enzymes. The first plant-made 
protein to be marketed was chicken avidin, produced in maize by ProdiGene (Hood et al., 
1997). A number of companies have been active in making recombinant proteins in Triticeae 
plants - these include Ventria Bioscience, ORF Genetics and Maltagen Forschung GmbH. 
The full set of published outcomes in this area has been summarized in Table 1, and each is 
described in more detail below. 
 
 

Promoter, specificity Coding sequence Effect Species References 

Vaccines, Antigenes 

Barley TRYPSIN 
INHIBITOR (TI), 
endosperm 

Enterotoxigenic Escherichia coli 
FIMBRIAL ADHESIN FaeG F4 
(K88) 

Edible vaccine for pigs 
partialy effective 
against ETEC- 
induced diarrhea 

Barley Joensuu et al., 2006 

Antibodies     

Maize UBIQUITIN-1 (UBI-
1), ubiquitous 

ScFvT84.66 

Antibody against 
carcinoembryonic 
antigen (CEA), tumor-
associated diagnostic 
reagent 

Wheat Stoeger et al., 2000 

Wheat High-molecular-
weight GLUTENIN 1Bx17 
(HMW 1Bx17), endosperm

Synthetic anti glycophorin scFv-
HIV epitope fusion 

HIV diagnostic 
reagent 

Barley 
Schuenmann et al., 
2002 
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Promoter, specificity Coding sequence Effect Species References 

Human Proteins and Growth Factors 

Barley ┙-AMYLASE, 
aleurone 

ANTITHROMBIN III 
Molecular farming of 
pharmaceutical 
proteins 

Barley Stahl et al., 2002 
Barley HORDEIN D 
(HOR-D), endosperm 

Barley ┙-AMYLASE, 
aleurone 

┙1-ANTITRYPSIN 
Molecular farming of 
pharmaceutical 
proteins 

Barley Stahl et al., 2002 

Barley ┙-AMYLASE, 
aleurone 

SERUM ALBUMIN 
Molecular farming of 
pharmaceutical 
proteins 

Barley Stahl et al., 2002 

Maize UBIQUITIN-1 (UBI-
1), ubiquitous 

COLLAGEN I┙ 
Molecular farming of 
pharmaceutical 
proteins 

Barley 
Ritala et al., 2008; 

Eskelin et al., 2009 Rice GLUTENIN B1 
(GLUB-1), endosperm 

Barley HORDEIN D 
(HOR-D), endosperm 

FLT3-LIGAND 
Molecular farming of 
pharmaceutical 
proteins 

Barley 
Erlendsson et al., 
2010 

Barley HORDEIN D 
(HOR-D), endosperm 

LACTOFERRIN 
Molecular farming of 
pharmaceutical 
proteins 

Barley 

Stahl et al., 2002 

Maize UBIQUITIN-1 (UBI-
1), ubiquitous 

Kamenarova et al., 
2007 

Rice GLUTENIN B1 
(GLUB-1),  endosperm 

Barley ┙-AMYLASE, 
aleurone 

LYSOZYME 
Molecular farming of 
pharmaceutical 
proteins 

Barley 

Stahl et al., 2002 

Rice GLUTENIN B1 
(GLUB-1), endosperm 

Huang et al., 2006 

Wheat High-molecular-
weight GLUTENIN 1Bx17 
(HMW 1Bx17), endosperm

Wheat Huang et al., 2010 

Barley HORDEIN D 
(HOR-D), endosperm 

ISOkine™, DERMOkine™ 
Molecular farming of 
pharmaceutical 
proteins 

Barley ORF Genetics 

Technical Enzymes and Recombinant Proteins 

Wheat High-molecular-
weight GLUTENIN 1-D1 
(HMW GLU-1 D1), 
endosperm 

An-FERULIC ACID ESTERASE 
Molecular farming of 
second generation 
biofuels 

Wheat Harholt et al., 2010 
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Promoter, specificity Coding sequence Effect Species References 

Barley HORDEIN-D 
(HOR-D), endosperm 

Heat stable (1,3-1,4)-┚-
GLUCANASE 

Grains containing 
thermostable 1,3-1,4- 
┚-glucanase for better 
malting 

Barley Horvath et al., 2000 

Maize UBIQUITIN-1 (UBI-
1), ubiquitous 

Vitreoscilla HAEMOGLOBIN 
(VHb) 

Grains with altered 
oxygen availability 

Barley 
Wilhelmson et al., 
2007 

Wheat Low-molecular-
weight GLUTENIN 
G1D1 (LMWG1D1), 
endosperm 

Ps-LEGUMIN A 
Grains with altered 
protein composition 

Wheat Stoeger et al., 2001 

Cauliflower Mosaic Virus 
35S (35S), ubiquitous 

Hv-LIPOXYGENASE2 (LOX2) 
Plants with modified 
oxylipin signature 

Barley Sharma et al., 2006 

Maize UBIQUITIN-1 (UBI-
1), ubiquitous 

Heat-stable An-PHYTASE 
Grains with improved 
digestibility for non-
ruminant animal feed 

Wheat 
Brinch-Pederson et 
al., 2000 

Barley HORDEIN D 
(HOR-D), endosperm 

Td-THAUMATIN 
Grains containing a 
natural sweetener for 
brewing industry 

Barley Stahl et al., 2009 

Wheat High-molecular-
weight GLUTENIN 1-D1 
(HMW GLU-1 D1), 
endosperm 

Bs-ENDO-XYLANASE 
Grains with improved 
baking quality 

Wheat Harholt et al., 2010 

Table 1. Bio-pharmaceuticals and technical enzymes expressed in Triticeae species. 

4.1 Vaccines and antigens 

Epidemics of the major infectious human diseases are becoming rare in the developed world 
thanks to the widespread use of vaccination. In less developed countries, the high cost of 
vaccine and a poorer level of social infrastructure exposes the population to such diseases. 
The production of a cheap prophylactic product, such as a plant-made vaccine, would make 
a material contribution to development. The ideal expression system for producing such 
vaccines needs to be readily transformable, inherently safe and economical, and 
therapeutically effective (Fischer and Schillberg, 2004). Current systems capable of 
producing antigens and antibodies in transgenic plants have recently been described 
(Daniell et al., 2009; Floss et al., 2009; Joensuu et al., 2008). While vaccines can be 
administered either orally or by injection, the former method is preferably from an 
organizational point of view and the use of grains (or other plant parts) is particularly 
attractive for the vaccination of domesticated animals. A disadvantage of the oral delivery 
route is the relatively large quantity of antigen required (Streatfield & Howard, 2003). The 
only published report which describes the use of Triticeae plants as a vehicle for producing/ 
expressing antigens is concerned with the control of infection of enterotoxigenic E. coli in 
pigs, chickens and cows (Joensuu et al., 2006). Here, the major subunit of the F4 fimbriae 
(FaeG) protein was expressed in barley grains, where it comprised up to 1% of total soluble 
protein. The recombinant protein was able to evoke F4 fimbria-specific antibodies in mice. 
In a second approach, a company (Novoplant, Germany) expressed a gene responsible for 
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the production of an FaeG-specific antibody in transgenic pea, and were able to demonstrate 
a level of antibody expression in the seed of up to 1-2 g scFv/kg. 

4.2 Antibodies 

Following the first discovery of immunity-conferring substances in the blood (Behring & 
Kitasato, 1890), antibodies have been exploited in the fight against several diseases. Most 
antibodies are large Y-shaped proteins that include an antigen-binding site formed by the 
two variable segments of their heavy and light chain. The five major classes of antibody 
(IgA, IgD, IgE, IgG and IgM) are recognized by their conserved region structure and their 
immunological function (Woof & Burton, 2004). Hiatt et al. (1989) pioneered the expression 
of immunoglobulin chains in tobacco, since then, various portions of these chains have been 
expressed heterologously, including single chain molecules (scFvs), Fab fragments, small 
immune proteins (SIPs), IgGs and chimeric secretory IgAs (for a review, see De Muynck et 
al., 2010). The commonest plant host to date has been tobacco, with only a small number of 
examples among the Triticeae species. In wheat, the earliest success was achieved with the 
single chain Fv antibody ScFvT84.66, active against carcinoembryonic antigen (CEA), a well 
characterized tumour-associated marker (Stoeger et al., 2000). The production level was 
around 1 µg antibody/g grain, which compared unfavourably with what was possible at the 
time in rice. Storage of the dry grain at room temperature produced no discernible alteration 
in the antibody's biological activity, demonstrating the attractiveness of the in planta 
transgene expression of therapeutic molecules. A second example concerned a diagnostic 
antibody for HIV (Schuenmann et al., 2002), where an anti-glycophorin single-chain 
antibody was fused to an HIV epitope and expressed in tobacco leaves and stems, in potato 
tubers and in barley grains. In each case, the production level of the fusion protein was 
adequate, allowing the in planta method to replace the more conventional one based on 
bacterial and murine cells. The yield of heterologous protein in the barley grain reached as 
much as 150 µg/g, suggesting that transgenic barley could represent a highly suitable 
means of producing this particular antibody. The rather strict regulatory framework 
associated with GM plants in Europe has meant that no other example of in planta vaccine or 
antigen production in Triticeae has been published in the last ten years. 

4.3 Human proteins and growth factors 

The earliest published account of the use of cereal grain to express human genes concerned 
the five proteins antithrombin III, ┙1-antitrypsin, lysozyme, serum albumin and lactoferrin 
(Stahl et al., 2002). Here, the concern was not the quantity or quality of the recombinant 
proteins, but rather the detection of the T-DNA integration sites in the barley genome. 
However, these targets remain in the portfolio of Maltagen Forschung GmbH, whose 
website provides detailed information concerning the company's interest in these genes 
(Maltagen, Germany). Similar products are also offered by ORF Genetics, which exploits an 
endosperm-specific expression system. They produce a number of hormones and 
cytokinines like endothelial monocyte activating polypeptide-2 (EMAP2), various fibroblast 
growth factors, interferons and interleukins. A recent product from this company was 
human FLT3-ligand, with the gene under the control of the barley HORDEIN D promoter 
(Erlendsson et al., 2010). Ritala et al. (2008) were able to express a codon-optimized version 
of COLLAGEN I┙ in barley endosperm-derived suspension cells, and showed that the 
recombinant protein was equivalent to a version produced in Pichia pastoris yeast. The gene 
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was driven by the maize UBIQUITIN-1 promoter and the resulting protein yield was rather 
low (2-9 µg/l). However, the yield was improved by substituting the endosperm-specific 
rice GLUTENIN B1 promoter and expressing the construct in the barley grain. The collagen 
content in the transgenic grain reached ~45 mg/kg dry weight in the best-performing 
transgenic derivatives. By way of comparison, the heterologous protein content of grain 
carrying the transgene driven by the same UBIQUITIN-1 promoter was just ~13 mg/kg 
(Eskelin et al., 2009). This level was calculated to be sufficient to produce some 5 t of product 
were ~10% of Finland's barley production to be used for this purpose. Since the annual 
demand of the pharmaceutical sector is for at least ten times this amount, there is clearly a 
need to improve the efficiency to compete with existing production systems. 

4.4 Technical enzymes and recombinant proteins 

Here, the focus was on transgenes whose products are designed to either improve the 
technical quality of wheat (baking) or barley (brewing), to alter feed quality, or to improve 
biofuel properties. The earliest report of this sort of manipulation dates back about a decade, 
when Horvath et al. (2000) described the heterologous expression of a gene encoding a heat-
stable (1,3-1,4)-┚-GLUCANASE, designed to improve the digestibility of barley-based feed 
pellets used as chicken feed. The chicken gut is unable to break down complex glycans, and 
this failure can lead to the formation of excessive viscosity in the intestine. In commercial 
practice, this problem is commonly resolved by the addition to the diet of purified (1,3-1,4)-
┚-glucanase extracted from Bacillus amyloliquefaciens. A fully active and heat non-labile 
enzyme is present in the transgenic barley grain, which therefore represents an 
improvement in the nutritional value of the feed containing it. In a related approach, Brinch-
Pederson et al. (2000) expressed in the wheat grain a heat-stable PHYTASE driven by the 
UBIQUITIN-1 promoter in an attempt to encourage the release of phosphate, iron and zinc 
from the feed. Note that up to 85% of the phosphate present in the cereal grains is bound to 
phytic acid (Lott, 1984), which is deposited in the grain as phytin, a mixed salt containing 
potassium, magnesium, iron, calcium and zinc (Raboy, 1990). In the dry grain (as well as in 
the digestive tract of non-ruminant animals), no phytase activity is detectable (Lantzsch et 
al., 1992; Usayran & Balnave, 1995), so chicken diets are commonly supplemented by 
Aspergillus niger derived phytase (Nelson et al., 1968, 1971). The presence of the transgenic 
wheat increased grain phytase activity by a factor of four (from 0.7 to 3 kFTU/kg), whereas 
even an increase of 10% would have been sufficient to significantly improve the quality of 
wheat-based feed. 
Barley malt and wheat flour are common ingredients of processed food and beverages, so 
the improvement of their technical quality is of commercial interest. The protein thaumatin 
is a low-calorie sweetener and flavour modifier (Gibbs et al., 1996; Green, 1999), initially 
isolated from the West African katemfe fruit (Thaumatococcus daniellii Bennett). It is heat 
stable up to 70°C and is 2,000-3,000 times sweeter than sugar. It has been produced 
heterologously in bacteria, yeast and various dicotyledonous plants, with an in planta yield 
reaching 1 g/kg leaf in tobacco (Icon Genetics). It has also been successfully synthesized in 
the barley grain, yielding 2-3 g/kg on a dry matter basis (Stahl et al., 2009). 
The germinating seed frequently suffers from oxygen deficiency (Bewley & Black, 1994). 
This presents a problem during the malting process, and is not readily counteracted by 
continuous aeration (Wilhelmson et al., 2006). The hypoxia inhibits the de novo production of 
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starch-hydrolyzing enzymes (Guglielminetti et al., 1995), but the heterologous expression of 
Vitreoscilla HAEMOGLOBIN (VHb) in the barley grain reduces the level of hypoxia, and thus 
increases the availability of starch-hydrolysing enzymes during malting (Wilhelmson et al., 
2007). However, the constitutive expression of VHb did not improve the germination rate of 
barley. 
Several studies have highlighted the role of oxylipins in the regulation of environmentally 
induced or developmental-specific processes (Weber, 2002). Oxylipins are a product of the 
lipoxygenase pathway. When barley LIPOXYGENASE2 was over-expressed as a means of 
determining the effect of altering the oxylipin status, Sharma et al. (2006) were able to show 
that they act as regulators, possibly by enhancing the level of endogenous jasmonic acid. 
The baking property of wheat flour is influenced largely by the quantity and quality of the 
endosperm storage proteins, but arabinoxylan, the major non-starch polysaccharide present 
in the flour, also has some influence. When Harholt et al. (2010) created transgenic wheat 
plants expressing an A. niger gene responsible for the synthesis of ferulic acid esterase, the 
resulting grains were shrivelled and their test weight was reduced by up to 50 per cent. The 
increased ferulic acid esterase activity in the transgenic grain produced a higher than wild 
type level of water non-extractable arabinoxylan in the cell wall, but the effect of this 
alteration on the baking property of the flour has yet to be determined. The same authors 
performed similar experiments using a B. subtilis ENDO-XYLANASE gene, the product of 
which is used as an additive in some commercial baked wheat products. Just as for the 
ferulic acid esterase grain, the transgenic grains were shrivelled and of smaller test weight 
than the wild type. In the cell walls of these transgenic materials, the arabinose to xylose 
ratio was increased by 10-15%, and the proportion of water-extractable arabinoxylan was 
increased by 50%; the molecular weight range of this water-extractable arabinoxylan was 
reduced from >85 kDa to 2-85 kDa. There may be some potential for this transgene in the 
use of wheat as a bioenergy crop. 
The major classes of endosperm storage proteins in the Triticeae species grain are the 
albumins, the globulins and particularly the prolamins. Transgenic wheat expressing a pea 
LEGUMIN A gene under the control of an endosperm-specific promoter were studied by 
Stoeger et al. (2001) to determine whether this globulin protein would be correctly processed 
and form the hexameric structure which it adopts in the pea seed. An unexpected result was 
that the legumin was condensed within endosperm inclusion bodies, and eventually formed 
crystals. This led the authors to suggest this transgenic material as a suitable means of 
producing large quantities of pure 11S globulin protein. 

5. Protein modifications  

Several modifications occur during the processing of proteins; these include cleavage of 
signal peptides after entry into the ER, formation of disulphide bonds in the lumen of the 
rough ER, phosphorylation by protein kinases, and the attachment of sugar side chains 
(glycosylation) initiated in the ER but occurring primarily in the Golgi apparatus. These 
modifications can be an important determinant of a protein's stability and activity. 

5.1 Disulfid bridges 

The conformation of a protein is sequence-dependent. One of the primary determinants of 
folding is the formation of a disulphide bridge between pairs of thiol groups. Most 
prolamins contain a number of cysteine residues capable of forming such disulphide bonds. 
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The retention of a phaseolin ┛-zein fusion protein in the ER of tobacco protoplasts was 
shown to be dependent on disulphide bonding (Pompa & Vitale, 2006). Prolamins are 
synthesized in the ER of the wheat and barley endosperm, and are then transported to 
protein storage vacuoles (PSVs) in a process thought to involve both Golgi-dependent and 
independent pathways (Galili et al., 1993; Levanony et al., 1992; Rechinger et al., 1993). 
Autophagy and the de novo formation of PSVs has also been reported to mediate the 
transport of prolamins to the PSVs in wheat (Levanony et al., 1992), but the molecular and 
cellular mechanisms underlying these routes remain unknown. 

5.2 Glycosylation 

More than 50% of eukaryotic proteins are glycosylated (Apweiler et al., 1999), with the sugar 
linked either to an asparagine (N-glycosylation) or to a serine or threonine (O-glycosylation) 
residue. The synthetic pathway of N-glycans is conserved among animals, plants and fungi 
(for a review, see Kukuruzinska & Lennon, 1998). The majority of mammalian N-glycans are 
terminated by Neu5Ac and other sialic acids linked to terminal ┚1,4- or ┚1,3-Gal residues. 
These negatively charged sugars affect the biological activity and half-life of many 
therapeutic glycoproteins (Erbayraktar et al., 2003; Schauer, 2000; Varki, 2007). The synthesis 
of complex N-glycans takes place in various compartments of the plant cell and has been 
recently reviewed in the context of therapeutic protein production by Gomord et al. (2010). 
Retention in the ER prevents the addition of xylose and fucose residues to a recombinant 
antibody (Sriraman et al., 2004) that limites its applications to some human antibodies or 
antigenes. In tobacco, the pattern of glycosylation depends on whether the antibody is 
expressed in the leaf or in the seed, a phenomenon explained by proposing that the 
transport pathways from the ER to the protein storage vacuole differ in these organs (Floss 
et al., 2009), as suggested by Vitale and Hinz (2005). In monocotyledonous species, as in 
dicotyledonous ones, leaves (Fitchette et al., 1999; Wilson et al., 1998) and roots (Mega, 2004; 
Wilson et al., 2001) produce both high-Mannose-type N-glycans and complex N-glycans 
containing ┚1,2-xylose, ┙1,3-fucose and terminal GlcNAc or Lea antennae. A similar 
structural glycoprotein diversity has also been described for the fruits of both 
monocotyledonous (Leonard et al., 2004) and dicotyledonous (Wilson et al., 2001) species. 
The N-glycosylation patterns of seed glycoproteins differ significantly between 
monocotyledonous and dicotyledonous species. In the former, there is a little, if any 
presence of terminal Lea antennae (Bardor et al., 2003; Leonard et al., 2004), whereas this 
structural element is common in the seed of buckwheat, walnut, hazelnut, peanut, pea and 
mung bean (Wilson et al., 2001). 

6. Concluding remarks  

This review has set out to summarize the information in the public domain regarding the 
use of Triticeae species for the heterologous production of valuable products. A number of 
plant species have been suggested as vehicles for molecular farming, but relatively little 
attention has been paid to this important group of crop species, perhaps because they have 
been regarded as rather difficult to transform and/or because expression systems are less 
developed than in more commonly used plants such as tobacco. 
A number of challenges remain before plant-made pharmeceuticals (PMPs) can reach the 
market. A major one is the expense and low efficiency of target purification. The attachment 
of fungal hydrophobins, elastin-like polypeptides (ELPs) or the use of a domain of the maize 
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storage protein zein as a purification tag represents promising strategies. The principle 
behind these purification tagging approaches can be based on either a temperature 
dependent change in solubility (ELP) termed inverse transition cycling (Meyer & Chilkoti, 
1999), on a change in hydrophobicity in the case of the hydrophobins (Linder et al., 2001), or 
on the assembly of the proteins into so-called protein bodies by the use of ┛-zein (Coleman 
et al., 1996; Geli et al., 1994). Although inverse transition cycling has been used to purify 
cytokines (Lin et al., 2006), antibodies (Floss et al., 2009; Joensuu et al., 2009) and spider silk 
proteins (Scheller et al., 2004) from transgenic plants, no application has yet been reported in 
Triticeae species. The same applies also for hydrophobins. Recently Joensuu et al. (2010) 
showed that the transient expression of a hydrophobin-GFP fusion transgene increased the 
accumulation in the leaves of N. benthamiana and eased the purification of the product. The ┛-
zein protein induces the formation of ER-derived protein bodies (PBs) in the seed and some 
vegetative tissues in dicotyledonous transformants in the absence of other zein subunits 
(Coleman et al., 1996; Geli et al., 1994). This observation has been exploited in the development 
of the Zera® expression system by ERA Biotech (Barcelona, Spain), which is effective in a 
number of plant species (Ludevid Mugica et al., 2007, 2009; Saito et al., 2009; Torrent et al., 
2009a, 2009b). A rather different system has been pioneered by ORF Genetics, in which a 
carbohydrate-binding domain is used to purify the target protein (Mantyla & Orvar, 2007). 
A more inexpensive approach is possible where the whole seed (or grain) is a component of 
feed, since in this case no purification is necessary. Nevertheless it remains important that 
the PMP is stable under ambient temperature conditions for several weeks. The stability of 
an antibody in the wheat grain was already demonstrated a decade ago (Stoeger et al., 2001). 
Where the PMP is heat stable, then heat treatment during feed processing is possible 
(Horvath et al., 2000). Achieving an adequate level of expression is essential, one approach 
would be to lower the amount of endogenous storage proteins competing with the 
transgene. Such a strategy has been followed by ORF Genetics by the down regulation of an 
transcription factor (Hv-HoxB4) which specifically affects the expression of the barley HorB 
and HorC genes (Orvar, 2005). 
Public acceptance of GM products and a straightforward means of their detection require 
the availability of clear markers. In barley it is possible to use testa colour for this purpose 
by conventionally transferring an exotic testa colour into a readily transformable cultivar, 
which then becomes suitable for the production of PMPs (Orvar, 2006). With the imminent 
acquisition of the genomic sequences of barley and wheat, it can be expected that the key 
genes for the synthesis and processing underlying the pattern of glycosylation of Triticeae 
proteins will soon be known. Progress towards establishing plants as a vehicle for the 
production of PMPs is likely to accelerate in the coming years. 
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