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1. Introduction   

Virtual colonoscopy (VC) is a diagnostic method enabling the generation of two-
dimensional and three-dimensional images of the colon and rectum from the data obtained 
with relevant imaging modality, usually spiral computed tomography (CT). If CT is used, 
the method is also called CT colonoscopy, CT colonography, or CT pneumocolon. The main 
advantages of the VC which support its broader application in medical practice include: 
limited invasiveness, improved compliance of patients and value for screening for colorectal 
cancer.  
The introduction of virtual endoscopy technique originates from the extended processing 
options of the data sets obtained with available imaging modalities. The Visible Human 
Project and related activities (Hong et al., 1996; Hong, 1997) were of key importance for 
development of the VC. 
The quality of first VC images limited the potential of the clinical use of this technique. But 

with next generations of the imaging equipment and advanced processing algorithms, their 

applicability in medical practice was established. VC may be performed with all imaging 

techniques which result in cross-sections of the abdominal cavity. It can be generated both 

from CT and magnetic resonance imaging (MRI) cross-sections. However, the CT remains 

the first choice imaging modality for the VC. It is required that spiral acquisition mode with 

overlapping reconstructions is applied. The quality of the images generated within VC 

techniques depends strongly on the spatial resolution obtained with imaging modality.  

Nowadays, multidetector computed tomography (MDCT) is commonly available and this 

adds to overall quality of assessment of the colon and rectum resulting from VC.  

The patient undergoing helical computed tomography with the intent of obtaining VC 

should undergo complete bowel preparation as for other procedures within abdomen, e.g. 

endoscopic colonoscopy.  The priority is assigned to evacuation of the contents of the colon 

before CT. For this purpose, many agents are used including ethylene glycol electrolyte 

solution, magnesium citrate or oral sodium phospate. Netherless, the quality of bowel 

preparation for VC varies considerably between different centres (Van Uitert et al., 2008).  

The trend for the optimisation of the diagnostic procedures and limitation of the burden to 
the patient resulted also in a strategy focusing on the performing of the optical colonoscopy 
just after VC, if it is positive for pathological lesions in the colon, in order to avoid repetition 
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of the bowel preparation procedure. A strategy enabling identification of the artefacts 
resulting from fecal contents in the bowel in the process of generation of VC images was 
also proposed. This is achieved by labelling it with some type of contrast agent, e.g. barium 
or meglumine diatrizoate taken orally before the CT (Iannaccone et al., 2004).   
The use of MRI imaging for generating of VC is another attempt to avoid bowel preparation 
and exposure to the radiation related to the CT imaging (Florie et al., 2007). Finally, the 
techniques enabling “electronic” colon cleansing before generating VC images were 
developed to allow for less intensive colon preparation procedures (Lakare et al., 2002). VC 
without laborious bowel cleansing preparation preceding is related to higher acceptance 
and compliance from patients. This in turn may be a key condition for successful screening 
strategy in the society.  
Growing use of the VC is supported by its lower invasiveness in the comparison to other 
diagnostic procedures and potential for higher compliance from patients. These features 
increase the value of the techniques as a screening test for disorders of the colon. The main 
indications for VC include screening for colonic polyps or cancer and failure or inadequate 
results of optical colonoscopy due to anatomical conditions or pathological lesions, e.g. 
obstruction of the colon lumen. Furthermore, the VC enables also for examination of 
extracolonic structures not accessible during standard colonoscopy. This may be particularly 
important for these patients in whom pathological lesions were detected inside the colon 
lumen.  
The first studies focusing on the assessment of the sensitivity of the VC reported usually its 
lower performance in comparison to optical colonoscopy. The sensitivity of the VC depends 
considerably on the size of the polyps present in the colon and is lower in less advanced 
lesions. Introduction of MDCT had significant impact on improving the VC efficiency.  Most 
recent studies indicate that VC sensitivity in detecting polyps of size at least 10 mm is 
comparable with optical colonoscopy and exceeds 90% (Regge et al., 2009; Graser et al., 
2009). 
The Guidelines issued in 2008 by American Cancer Society, American College of Radiology 
and US Multi-Society Task Force on Colorectal Cancer included VC within recommended 
screening tests for colorectal cancer, which should be performed at 5 years intervals in 
population of at least 50 years or older (Levin et al., 2008). According to the Guidelines, VC 
should be performed after complete bowel preparation. The detection of a polyp of size >6 
mm in VC necessitates the performance of optical colonoscopy, preferably the same day or 
second complete bowel preparation is needed. 
During classical (optical or video-) endoscopy, the endoscope is inserted into the internal 
space of a tube-like organ. Colonoscopy is performed with flexible endoscope equipped 
with a camera. A physician performing examination can bend the tip of the endoscope in 
two orthogonal directions using small wheels which are placed on the head of the 
instrument in order to navigate and move it through the colon. Colonoscopy may be 
associated with different level of discomfort in specific patients and depend on the 
medication used during preparation and the procedure itself.  The VC may be an alternative 
approach to classical endoscopy.  In this chapter, technical aspects of the generation of the 
VC images are explored. Authors describe all steps which are required to create a 3D 
computer model of the colon from the CT data. A procedure which allows one to compute 
the VC is presented in figure 1. It includes CT examination of abdomen, electronic colon 
cleansing, generation of 3D computer model of the colon with appropriate segmentation 
techniques. Then a navigation path for virtual camera may be calculated in order to simulate 
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the progression of a real endoscope. Finally, views from colon reconstructed from the CT 
data are calculated based on visualisation methods. 
 

 
Fig. 1. Block diagram of the Virtual Colonoscopy procedure 

2. Computed tomography data 

The imaging modality of computed tomography (CT) was developed in the results of the 
chain of discoveries starting from the year 1895 when Wilhelm Röntgen invented a new type 
of electromagnetic radiation, called by him as X-rays. The mathematical principles of CT were 
first investigated by Johann Radon in 1917 and then extended by Kirillov in 1961. The first CT 
scanner was presented in 1972 by Allan Cormack and Godfrey Hounsfield, who were 
awarded the Nobel Prize in medicine in 1979. The detailed description of CT was provided in 
1988 (Kak & Slaney, 1988). Nowadays, CT imaging is commonly used throughout medical 
specialities for diagnostic purposes and support of interventional procedures.  
Because of easier hardware realization, the fan-beam projection is used in medical CT 
scanners. In the third-generation CT scanners, the X-ray source and the detector array are 
rotated around the patient. In helical or spiral cone beam CT scanners, the patient is lying 
during the procedure on a moving bed and the X-ray source and the detector arrays are 
rotating around him.   
The helical scan method enables for quicker scanning and reduction of the radiation dose 
(necessary for given resolution) to which the patient is exposed during the procedure. 
Additionally, the number of rows of detectors in helical CT scanners was increasing from 
several years.  Nowadays, the 64 or 128 multi-slice scanners are frequently encountered in 
clinical applications. Currently, 256-slice cardiac CT scanners enables for scanning of the 
heart in less than one second. On the other hand, minimizing the radiation risk to the 
patient, while maintaining satisfactory CT image quality, becomes urgent especially for 
colon screening with CT (Wang et al., 2008). Dose reduction for CT imaging can be achieved 
by scanning patient whit low-mAs protocols (less than 100mAs). Unfortunately, these 
protocols may result in noisy and streak artefacts in the reconstructed images. This effect 
can be compensated by the optimisation of data acquisition and the application of iterative 
image reconstruction algorithm (Wang et al., 2008). 
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The dataset acquired with the CT scanner can by described by number of slices, the number 
of pixels per slice and the voxel distances. The number of pixels in one slice is also referred 
to as image matrix. It is usually set of 512 x 512 pixels. The distances between the voxels are 
differentiated into the slice distance (out-of-plane) and pixel distance (in-plane). In general, 
the medical data are anisotropic (pixel and slice distances are not equal).  
The data resolution influences the noise level. The data having higher resolution are more 
noisy for the same radiation dose. The computed intensity values represent the densities of the 
scanned objects that are normalized into Hounsfield units (HUs). This normalization maps the 
12-bit data into two bytes (16 bits). Water is mapped to zero and air is mapped to -1000 value.  
Medical images are physically stored together with the data essential for their interpretation. 

This information is highly standardized. The DICOM standard (Digital Imaging and 

Communications in Medicine) enables the integration of scanners, servers, workstations, 

printers, and network hardware from multiple manufacturers into a picture archiving and 

communication system (PACS). It includes a file format definition and a network 

communications protocol. The DICOM files can be read by many programs and are 

supported by numerous libraries (VTK, DCMTK, GDCM).   

3. Colon cleansing 

The first step of the CT data processing is the electronic cleansing (EC) of the colon, 

especially if other means were not undertaken to remove fecal contents from the colon. The 

term EC was first introduced by Wax and Liang (Wax et al., 1998). This is a key operation 

for ensuring correct segmentation being the next step. In figure 2, we can see fluid (contrast) 

in the colon. Classical threshold operation does not remove voxels lying on the border 

between air and fluid (see Fig. 2b). The idea of thresholding operation relies on voxels 

division into 2 groups making use of a predefined threshold value T: 

 
1 ( , , )

( , , )
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(a) 

 

 
(b) 

Fig. 2. 2D slices of: a) 3D CT data; b) 3D CT data after classical thresholding operation 
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where: M(x,y,z) is a binary mask (1 - indicates object, in this case it should be the colon, 0 - 
background), and I(x,y,z) denotes a CT data. 
The threshold value is usually designated on the basis of the histogram of the CT data or 
general knowledge about values attributed to anatomical structures. A border between 
contrast and tissues (see fig. 2b), unwanted but usually being obtained after thresholding 
operation, is a result of limited resolution of detectors and soft property of reconstruction 
kernel. 

3.1 State of the art 
In order to remove voxels representing contrast and residual nutrients, many different 
computer algorithms were proposed for the electronic colon cleansing (ECC). They differ 
with the image pre-processing steps, local image features (mainly statistical ones, e.g. 23 
features in (Lakare et al., 2003) and 35 in (Cai et al., 2011)), the method of reduction of 
features dimensionality (vector quantization, principal component analysis), applied 
modelling (of multi-material objects and their edges/gradients), the use of the segmentation 
techniques (watershed, active contours, level-set) and classification methods (Markov 
random fields, expectation maximization, support vector machine). Recent publications in 
this area (Cai et al., 2011), (Serlie at al., 2010) provide the state-of-the-art and historical 
perspective of the research focused in the EC.  
First works on ECC were based on the application of the statistical image features, vector 
quantization (for dimensionality reduction), image gradient information and Markov random 
field classification (Chen at al., 2000). Later methods paid special attention to the application of 
edge modelling during image segmentation, aiming at efficient delineation of tagged regions. 
The segmentation ray technique (Lakare et al., 2002) is the most important one in this group. In 
this method the rays were designed to analyse the intensity profile and to detect the 
intersection between the air and the residual fluid and between the residual fluid and the soft-
tissues. The segmentation rays can accurately detect partial volume regions and remove them 
if necessary. The same authors (Lakare et al., 2003) proposed a method based on vector 
quantization but it does not assure correct exclusion of the voxels lying near colon wall. In 
turn, in another method (Zalis et al., 2004) the image gradient is approximated by Sobel mask 
filtering followed by a morphological dilation. Recently, Wang (Wang et al., 2006) proposed 
application of statistical features and an expectation-maximization algorithm for 
distinguishing voxels belonging to multiple materials while (Serlie at al., 2010) built a scale-
invariant three-material transition model between air, soft-tissue and tagged material/fluid 
and used it for classification of each voxel. The most sophisticated and effective algorithm has 
been proposed recently in (Cai et al. 2011) that consists of several very carefully designed steps 
making use of many image features (descriptors), two segmentation procedures (watershed 
transform, level-set method) and very precise SVM classification/cleansing method 
(sensitivity 97.1%, specificity 85.3%, accuracy 94.6%). 
In order to present problems solved with electronic colon cleansing methods and to 
demonstrate typical existing solutions, the ECC algorithm developed by the authors of this 
chapter is briefly described below. 

3.2 Electronic colon cleansing using non-linear transfer function and morphological 
operations 
The ECC method proposed by us is based on non-linear value transformation combined 
with morphological  voxels processing (Skalski et al., 2007a). 
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First, if the CT data has HU values without offset, the voxels values are increased by 1024 
and unsigned 16-bit fixed-point integer data format is obtained what results in significant 
reduction of the calculation time. In order to remove voxels representing contrast one has to 
find them in the CT data. To reach this aim, we compute two binary masks: a fluid mask 
and a residual mask. The fluid mask is created by thresholding operation described in 
section 3: voxels having values greater than 1600 are given value 1. In case of the residual 
mask we are looking for values greater than 1350 and equal or smaller than 1600 since 
voxels representing stool and fluid remain within this range. Both masks are dilated using 
regular hexahedron of size 3. Voxels for which the masks are equal 1 are then processed by 
two transfer functions, shown in fig. 3, representing Gaussian intensity transformation: 
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with σ = 450 for the fluid mask and 100 for the residual one. This operation is desirable due to 
necessity to keep smooth changes of intensity on the border between colon and soft tissues. 
 

 

Fig. 3. Gaussian transfer functions; blue line – for fluid mask σ=450 in (2), red line - for 
residual mask σ=100   

In the next step a binary data (MBin) are created having 0s for the air (v < 300) and 1s for the 
remaining parts. Then, a sequence of two morphological operations is performed: 1) a 3D 
erosion operation is applied to each volume by means of a three-cubic matrix, 2) a dilation 
operation is done on the data resulted from the erosion process. This way, a new volume 
(MDel) is obtained. After subtraction of MDel from MBin one receives a binary matrix in which 
1s denote voxels that probably lie on the border between air and fluid (stool). Finally, we 
must check also whether voxels received from the subtraction belong to the border. Since, 
during the CT scanning the patient lies on his back or abdomen, the border is always 
parallel to the body surface. 
The whole operation can be summarized by the following formula: 
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(a) 

(b) 

Fig. 4. The intensity profiles for a voxel which cannot be removed (a) and must be removed (b) 

 

 

Fig. 5. Exemplary results of usage of the proposed algorithm for colon cleansing 

After subtraction we check intensity profile along normal direction to the body surface (fig. 
4) for each voxel equal 1 in the MPr_Border volume: if the profile contains voxels belonging to 
stool or contrast, this voxel is removed. In figure 4 we can see that the voxel belonging to the 
border has different characteristic profile than the voxel belonging to the colon wall what 
allows to distinguish them and remove the border voxel. 
Exemplary results from application of the proposed algorithm for electronic colon cleansing 
are shown in figure 5. 
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4. Segmentation  

Data visualization methods like surface or volume rendering can be used for showing inner 
structure of the colon. However, inspection of the visualized data requires manual virtual 
camera movement which make smooth observation difficult. Segmented data may be used 
for creation of the automatic navigation path for the virtual camera. If we display only 
segmented structure, we can reduce the time required for visualization. Combined 
visualization and segmentation algorithms allows for development of 3D models of 
anatomical structures (fig. 6). Additionally, structures that are external to the colon can be 
viewed, which improves the assessment of the pathological lesions.  
 

 

Fig. 6. Colon after segmentation process (Skalski et al., 2007a) 

The human abdomen consists mainly of three regions: air, soft tissues and high density 
materials (bones) and this is reflected by voxels values. Thresholding represents the simplest 
approach to abdomen segmentation but has many disadvantages, e.g. it does not remove 
partial volume voxels. For example, voxels near the edge of objects are incorrectly classified 
when thresholding is used. Therefore, in the VC, segmentation is usually based on region 
growing (Vilanova et al., 1999; Xie et al., 2003, Sadleir & Whelan, 2005) or active contour 
methods (Jiang et al., 2005). The idea of the region growing technique is linking thresholding 
procedure with neighbourhood checking. In first iteration, the algorithm checks membership 
condition for all voxels of the neighbourhood of voxel being classified. If the voxels pass the 
membership condition test which can be the same as in classical thersholding procedure, the 
voxels are added to the object. In next iterations, this process is repeated for all voxels added in 
the previous iteration until no new voxel can be added. It allows for local operation in contrast 
to thresholding. Even if in the dataset there are voxels which can pass membership condition, 
they will not be classified as the object if they have no connection with voxels added before. 
Different strategy is applied in the method of active contours, called also “snakes”, 
proposed by Kass et al. (Kass et al., 1988).  The active contours method is a segmentation 
technique in which the problem of object finding in the analyzed data is formulated as 
energy minimisation. It is usually calculated in iterative routine where contour evaluation is 
guided by external constraint forces and influenced by image forces that pull the contour 
towards lines and edges present in the data. The total energy consists of the internal and the 
external energies which are responsible, respectively, for contour behaviour and image 
influence. The active contours method is a parametric technique which is susceptible to 
parameter tuning and this is a one of its main disadvantages. But even then classification of 
voxels lying near the colon wall is a source of problems. 
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Fig. 7. Idea of the watershed algorithm; First row: classic watershed; Second row: marker-
based watershed; description in the text 

The 3D segmentation algorithm based on immersion-based watershed method of Vincent 

and Soille (Vincent & Soille, 1991) can be also applied. The watershed method exploits 

topographic and hydrology concepts for the development of region segmentation methods. 

The image may be seen as a topographic relief, in which the value of a pixel (for 2D images) 

is interpreted as its altitude in the relief. In case of 2D, the principle of watershed algorithm 

can be illustrated by an idea of immersing the image from water sources. When the 

neighbouring catchment basins eventually meet, a dam is created to avoid the water spilling 

from one basin into the other (Vincent & Soille, 1991). When the water reaches the maximum 

value, the edges of the union of all dams form the watershed segmentation results (fig. 7). In 

case of 3D, usage of the algorithm leads to receiving 3D objects separated by the dam. If we 

use local minima of the image as water sources, oversegmentation problem will appear. In 

consequence, we receive a huge number of objects in the resultant matrix which do not 

correspond to data. 

One of the solutions is a modified strategy of source selection. We used marker-based 
Watershed transform, where the immersion processes are started from markers computed 
from the image. 
In order to improve results, the absolute value of gradient of the filtered data (fig. 8) is 
computed using the 3D Sobel’s mask and then the data are immersed by the watershed 
algorithm.  

 

Fig. 8. From left to right: slice of a CT data; Absolute value of the gradient; Gradient 
visualisation as a topography map 
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Neubauer et al. (Neubauer et al., 2002) proposed manual placing of markers inside the data. 

On the contrary, we use automatic methods for markers computation: object markers are 

obtained from voxels after thresholding operation. We know that voxels having intensity 

below 300 units represent air, and background markers are voxels which have intensity 

value corresponding to tissues. This approach eliminates the oversegmentation problem.  

The 3D watershed segmentation algorithm computes border between the colon and the soft 

tissue using the gradient map (fig. 8) calculated as: 

 
2 2 2( , , )MOD x y zG x y z I I I= + +   (4) 

where Ix, Iy and Iz are image gradients in x, y and z directions, respectively.  

Thanks to these operations, the colon model, which is traced, reflects details very precisely 

what we can observe in figure 6. 

5. Calculation of navigation path 

Fast and accurate navigation path generation is essential for efficient diagnosis using the VC 

since it allows for simulation of the virtual camera movement inside the segmented 

structure and the whole colon can be screened by the physician in a short time.  The virtual 

camera can be stopped if a suspicious image is discovered for more careful assessment.  

Computation of the colon centerline is not a trivial process. The algorithm should require 

only minimum operator intervention. Additionally, a centreline approximation of the centre 

navigation path of the colon must be obtained in reasonable time with acceptable accuracy. 

Time constraint is a very important factor to evaluate the algorithm especially in a clinical 

practice. 

5.1 State of the art 
Centreline calculation methods can be subdivided into three categories since they are 

mainly based on: 

• manual extraction, 

• topological thinning (e.g. Xie et al., 2003; Sadleir & Whelan, 2005), 

• distance transform (e.g Vilanova et al., 1999). 
Manual extraction requires manual identification of the centre of colon slices. It does not 

guarantee that marked points lie in the centres of slices and that they are directly connected. 

Furthermore, the allocation is difficult because the colon centreline is oriented in different 

directions. 

Methods based on topological thinning and distance transform are automatic usually. The 

idea of topological thinning is based on peeling off the colon surface points using 

morphological operations repeatedly until the centreline is obtained.  Though the results of 

this standard algorithm are well-defined they do not always lie in a proper place. 

Additionally, the algorithm is extremely inefficient computationally. Therefore, other 

methods were developed that use 3D topological thinning and graph search algorithm (Ge 

et al. 1999), optimized 3D topological thinning using Look-up Table (Sadleir & Whelan, 

2005), distance transform (Zhou & Toga 1999, Van Uitert and Bitter 2007), minimum energy 

path (Deschamps and Cohen 2001) or Dijkstra’s shortest path algorithm (Bitter et al. 2000). 
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Some approaches rely on the use of the distance transform. In these methods, the centreline 
is calculated as a maximum of binary mask representing colon after the distance 
transformation.  
Below an exemplary algorithm of the VC navigation path calculation is presented.  

5.2 Exemplary algorithm based on distance transform 
In this section we present the colon centreline calculation algorithm based on the distance 
transform (Skalski et al., 2007b). As an input to the algorithm, the matrix with labelled 
voxels (label L represents the colon) resulting from the segmentation process is used. The 
author's algorithm of the colon centreline calculation consists of the steps presented in table 1.  
 

• compute complement IL of the binary mask L (1 – colon, 0 – others) 

• choose N, number of points that you want to generate inside the colon 

• iter=0  (number of iteration) 

• while  (iter < N+1)  do: 
- iter++ 
- compute distance transform on IL 
- find maximal value maxD of the distance transform  
- save location of maxD,  path (xiter,yiter,ziter) 
- set sphere to IL (value=1; centre=(xiter,yiter,ziter); radius=maxD ) 

• end 

as a result we receive points saved in the matrix path (3xNdim) 

• sort the path: 
- find a point which has a minimal value of z coordinate or mark a starting point; 

replace the first point of the path with the starting point; mark this point 
- for (i=1 to N-2) do: 

- compute the distance between the last marked point path(i) and each other 
not marked point: 

- find minimal distance dj based on equation 4 and save its coordinates 
 (xj, yj, zj)  

- replace path(i+1) and path(j) 
- mark path(i+1) 

- end 

• compute interpolating cubic spline 

Table 1. Navigation path calculation algorithm 

Firstly, complement of the binary mask resulting from the segmentation process is done. It is 
a preparation step for the distance transform calculation. The distance transform returns as a 
result distance to the nearest voxel which belongs to the colon. In order to calculate the 
distance, the Euclidian metric is usually used: 

 ( ) ( ) ( )
2 2 2

= − + − + −ij i j i j i jd x x y y z z . (5) 

Maximum value maxD is taken from the resultant matrix. It is a point inside the colon in the 
widest place. Then, spherical neighbourhood of this point is removed. It prevents 
algorithms from finding next points very close to points found before. This process is 
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repeated in iterative manner. The points received in the previous step become knots of the 
navigation path. Subsequently, points received from the algorithm are sorted. Finally, points 
between knots are generated using b-spline cubic interpolation. Exemplary navigation path 
is presented in figure 9. 
 

 

Fig. 9. The colon after the segmentation process with a centreline, number of points N = 24 

6. Visualisation  

The final step in the Virtual Colonoscopy is the data visualization. There are two main 

methods of 3D medical data visualization: indirect (surface rendering) and direct (volume 

rendering) (Preim & Bartz, 2007). Both techniques can use fully programmable graphical 

pipeline. 

Surface rendering is one of the indirect methods. This technique produces surfaces in the 

domain of the scalar quantity. Scalar values, contained in 3D medical data, represents tissue 

properties, like radiodensity in Hounsfield scale or label mask that contains segmentation 

results. Surface represents a specific scalar value, the so-called isosurface value. In fact, one 

iso-surface describes only one scalar value. The interior of the object is not described – 

surface is the boundary of the volume objects. Surface rendering method includes two 

stages: generation of the 3D surface from 3D data and proper visualisation relying on the 

image generation by graphics accelerator. There are numerous methods for implementing 

the surfaces from a discrete set of 3D data (Preim & Bartz, 2007). One of the most useful is 

the Marching Cubes algorithm (Lorensen & Cline, 1987). This algorithm has many 

implementations that solve the problem of ambiguities in first cell triangulation method 

(holes in surface). Possibly the widely used implementation of the Marching Cubes 

algorithm comes from The Visualization Toolkit (Schroeder et al., 2004). In the algorithm a 

polygonal mesh of the isosurface is generated from the 3D scalar field. The polygonal mesh 

is a collection of vertices (points in 3D) connected to triangles. For high resolution data sets 

the number of generated graphical primitives can be extremely high. To reduce the number 

of triangles, the mesh can be decimated or smoothed (Schroeder et al., 1992 and 2004).  

Surface can be coloured according to the isosurface value or to another scalar field using a 

texture mapping technique. To increase the perception of the surface shape in the VC 
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visualization, the virtual lighting is used. The standard model in the OpenGL Application 

Programming Interface is Phong illumination model (Phong, 1975). This is an empirical 

model of local illumination. It describes the way a surface reflects the light as a combination 

of the diffuse reflection of rough surfaces with the specular reflection of shiny surfaces. 

Phong shading includes a model for the reflection of light from surfaces and a compatible 

method of estimating pixel colours by interpolating surface normals across rasterized 

polygons. In fact, at each point of the screen full Phong model calculations are performed 

(per-pixel lighting). Since the interpolation of surface normals is computationally expensive, 

the Phong shading is slow. In Gouraud shading algorithm the calculating lighting is 

performed only in vertex. Next, the screen pixel colour on the triangle are bilinearly 

interpolated from the vertex colour. This method is fast, but the specular highlight will not 

be rendered correctly if a highlight lies in the middle of a polygon. This limitation can be 

solved by increasing a number of triangles by mesh tessellation or by increasing of spatial 

data resolution. The polygonal data can be efficiently processed in modern graphics card. 

All shading calculations are done in hardware. 

Volume rendering is the process of creating a 2D image directly from 3D volumetric data 
that operates on the actual data sample without creation of intermediate surfaces consisting 
of triangles (Preim & Bartz, 2007). The purpose of volume rendering is to effectively convey 
information present within the volumetric data. It is especially important in case of medical 
data. All direct volume rendering algorithms can be classified into two main groups: object-
space and image-space methods. However, many advanced algorithms cannot by easily 
classified as one or the other, but fuse aspects from both groups into one hybrid algorithm. 
Object-space volume rendering techniques use forward mapping scheme where the data is 

mapped onto the image plane. One of such approach is the Splatting algorithm that projects 

the data voxels onto image-plane (Westover, 1989). Texture-mapping algorithms are the 

other widely used object-oriented algorithms. They are supported by computer graphics 

hardware. In image-order (image-space) algorithms, a backward mapping scheme is used 

where rays are cast from each pixel in the image plane through the volume data to 

determine the final pixel colour. The classic direct volume rendering method is the image-

space oriented ray casting algorithm. Moreover, some algorithms use domain-base 

techniques – the spatial volume data is first transformed into an alternative domain, such as 

frequency or wavelet, and then a projection is generated directly from this domain 

(Malzbender, 1993).  

Modern graphics cards are characterized by immense ability of 3D data processing. They are 

developed and optimized for processing triangle meshes, which are used for surface 

rendering. Furthermore, a fully programmable graphics processing unit (GPU) offer new 

opportunities to use graphics cards for general purpose computing, especially for volume 

rendering. Ray-casting volume rendering using CPUs is computationally expensive since it 

requires the interpolation and shading calculations for every sample point along the ray in 

the data. Interactive volume ray casting was previously restricted to high-end workstations. 

GPU implementations of ray-casting rendering approaches have received great attention 

since they enable interactive visualization of volumetric data (Lee et al., 2009).  

The most important in virtual colonoscopy visualization is trustworthy surface presentation. 

In figure 10, examples of applying different rendering methods are shown. The fastest 

method in interactive visualization is the surface rendering. Unfortunately, the triangle 
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structure of reconstructed surface has an influence on image quality. The colour 

interpolation (diamond artefact) are visible. Surface in image generated by the direct volume 

visualization has better quality (fig. 10 b-d). The shape of wrinkles is kept. However, the 

computational cost is considerably larger. The texture-mapping technique, supported by the 

GPU acceleration, can be used in interactive visualization. Unfortunately, this method 

generates images which contain staircase artefacts caused by interpolation and insufficient 

depth sampling (fig. 10.d).   

To extend the field of view in virtual colonoscopy the multi-cameras are used, especially for 

visual inspection of the colon wall (Serlie I. et al. 2001). The six cameras are located in the 

same place, but the view directions are different. They are rotated around, to cover 360 

degree of view. Each camera has the 90 degree field of view. Images of this cameras can be 

mapped into the unrolled-box surface. The sample of this technique is shown in the figure 

11. Additionally, the light source moves along with the camera and the position of light 

source is the same as camera position. The light is configured as positional (headlight), and 

the cone angle corresponds to camera cone angle. To prevent overexposing nearest surfaces, 

the irregular light intensity along the cone angle was used.  Light fading attenuation was 

used for distance simulation. 

Comparison between real colonoscopic image and virtual one is presented in figure 12.  
 
 

 
 

Fig. 10. Exemplary virtual colonography images: a) surface rendering, b) volume rendering 
by ray-casting, c) isosurface in volume rendering (ray-casting) and d) texture-mapping 
volume rendering 
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Fig. 11. Extended field of view in virtual colonoscopy by using six cameras: a) surface 
rendering and b) surface mesh visualization 
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(a) (b) 

Fig. 12. a) real endoscopic image, b) virtual colonoscopy image (Bulat et al., 2007). 

7. Conclusion 

In this chapter virtual colonoscopy has been presented from the point of view of 

computational sciences. Problems present in the VC software realization have been pointed 

out and their existing solutions have been cited. For clearity of presentation, to help a reader 

to understand merits of technical issues associated with the VC, simple examples of 

computer algorithms have been given, mainly developed by the authors of the chapter. 

Special attention has been paid to the following technical aspects: electronic colon cleansing, 

colon lumen segmentation, navigation path calculation and modern 3D visualisation. 
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