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The Dirac Field at the  
Future Conformal Singularity 

Michael Ibison 
Institute for Advanced Studies at Austin,  

USA 

1. Introduction 

In the flat space Friedmann-Robertson-Walker (FRW) Cosmology expressed in the 

coordinate system with line element ds 2 = dτ 2 – a 2(τ) dx 2, τ is the proper time of a 
‘fundamental observer’ equipped with a suitably-defined ‘laboratory clock’ at rest with 
respect to the frame established by the Cosmic Microwave Background. Measured 
according to this time The Universe will expand forever, asymptotically approaching an 

exponential growth a(τ) → exp(Hτ) , where H is the Hubble parameter. Descriptions and 
explanations of Cosmology commonly adopt this time implicitly - though GR is 
coordinate independent of course. For example the cosmological (as opposed to Doppler) 
red-shift of distant galaxies is usually described as due to the effect of the expansion of 
space during the time light – or a photon – is in flight from the distant star on its way to 
Earth. Unless properly qualified such explanations give the false impression that a 
physical statement is being made about the effect of expansion on light, without 
recognizing that the explanation makes use of a projection of the underlying physics onto 
a particular coordinate system. In this instance the physical – coordinate independent – 
essence of the phenomenon depends on the differential evolution of electron mass and 
photon energy, and not on the photon energy by itself. So for example a perfectly good 
alternative explanation for the same observation is that the Lyman Alpha lines of local 
hydrogen, i.e. at the time of reception, are more separated energetically (bluer) then those 
at the time of emission, with light having suffered no red-shift at all whilst in flight. This 
alternative picture comes from projecting the physical process onto the conformal 
coordinate system having line element ds 2 = a 2(t) (dt2 –  dx  2). In contrast with the 
‘traditional’ coordinate system, in the conformal system (–g)1/2 times the energy density of 
matter increases in proportion to the scale, giving rise, effectively, to an increase in the rest 
mass of a free electron. Of course there are infinitely many other coordinate systems. But 
this one example serves to illustrate the difference between a process and its projection. 
One does not expect to find any new physics simply by changing the coordinate system; a 
coordinate transformation in GR is analogous to a coordinate rotation in Euclidean 
geometry. Yet there is a concern. The FRW system has no future boundary, whereas the 
conformal scale factor is singular at a finite conformal time; the exponential expansion 
written conformally has asymptote a(t) → (1 - Ht)-1. One might wonder if perhaps this is a 
coordinate singularity with no physical consequence and can be ignored? As implied above 
(though with some qualifications) EM radiation is unaffected by the expansion expressed in 
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the conformal system – perhaps it is unaffected also by the singularity? And how is 
fermionic matter affected by the singularity? 
Penrose, and Friedrich (Friedrich, H., 2002; Penrose, R., 1963) have considered in detail the 
consequences of the conformal singularity for gravitational radiation in particular.  The 
focus here is on the consequences for the Dirac field. We will show below that Dirac’s 
equation in conformal spacetime with conformal scale factor f(x) can be written 

 ( )( ) ( )( ) ( ) 0i eA x f x m xµ
µ µγ ψ− ∂ + + = . (1) 

Of interest is the manner in which f(x) introduces a dependency on absolute coordinates and 
so changes the way the discrete symmetry operations affect the equation as a whole. A 
conformal factor due to cosmological expansion has a different status than the vector 
potential because it is a fixed background affecting all particles everywhere. Arguably it 
should be considered as hard-wired into the Dirac equation in the same manner that the 
(constant) mass term is ordinarily considered a fixed feature. In fact since it multiplies the 
mass one can take the position that a coordinate dependent mass is a universal property of the 
Dirac equation. Obviously this point of view pertains specifically to the equation expressed 
in conformal coordinates. 
We are interested in the ways the conformal factor influences behavior: 1) On the local 
modification of discrete symmetries, 2) On the relationship between pre and post-
singularity wavefunctions, 3) The boundary conditions on the wavefunction  and / or the 
topologies of Cosmological spacetime required in order that the wavefunction behave nicely 
through the singularity. These topics are covered in the subsequent sections as follows. 
Section 2 reviews the symmetry-breaking effects of the conformal metric on the discrete 
symmetries normally present in Minkowski spacetime. The latter are reviewed in Appendix 
A. Section 3 looks at the behavior of the conformal scale factor near and through the 
singularity as determined by the Friedmann equation for a conformally-expressed metric in 
the flat space Robertson-Walker spacetime. Section 4 gives a very brief review of EM in 
conformal spacetime. The affect of the conformal metric on the Dirac equation in general, 
and the wavefunction in particular are covered in Sections 5 and 6 respectively. Those 
findings are then applied in Section 7 to the particular case of a conformal representation of 
the de Sitter spacetime. Those results are further specialized in Section 8 in an analysis of the 
wavefunction near and through the singularity. (With some qualifications, all vacuum-
dominated Robertson-Walker spacetimes asymptote to the de Sitter evolution). Section 9 
outlines the alternatives for peaceful coexistence between the Friedmann equation and the 
Dirac wavefunction under the presumption that the post-singularity universe is not a 
redundant copy of the pre-singularity universe. 

2. Inversion symmetries 

2.1 Systematic symmetries 

An inversion operation may be a symmetry of the whole of system of physical interactions if 
applied universally. By universally we mean here not just over all space and time, but to all 
particles. It is easy to see for example that the system of QED must be invariant under 
charge conjugation. QED is invariant also under parity and time reversals, independently. 
Since the system as a whole is invariant, it follows that an inversion applied universally to a 
physically legal universe of particles and their interactions generates another universe, legal 
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under the rules of QED. It is different matter however to determine if this implies a 
symmetry (point symmetry or local symmetry) of the Dirac wavefunction, either free, or in 
the presence of an interaction. 

2.2 Point symmetry and local symmetry in the dirac equation 

A free particle solution in Minkowski spacetime ψ(t,x) i.e. obeying (1) with Aµ(x) = 0,  f(x) = 1,  

 ( ) ( ) 0i m xµ
µγ ψ− ∂ + =  (2) 

turns out to have symmetric partners associated with time reversal and parity inversion. 
Having fixed a coordinate system with a particular origin, technically, the replacement  
x →  x’ = –x has the specific meaning of inverting the coordinates through the spatial origin 
x = 0. Therefore the presence of a symmetry under this operation implies that for every 

solution ψ(t,x) there exists another solution ψ’(t,x) of the same equation that is somehow 
related to the solution at ψ(t,–x). For example the relationship may be of the form 
ψ’(t,x) = Uψ(t,–x) , where U is some fixed 4x4 matrix. If the origin remains where it was 
before the inversion this relates solutions that are spatially separated, depending on their 

distance from the origin. That is, ψ’(t,x) = Uψ(t,-x)  is a point symmetry. To be concrete, if the 
origin were at the center of the Milky way, then the symmetry implies that for every Earth-

based particle with wavefunction ψ(t,x) there may be another particle with wavefunction 
Uψ(t,-x) located on the ‘other side’ of the Milky Way at a distance of about 100,000 light 
years from Earth. Usually though this is not what is meant by parity inversion symmetry in 
the context of the Dirac equation. Instead it is understood that there is a freedom to combine 
the replacement x →  x’ = –x with an arbitrary translation to bring the symmetric partner to 
the same location as the original. This is possible because (2) is translation invariant. In 
practice this freedom is used to move the origin to the location of the original particle before 
applying the operation x →  x’ = –x, with the outcome that inversion can be treated as an 
entirely local operation. The combination of translation invariance with parity inversion 
invariance converts the point symmetry to a local symmetry.1  
When the vector potential is absent one usually expects to see the local version of the time 
and parity symmetries. Generally, the effect of a (universal) conformal scale factor is to 
destroy the translation invariance to some degree in the same manner as would the presence 
of a vector potential. With translational invariance gone only the point symmetry versions 
remain, these now to be interpreted with respect to the absolute coordinate system 
established by the metric and, in particular, the conformal singularity. Consequently in the 
following we will be interested in how the conformal factor affects the local symmetry, and 
additionally in the consequences of its replacement with a point symmetry. 

3. The Friedmann equation in conformal spacetime 

3.1 Conformal forms of the scale factor 

We consider in parallel the two forms of Cosmological scale factor  

 ( ) ( ) ( ){ }2 2, / /f x a t a t x x∈  (3) 

                                                 

1This point of view is applicable only to a single particle, which is our sole interest here. 
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where a is an arbitrary function common to both cases determined from solution of the 

Friedmann equation. The notations used here are x = {xµ} = (t,x), r = |x|. We note in passing 
that the first of these admits the alternative form 

 ( ) 2

1 t
f x b

t x

 
=  

 
 (4) 

where b(z) = z a(z). Each of (3) is associated with a line-element 

 ( )2 2 2ds f x dx=  (5) 

which is why they are called conformal. The coordinates used for these definitions are not 
the same though we have used the same symbols - they are related by the coordinate 
transformation 

 2 2/ , /t t x r r x→ →  (6) 

with the angle variables left unchanged. Note that the transformation is symmetric in that 

it can be applied to take the first of (3) to the second and vice-versa. Because a coordinate 

transformation exists between these two forms they are equivalent from a GR point of 

view, though they may imply different topologies. When expressed as a Robertson-Walker 

spacetime the first of these has zero spatial curvature. That is, it can be written in the  

form 

 ( )2 2 2 2ds d a dτ τ′= − x  (7) 

where dτ = a(t) dt and a’(τ) = a(t)
 
is a (new) arbitrary function. Since the two systems are 

related by a transformation the second of (3) can also be put into the form (7) and therefore 

also has zero spatial curvature in that context. (Spatial curvature is not a coordinate-

independent quality of a metric. It is sufficient to note that all Robertson-Walker spacetimes 

can be expressed conformally, removing therefore the spatial curvature from the K = ±1 

spacetimes - see (Ibison, M., 2007).) In the form f(x) = a(t) the (hyper) surfaces of 

cosmological simultaneity are the hyper-planes t = constant. In the case f(x) = a(t/x2)/x2 then 

t = kx2 for some constant k and then 

 
2 2

21 1

2 2
t r

k k

   
− − =   

   
. (8) 

Hence the surfaces of simultaneity are paraboloids, including the ‘final surface’ that is the 
conformal singularity. Despite superficial appearances therefore, both forms in (3) admit 
three independent translational isometries. 

3.2 Two branches 

The evolution of the scale factor is decided by the Friedmann equation plus equations of 
state for the various contributions.2 In conformal coordinates this is 

                                                 

2Either the equations of state or the second Friedmann equation involving the pressure. 
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2

4
2

1
EM m

da
a a

dtH
Λ

 
= Ω + Ω + Ω 

 
. (9) 

Each of the Ω is an energy density normalized so that their sum is unity; Λ denotes the 
vacuum contribution. Present estimates are (Nakamura, K. & et al, 2010) 

 
1

5

9.78 /.72 13.6 Gyr

0.74, 0.256, 4.76 10m EM

H−

−
Λ

= =

Ω = Ω = Ω = ×
. (10) 

Let us write the Friedmann equation as  

 ( )
2

2

1 da
f a

dtH

 
= 

 
 (11) 

where f(a) is a dimensionless function of the scale factor. Upon integration one has 

 ( )
( )

( )
( )

1 1
and

a a
da da

t a t a
H Hf a f a

+ −

′ ′
= = −

′ ′
   (12) 

I.E. t has two (single-valued) branches t+(a) and t–(a) which are true functions. (The square 
root operation is discussed in more detail below.) Since the integrand is always positive or 
zero the t±(a) are both monotonic with a. Therefore each function is invertible, and in each of 
these the scale factor can be expressed as a function of time. Let us write the Taylor-Laurent 
series expansion of  f(a) about a = 0 as 

 ( ) 1 1
1 1... ;m m n n

m m n nf a c a c a c a c a n m+ −
+ −= + + + + >  (13) 

and set a = 1 at the present – finite – time. Then the integrals in (12) converge to a finite 
future t as a → ∞ provided n > 2 . In that case there is a singularity in the scale factor in finite 
conformal time. Similarly the integrals converge to a finite t as a → 0+ provided m ≥ 0. In that 
case the Big Bang occurred at a finite conformal time in the past. In (9) m = 2, n = 4, and both 
of these conditions are met; the universe has a finite conformal duration. Defining 

 ( )
( )

1
:

a
da

a
H f a

φ
∞

′
=

′
  (14) 

the solutions (12) can be written 

 ( ) ( ) ( ) ( ) ( ) ( )andt a a t t a a tφ φ+ + − −= + ∞ = − + ∞  (15) 

where we have chosen to set whatever initial conditions we intend to apply at the conformal 
singularity (which will now be presumed to exist). Let us set the clocks to zero there - t+(∞) = 
t–(∞) = 0 - rather than at the Big Bang. With this, and inverting (15), the inversion of the two 
branches gives 

 ( ) ( ) ( ) ( )1 1anda t t a t tφ φ− −
+ −= = − . (16) 
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3.3 Parity of the scale factor 

Usually there would be no motivation to entertain solutions of the Friedmann equation for 
negative values of the scale factor. But since the conformal boundary occurs at a finite time 
and the scale changes sign thereafter, this would appear to be an oversight. We will see 
below that the energy of Dirac matter changes sign through the boundary, with the result 

that the product Ωm a(t) is always positive. Consequently (9) is more accurately written 

 
2

4
2

1
EM m

da
a a

dtH
Λ

 
= Ω + Ω + Ω 

 
 (17) 

Now the right hand side has even parity. Consequently f 
1/2(a) = f 

1/2(–a) so that the even 
parity survives the square root operation. No questions arise as to the meaning of the square 
root operation here and in (14) because f(a)1/2  is positive for all real a. 

Since the integrand has even parity φ(a) is odd. The two branches in (16) then appear as in 
Figure 1, with scaling of a so that a+(0) = – a–(0) = 1. The branch a+(t)  is shown in solid blue 
and the a–(t) branch as a red dashed curve. A solution valid through the singularity now has 
odd parity (everywhere) - consistent with a ~ 1/t. The Friedmann equation ‘predicts’ a post 
singularity universe that is a mirror image of (our) pre-singularity universe though with 
a → -a. For the Friedmann equation to remain valid the image must be a legal – dynamically 
feasible – copy of the original pre-singularity universe. 
 

 

Fig. 1. Plot of both branches of the scale factor on both sides of the conformal singularity; the 
solid curves are a single branch and the broken curves are a single branch. Here the origin of 
the time coordinate has been chosen so that a(0) = 1. 

3.4 Singularities and asymptotic behavior 

The time to the singularity found by integrating (9) numerically is 

 ( ) ( )
4

1

1
1 1.12 / 15.2  Gyr

EM m

da
t a t a H

H a a

∞

Λ

= ∞ − = = = =
Ω + Ω + Ω

  (18) 
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which is marked in Figure 1 by a dotted line. The conformal time elapsed since the Big Bang 
– the age - is 

 ( ) ( )
1

4
0

1
1 0 3.47 / 47.2  Gyr

EM m

da
t a t a H

H a aΛ

= − = = = =
Ω + Ω + Ω

 . (19) 

The conformal interval from Big Bang to future singularity is therefore 62.4 GYr, which we 
will call the duration. Focusing on the branch a+(t), the Big Bang was at time  t = - 47.2 GYr 
ago. The scale factor expands from 0 to positive infinity at 15.2 Gyr in the future. The scale 
factor then changes sign and proceeds to diminish in magnitude from negative infinity to 0, 
which it reaches at time 15.2 + 62.4 = 77.6 Gyr.  
Near the future singularity the vacuum-dominated asymptotic behavior is that of a simple 
pole 

 ( ) ( ) 1
1a t kt

−
→ − . (20) 

Therefore (20) with k = 1/15.2 Gyr is an approximation to the remaining evolution which 

ignores the non-asymptotic behavior. In the following we will exploit the fact that (9) is 

invariant under time translations to move the time of the future singularity to t = 0 with the 

result that the present time is negative 15.2 Gyr. The evolution near the singularity is then 

like a ~ 1/t  and is odd about the new origin. This has the advantage that if the 

transformation (6) is applied to this system (with this origin) then the conformal singularity 

occurs at the same time for both systems defined in (3) i.e. at t = 0. Further, the asymptotic 

behavior a ~ 1/t  corresponds in the system with f(x) = a(t/x2)/x2 to f(x) ~ 1/t also, so both 

systems have the same asymptotic behavior. After all this, near the singularity we can then 

ignore the differences because the two forms are essentially the same. We should point out 

however that these are not the only forms of conformal factor that represent de Sitter 

spacetime. The curved-space Robertson-Walker spacetime for example has a different de 

Sitter asymptote (Lasenby, 2002; Lasenby, A. & Doran, C., 2005) which is not covered by the 

analysis here, and would be interesting to investigate in this context. 

4. EM in conformal spacetime 

The EM action in curved spacetime is  

 4 1

4
ab a

ab aI d x g F F A j
 

= − − + 
  . (21) 

In the particular case of conformal spacetime it is useful to re-write this as 

 4 1

4
ac bd a

ab bd aI d x F F A g jη η 
= − + − 

  . (22) 

The covariant divergence of the current must vanish 

 ( ); 0 0a a
a aj g j=  ∂ − = . (23) 
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Apart from this, the equations are the same as for Minkowski spacetime. Therefore it is 
convenient to define 

 a aj g j= −  (24) 

whose ordinary divergence must now vanish. With this, the action (22) becomes  

 4 1

4
ac bd ab

ab bd a bI d x F F A jη η η 
= − + 

   (25) 

and now the scale factor has been eliminated. It follows that variation of the covariant 
potentials in (25) must give the Maxwell equations as if in Minkowski spacetime: 

 ( )2
a a aA A j∂ − ∂ ∂ = . (26) 

The Minkowski spacetime Lorenz gauge 

 0ab
a bA Aη∂ ≡ ∂ =  (27) 

then leads to 

 2
a aA j∂ = . (28) 

Appendix A gives the discrete inversion symmetries in Minkowski spacetime. It will be 
necessary for subsequent discussions to know how these are affected in going to conformal 
spacetime. Of particular interest is the fate of time reversal symmetry due to the presence of 
a scale factor that is odd about the conformal singularity. Since the scale factor is absent in 
the Lorenz gauge, the symmetric partner of Aµ(x) is hµ

νA
ν(- x ) just as in Minkowski 

spacetime, though this is demoted to a point symmetry rather than a local one. 
Consider now the consequences of imposing instead the covariant gauge condition 

 ( ) ( )4
;

1
0 0 2 0

a
A gA a A

a tg

µ µ µ
µ µ µ

φ
φ

∂
= ∂ − =  ∂ =  + + ∇ =

∂−
.A


 (29) 

where the 1 + 3 potentials are components of a covariant vector: 

 { } ( ) { } ( )4 2, ; ,A A g A a A aµ µν µ
µ νφ φ= =  =A A . (30) 

Then (26) is replaced by 

 
2

2 2
2

2 2 , 2
a a a a

a t a aa

φ
φ φ ρ φ

 ∂
∂ + + − = ∂ = + ∇  ∂  

A j
   

 (31) 

where we used 

 { } ( ),jµ ρ= j . (32) 

Evidently the components of the current vector are not affected by this change and so 
transform under time reversals as they did before. It follows from the structure of (31) that 
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the potentials are likewise unaffected and the symmetric partner of Aµ(x) remains 

hµ
νA

ν(- x ). Hence the column headed Aµ(x) in Table 1 remains as it was in Table A2. The fate 

of EM fields in conformal spacetime is discussed in more detail in (Ibison, 2010). 

5. The Dirac equation in conformal spacetime 

5.1 Discrete symmetries 

In going to conformal spacetime from Minkowski spacetime we need only consider the 
effects of space and time inversions, since charge and mass inversion are unchanged. Mass 
inversion however will be ‘opposed’ by any operation that inverts the sign of the conformal 
factor. Discrete symmetries broken by the Cosmological metric have been discussed by 
Tomaschitz (Tomaschitz, R., 1994). 

5.2 Time reversal 

Here we return to (1), restoring the conformal factor in one of the forms (3), and re-examine 
the effects of the inversions. In both cases the Dirac equation is no longer time-translation 
invariant due to the cosmological evolution, though local time reversal symmetry remains 
approximate valid in our era, far from the conformal singularity. Consider for example the 
rest energy of the Dirac particle computed from (A26). This is now 

 ( ) 3 † 0E a t m d xψ γ ψ=   (33) 

which is not in general time-independent. Using (20) (which has an origin t = 0, a(0) = 1 

 corresponding to ‘now’) far from the boundary the energy is monotonically increasing at a 
rate 

 3 † 0d
E km d x

dt
ψ γ ψ≈   (34) 

whereas the energy monotonically decreases for a time-reversed particle. This is just the 
local version of Cosmological red-shift seen from the perspective of the conformal 
coordinate system. Red-shift is associated in this coordinate system with an increase in rest 
mass, whilst the EM fields are unaffected by the expansion. Generally we think of this effect 
as observable only as a result of interactions over great distances. In principle though the 
effect could be probed locally according to (34), leading to a local determination of the 
cosmological arrow of time through a broken time reversal symmetry. 
In the presence of cosmological expansion exact time reversal symmetry, if it exists, relates 

two objects either side of the conformal singularity, i.e. as a point symmetry. Both conformal 

factors in (3) change sign under time reversal but are otherwise unaffected by the inversions. 

This changes the sign of m f(x) from what it was in the Minkowski case. That sign change can 

be accommodated in the Dirac equation by replacing ψ with γ 
5ψ, which change is reflected 

in the rows for T + and T – in Table 1 compared with Table A2. 

5.3 Parity inversion 

Parity inversion has no effect on the conformal factor f(x) = a(t). Space translation invariance 
appears to be absent in the case of f(x) = a(t/x2)/x2. We assume however a freedom to choose 
a coordinate system with the spatial origin centered at the particle of interest. To be more 
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precise, we can exploit the translation invariance of the f(x) = a(t)
 
system and then transform 

using (6) to the system f(x) = a(t/x2)/x2, which is equivalent to having performed a space-
time translation within a paraboloidal surface of simultaneity. From this perspective parity 
inversion remains a local symmetry in both coordinate systems, as reflected by the entries in 
Table 1. 

5.4 Summary 

The discrete symmetries of Minkowski spacetime are preserved in a cosmological 

conformal expansion, though with some modifications. The biggest change is in time-

reversal symmetry, which ceases to become locally valid, but retains a point symmetry. 

The lack of a local time-symmetry manifests as a ‘Cosmological arrow of time’, associated 

in particular with recession of distant galaxies in the Hubble flow and with Cosmological 

red-shift. 
 

 

Table 1. Inversions in Conformal Spacetime with Scale Factor ( ) 1 /f x t . 

6. The Dirac wavefunction in conformal spacetime 

6.1 Tetrad formulation of the Dirac action 

The Dirac equation in Minkowski spacetime is 

 ( )( ) 0i eA mα
α αγ ψ∂ − − =  (35) 
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where α is a Lorentz index. In curved spacetime the effects of gravitation can be accounted 

for with the replacement 

 
( )

( ) ( )

x

x V x

α µ µ

α µ µ α
αγ γ γ

∂ → ∂ + Γ

→ =
 (36) 

where the argument x for the gamma-matrix signifies a different object from the Minkowski 

spacetime matrix, gµ(x) ≠ gµ and where Vα
µ is a tetrad satisfying 

 ( ) ( ) ( )g x V x V xα β
µν µ ν αβη=   

and therefore 

 ( ) ( ) ( ) ( ) ( )g x V x V x V x V xµν αµ βν µ ν αβ
αβ α βη η= =   

Γµ is the spin connection defined by 

 ( ) ( ) ( ) ( ),x x x xµ µ µ ρ
ν ν νρσ γ γ γ Γ = ∂ + Γ   (37) 

where σ is introduced to compare different published results (see historical note below). In 

conformal spacetimes 

 ( ) ( )2g x f xµν µνη= .  

The simplest choice is 

 ( ) ( ) ( ) ( ) ( ) ( )/ /V x f x V x f x x f xα α µ µ µ µ
µ µ α αδ δ γ γ=  =  = . (38) 

Then the spin connection equation is 

 ( ) ( ) ( ),x f x f xµ µ µ ρ
ν ν νρσ γ γ γ Γ = − ∂ + Γ   (39) 

where the affine connection for the conformal metric is 

 ( ) ( )f xµ µ µ µ
νρ ρ ν ν ρ νρδ δ ηΓ = ∂ + ∂ − ∂ . (40) 

Putting this into (39) gives 

 ( ) ,x µ µ
ν νσ γ δ Γ = ∂  ( ) ( ); log f xµ

νγ φ φ− ∂ =  (41) 

whose solution is 

 ( )
2

xν ν
σ

γΓ = − ∂φ  (42) 

(plus an arbitrary function times a constant matrix). Bearing in mind (36), one has 
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α
αγ ψ∂ = ∂

1

2f
µ

µ µ
σ

ψ γ γ→ ∂ − ∂
1

f
φ ψ 

= ∂ 
 

2σ− ∂( )φ ψ

 ∂ 2 1f σψ −→ ∂
2f σ

ψ 
  
 

 (43) 

and so the Dirac equation in conformal spacetime is 

 2 1i f σ − ∂
2

e
A

ff σ

ψ 
−  

 
0mψ ψ− = . (44) 

Defining the normalized wavefunction 2/ f σψ ψ= , and making the dependencies explicit, 

this becomes 

 ( )( ) ( )( ) ( ) 0i eA x f x m xα
α αγ ψ∂ − − = . (45) 

6.2 Current conservation 

Note that the ordinary divergence of the current vanishes 

 ; 0j e jα α α
αψγ ψ= ∂ =    (46) 

and therefore the charge is conserved in Minkowski space. Of course one can revert at any 

time to the un-normalized wavefunction using 2f σψ ψ=  , for which the current obeys 

 ( ) ( )4 4
;

1
, 0j e j g j f f j

g

µ µ µ µ µ
µ µ µψγ ψ −= = ∂ − = ∂ =

−
. (47) 

(The symbol j  is used for the invariant current for consistency with the notation in the 

discussion of EM.) This is consistent with 4j f jµ σ µ=   and (46) only if 1σ = − , which fixes 

the correct value of σ in (39): 

 ( )
1

2
xν νγΓ = ∂φ . (48) 

6.3 A note on related work 

Barut with others (Barut, A. O. & Duru, I. H., 1987; Barut, A. O. & Singh, L. P., 1995) give the 

spin connection equation (39) with σ = 1. Their equation is employed (Huang, 2005; 
Parashar, D., 1991) and otherwise widely cited elsewhere. An explicit equation of the form 
(39) with the correct sign is given has been given by Kovalyov (Kovalyov, M. & Légaré, M., 
1989). Others (Birrell, N. D. & Davies, P. C. W., 1982; Villalba, V. M. & Percoco, U., 1989) 
bypass (39) and use the closed form result for the spin connection derived by Weinberg 

(Weinberg, S., 1972). That form can be shown to be compatible with (39) only for σ = -1. The 
result (42) has been given recently (Finster, F. & Reintjes, M., 2009), though the notation used 
by those authors is quite different. 
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6.4 Summary 

It follows from the above that the Dirac equation in conformal spacetime with scale factor 
f(x) is the same as the Dirac equation in Minkowski spacetime with the replacement 

 ( )m f x m→  (49) 

whilst treating the current as conserved as usual (i.e. in Minkowski spacetime). It follows 
that an effective Lagrangian for the Dirac wavefunction in conformal spacetime is 

 ( ) ( )( ) ( )( ) ( )4I d x x i eA x f x m xα
α αψ γ ψ= − ∂ − −   (50) 

where the αγ  are ordinary (Minkowski) gamma matrices. (Note that the scaling here differs 

from (Birrell & Davies, 1982); here the wavefunction is normalized for current conservation 
in Minkowski spacetime, un-weighted by the conformal factor.) 
Though much has been written about the Dirac equation in conformal spacetime, this 
general result seems not to have been noticed, though there have been solutions given for 
the de Sitter case (see below) which effectively employ (50). The omission is probably due to 
the practice of working in the traditional Robertson-Walker coordinates rather than in 
conformal coordinates, which, especially in the case of curved space, tends to obscure the 
possibility of a reduction to (49). 

7. Wavefunction in De Sitter spacetime 

7.1 Feynman - Gell-Mann method of solution  

Here we employ (45) to solve for the particular case of de Sitter spacetime with 
f(x) = a(t) = 1 /(Ht) , regarded here as the asymptotic limit of the vacuum-dominated K = 0 
Robertson-Walker cosmology. Given the above finding, henceforth we drop the tilde on the 
wavefunction and presume to be working solely in Minkowski spacetime with a dynamic 
mass. Then the free-space Dirac wavefunction (45) obeys 

 ( )
2

0/ 0;
m c

i t
H

µ
µγ λ ψ λ∂ − = =


 (51) 

λ is a dimensionless number of order 1040. We apply the Feynman - Gell-Mann method and 
make the substitution 

 ( ) ( ) ( ), / ,t i t tµ
µψ γ λ φ= ∂ +x x . (52) 

Then φ satisfies 

 ( )( ) ( )( )2 0 2/ / / 0i t i t i tµ µ
µ µγ λ γ λ φ λ λ γ φ∂ − ∂ + = ∂ + + = . (53) 

Separating out the spatial dependence of a single Fourier mode: 

 ( ) ( ) ( ) ( ), ; , , ;i it e t t e tφ φ ψ ψ= =k.x k.xx k x k  (54) 

the bi-spinor ( ) ( ); ;t z z tφ χ= =k k  satisfies 
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( )

( )
02

2 2
1 0

id
z

dz z

λ λ γ
χ

 +
 + + =
 
 

 (55) 

and now (52) gives 

 ( ) 0 ˆ,t i
z

ψ γ
∂

= −
∂

k k ( )z
z

λ
χ 

+ 
 

. (56) 

In the Dirac representation  

 ( ) ( )0 1,1, 1, 1 , , , ,Tdiag u v u vγ χ + + − −= − − =  (57) 

where (u+ , v+) is a positive energy spinor and (u– , v–) is a negative energy spinor, and 

 ( )
/ 0 ˆ,

0 /
z

z

z i
t

z i

λ
ψ

λ

+ ∂ 
= − − ∂ 

k k ( )zχ
 
  
 

. (58) 

(In this notation u+ and v– are both spin up, u– and v+ are both spin down.) With (57), (55) 
becomes  

 
( )2

2 2
1 0

id
u

dz z

λ λ
±

 ±
+ + =  

 
. (59) 

The solution can be written in terms of Bessel functions which we choose to write as Hankel 
functions 

 
( ) ( ) ( ) ( )1 2

1/2 1/2,i iu zH z v zH zλ λ± ±= =   (60) 
Write the solutions of (56) as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2
1/2 1/2 1/2 1/2, , ,T

i i i iz z H z H z H z H zλ λ λ λχ − − + +=  (61) 

with implicit coefficients for the initial conditions. Using that (Abramowitz, M. & Stegun, I. 
A., 1965) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

1

1/2 1/2

1 / 2

/

ii i

ii i

i i
z i i

d
H z H z H z

dz z

d
zH z H z zH z

dz z

z i zH z i zH z

ν ν ν

ν ν ν

λ λ

ν

ν

λ

+

+

− +

= −

+
 = −

 + ∂ = −

 (62) 

and that 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

1

1/2 1/2

1 / 2

/

ii i

ii i

i i
z i i

d
H z H z H z

dz z

d
zH z H z zH z

dz z

z i zH z i zH z

ν ν ν

ν ν ν

λ λ

ν

ν

λ

−

−

+ −

= − +

− +
 = +

 − ∂ = −

 (63) 
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then 

 ( ) ( ) ( ) ( )0 5/ 0
/

0 /
z

z
z

z i
z i z z i z

z i

λ
χ γ λ χ γ χ

λ

+ ∂ 
= ∂ + = − − ∂ 

. (64) 

Putting this in (58) gives 

 ( ) ( ) ( )5ˆ,t i zψ γ χ= − +k k . (65) 

7.2 Independent solutions 

We wish now to generalize (65) to give the four independent solutions. From (55) any linear 

combination of χ(z) that commutes with γ  0 will remain a solution of that equation. In order 
for the solution of the Dirac equation to retain the structure of (65) we would need also to 

have the linear combination commute with k̂  and γ  5. These two constraints combined are 

that the linear combinations must commute with γ  a ; a є {0,1,2,3,5}. The possibilities include 

the identity and pairwise combinations of γ  iγ j ; i , j є {1,2,3}. One possibility is the matrix Q 

 ( ) ( ) ( ) ( )1 2 1 2 2 1 3 2 1 3

0 0

0 0
: 1 /2 1 /2 /2 /2

0 0

0 0

a c

d b
Q a i b i c i d i

a c

d b

γ γ γ γ γ γ γ γ γ γ

 
 
 = = + + − + + + − 
  
 

, (66) 

hence 

 

( ) 0 ˆ,t i
z

ψ γ
∂

= −
∂

k k ( )

0 ˆ

Q z
z

Q i
z

λ
χ

γ

 
+ 

 
∂

= −
∂

k ( )

( ) ( )5ˆ

z
z

Q i z

λ
χ

γ χ

 
+ 

 

= − +k

 (67) 

is a general solution, having 4 independent complex degrees of freedom. In order to relate 

the wavefunction to its initial state it will be more useful to express the constants as a vector: 

 ( ) ( ) ( ); , , ,TQ z z q q a b c dχ = Λ = . (68) 

Re-arranging (66) one obtains 

 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
1/2 1/2

2 1
1/2 1/2

1 2
1/2 1/2

2 1
1/2 1/2

0 0

0 0

0 0

0 0

i i

i i

i i

i i

H z H z

H z H z
z z

H z H z

H z H z

λ λ

λ λ

λ λ

λ λ

− −

− −

+ +

+ +

 
 
 
 Λ =  
 
  
 

. (69) 

With this, the solution (67) can be written 
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 ( ) ( ) ( )5ˆ,t i z qψ γ= − + Λk k . (70) 

7.3 Initial conditions 

Let the initial conditions be that ( )0 ,tψ k  is given. Then q can be found from 

 ( ) ( ) ( )5
0 0

ˆ,t i z qψ γ= − + Λk k . (71) 

Observing that 

 ( ) ( )
1

5 51ˆ ˆ
2

i iγ γ
−

+ = − +k k  (72) 

then q is given by 

 ( )( ) ( )1 5
0 0

1 ˆ ,
2

q z i tγ ψ−= Λ +k k . (73) 

Making use of the wronskian (Abramowitz & Stegun, 1965) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 22 1
1 1

4i
H z H z H z H z

z
ν νν ν π+ +− = − , (74) 

the inverse of (69) is found to be 

 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
1/2 1/2

1 1
1/2 1/21

1 1
1/2 1/2

2 2
1/2 1/2

0 0

0 0

4 0 0

0 0

i i

i i

i i

i i

H z H z

H z H zi
z z

H z H z

H z H z

λ λ

λ λ

λ λ

λ λ

π

+ −

+ −−

+ −

+ −

 − 
 − Λ =  

− 
  − 

. (75) 

With this, the wavefunction at arbitrary times can be expressed explicitly in terms of the 
initial state: 

 ( ) ( ) ( ) ( )( ) ( )5 1 5
0 0

1 ˆ ˆ, ,
2

t i z z i tψ γ γ ψ−= − + Λ Λ +k k k k . (76) 

Cotaescu and Crucean (Coaescu, I. I. & Crusean, C., 2008) claimed to be the first to give a 
solution of (51) involving Hankel functions of complex order. 

8. Effects of the conformal singularity 

8.1 Asymptotic behavior far from the singularity 
The region far from the singularity is characterized by z >> 1 where z = |k|t. Given the 
conformal time to the boundary computed in (19) is tcb = 47.2 Gyr, for a particle to be in this 
region at the present time requires its speed |v| satisfy 

 
ω

>>  >> =


1cb
cb c cb

c
ct

mct t
k v . (77) 
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In practice in means the speed with respect to the Cosmological Frame must satisfy 
|v| >> 10-31 m/s. For all practical purposes therefore, all matter in the present era is in the 
‘far field’ of the future boundary.  
We suppose that the initial condition is given a long way from the singularity, i.e. where 
|z0| >> 1. This is not the usual way of doing things, but here the conformal boundary is in 
the future and the wavefunction there will be presumed determined by propagation from an 
initially known state much earlier. Actually, the asymptotic expansions for the Hankel 
functions are given for large positive argument, which in our case is far in the future on the 
other side of the conformal boundary. Rather than try to change things around, we will 
compute the behavior of the wavefunction as it approaches the boundary from above – i.e. 
going backwards in time – assuming that the initial conditions (q) is given further into the 
future, with the asymptotic behavior at the boundary to be determined. In that case the mass 

is negative and λ in (51) is large and negative (and real).  
The magnitude of the Hankel functions are independent of order in the limit of large 
magnitude, so all the terms in (75) have equal weight. Use (Abramowitz & Stegun, 1965) 

 ( ) ( ) ( ) ( ) ( ) ( )0 0/2 /4 /2 /41 2
0 0 0 0

2 2
,

i z i z
z H z e z H z e

απ π απ π
α απ π

− − − − −→ → . (78) 

Specifically: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1 2/2 /2
0 0 0 01/2 1/2

1 2/2 /2
0 0 0 01/2 1/2

2 2
,

2 2
,

iz iz
i i

iz iz
i i

z H z i e z H z i e

z H z e z H z e

λπ λπ
λ λ

λπ λπ
λ λ

π π

π π

+ − −
+ +

+ − −
− −

→ − →

→ →

, (79) 

so ( )1
0z−Λ  in tends to 

 ( )

0 0

0 0

0 0

0 0

/2 /2

/2 /2
1

0 /2 /2

/2 /2

0 0

0 0

8 0 0

0 0

iz iz

iz iz

iz iz

iz iz

e ie

e ie
z i

e ie

e ie

λπ λπ

λπ λπ

λπ λπ

λπ λπ

π

− − − −

+ +
−

+ +

− − − −

 
 
 −

Λ →  
− 

  
 

. (80) 

8.2 Wavefunction near the conformal singularity 

Near the boundary z is small (and positive here) whereupon the Hankel functions approach 

the limiting forms (Abramowitz & Stegun, 1965) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1/2 1/2

1 22 2
, ; Re 0

i i
zH z zH z

z z

α α

α αα α α
π π

− −
   

→ − Γ → Γ >   
   

. (81) 

Specifically: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2
1/2 1/2

2 2
1 / 2 , 1 / 2

i i

i i

i i
zH z i zH z i

z z

λ λ

λ λλ λ
π π+ +
   

→ − Γ + → Γ +   
   

. (82) 
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But (81) is valid only for real α, so we will need to express the ( ) ( )1/2
j

iH zλ−  differently before 

applying those limits. Using that 

 ( ) ( ) ( ) ( ) ( ) ( )1/2 3/2 1/2

2 1j j j
i i i

i
H z H z H z

zλ λ λ
λ

− + +

+
= − +  (83) 

then 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

1 1 1
1/2 3/2 1/2

1

1

2 1

2 2 1 2
3 / 2 1 / 2

2
1 / 2

i i i

i i

i

i
zH z zH z H z

z

i i i
i i

z z z

i
i

z

λ λ λ

λ λ

λ

λ

λ
λ λ

π π

λ
π

− + +

+

+

+
= − +

+   
→ Γ + − Γ +   

   

 
= Γ + 

 

. (84) 

Similarly 

 ( ) ( ) ( )
1

2
1/2

2
1 / 2

i

i

i
zH z i

z

λ

λ λ
π

+

−
 

→ − Γ + 
 

. (85) 

Putting (85), (84) and (82) into (69) gives 

 ( ) ( )

2 / 0 2 / 0

0 2 / 0 2 /2
1 / 2

1 0 1 0

0 1 0 1

i

z z

z zi
z i

z

λ

λ
π

− 
 −   Λ → Γ +   − 
  − 

. (86) 

Near the boundary therefore 

 ( ) ( )
1

1 0 1 0

0 1 0 12
1 / 2

0 0 0 0

0 0 0 0

i
i

z i
z

λ

λ
π

+

− 
 −   Λ → Γ +    
  
 

. (87) 

Since the entries in this matrix now have equal weight with respect to λ, the entries in the 

matrix Λ-1(z0) can be assessed accordingly. The region z > 0  (to which the expansions are 

restricted) corresponds to the post-singularity half-space, in which the rest mass is negative. 

Therefore λ < 0, |λ| >> 1 and only the exponentials of the form exp(-λπ/2) survive. The 

inverse Λ-1(z0) then simplifies to 

 ( ) 0/21
0

1 0 0

0 0 0 0

0 0 0 08

0 1 0

iz

i

z i e e

i

λ ππ −−

 
 
 Λ →  
  
 

 (88) 
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where we have used that exp(-λπ/2) = exp(|λ|π/2) to make the large size of the factor 
explicit. Combining (88) and (87): 

 ( ) ( ) ( )0/21
0

1 0 0

0 1 01 2
1 / 2

0 0 0 02

0 0 0 0

i
iz

i

i
z z e e i

zz

λ
λ π λ

π
−−

 
 

   Λ Λ → − Γ +    
  
 

. (89) 

The gamma function has asymptotic behavior (Abramowitz & Stegun, 1965) 

 ( ) ( )1/2 /2 /2
2 1 / 2 2

x
i x y e i e

π λ π λλ π λ π
− − −Γ + →  Γ + → , (90) 

so (89) can be written 

 ( ) ( ) ( ) ( ) ( )( )0 0, , , ,1 0 5
0

1 0 0

0 1 01 1
1 1

0 0 0 0 2

0 0 0 0

i z z i z z

i

i
z z e e i

z z

φ λ φ λ γ γ−

 
 
 Λ Λ → = + + 
  
 

 (91) 

where φ is a (real) phase. Putting this into (76), the wavefunction tends to a limit which, in 
terms of its initial value far from the boundary, is 

 ( ) ( ) ( )( )( )( ) ( )0, , 5 0 5 5
0

1 ˆ ˆ, 1 1 ,
4

i z z
t e i i i t

z

φ λψ γ γ γ γ ψ→ − + + + +k k k k . (92) 

Defining the projection P(k) 

 ( ) ( )( )0

0 0 0 0

0 0 0 01 1ˆ1 1
02

0

z x y

x y z

P
k k ik kk

k ik k k

γ

 
 
 = − + =  − − +
 
 − − 

k k  (93) 

this becomes 

 ( ) ( ) ( ) ( )0, ,
0

1
, ,

i z z
t e P t

z

φ λψ ψ→k k k . (94) 

8.3 On the reduction to two Dirac components 
We see from (93) that although all four components may be defined (as non-zero) away 
from the boundary, they are rolled up into just two components by the time they reach the 
boundary; only the negative energy components of the Dirac wavefunction are non-zero 
there. 
With appropriately chosen asymptotic behavior for the Hankel functions the same 
procedure can be applied to the pre-boundary wavefunction, wherein the rest mass and 
therefore λ are positive. In that case one finds that only positive energy states arrive at the 
boundary - whatever the values of the 4 components specified in the ‘initial conditions’ 
away from the boundary. 
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On ‘our’ side at t = 0– the negative energy components are zero at the singularity. On the 

other side at t = 0+ the positive energy components are zero. As it approaches the singularity 

the phase oscillates rapidly, infinitely quickly so at the boundary. Moving away from the 

singularity towards the present era – i.e. backwards in time – the appearance of non-zero 

negative energy components is due to subsequent interactions in which the initially pure 

positive energy state becomes mixed, and all four components in the Dirac wavefunction bi-

spinor become occupied. 

Note that this behavior by itself is not a boundary condition on the wavefunction. The 

negative energy states decay to zero as a consequence of intrinsic properties of the Dirac 

equation. If a boundary condition were to be imposed, it could only be on the positive 

energy states at t = 0– - regarded as a future boundary condition, and on negative energy 

states at t = 0+ - regarded as an historical boundary condition for development of the post-

singularity universe. 

The analysis above culminating in (92) gives that only the positive energy components of the 

wavefunction components are non-zero at t = 0– . It is expected that this behavior carries 

over into the second quantized theory so that electrons and positrons arrive at the boundary 

with zero velocity relative to the Hubble frame. 

8.4 Hubble drag 

The 4-current in the Dirac representation is 

 { } { }† 0 † †, ,jµ µψ γ γ ψ ψ ψ ψ ψ
            

= = =               − − −            

σ σ
σ σ

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

. (95) 

As a result of the loss of the two negative energy components the 3-current vanishes: 

 ( )2 2
,e u vρ + += + =j 0 . (96) 

An effect of the expansion is a ‘Hubble Drag’ that acts to bring all Dirac matter to rest in the 
Hubble frame. The same outcome is predicted of classical matter by the action 

 ( ) ( ) ( ) ( )21 ; : /I m dt a t t t d t dt= − − = v v x . (97) 

Here t  is the conformal time and a ~ 1/t. The effect of Hubble drag on the current is shown 
in Figure 2. A fuller discussion of this compared with the more traditional classical action  

 ( ) ( ) ( )21I m dx dx g x m dt a t tµ ν
µν= − = − −  v  (98) 

can be found in (Ibison, 2010). 

9. Future cosmological boundary condition 

9.1 Relation between pre and post singularity universes 

We will assume the laws of physics do not change either side of the singularity and in 
particular that Maxwell’s equations and the single particle Dirac equation are obeyed 
everywhere, including at and through the conformal singularity. An assessment of the 
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Fig. 2. Geodesics of matter in the de Sitter limit of evolution for varying initial speeds 
specified far from the Conformal Singularity, which is at t = 0. The solid line is the geodesic 
for light speed as a limit approached from below. The time axis measures conformal time. 

relationship between the pre and post singularity universes should take account of the 
following two important facts: 
i. The scale factor is anti-symmetric across the boundary, and 
ii. The pre-singularity wavefunction possesses symmetric partners across the boundary. 
Because the Friedmann equation is symmetric about the boundary, the post-singularity 
evolution is a time-reversed version of the expansion on our side. It is hard to see how 
minor deviations can be tolerated at the particle level without damaging the symmetry of 
the scale factor, even though the latter signifies the development of only the most course-
grain level of the Cosmological fluid. There is no scope in the Friedmann equation for minor 
deviations from perfect symmetry, so it is to be expected that this state of affairs be upheld 
consistently at every level, down to the individual particle wavefunctions. From 
consideration of the Friedmann equation alone therefore, one expects to find that the pre 
and post singularity Dirac wavefunctions are symmetric partners such that their 
contributions to the stress-energy at fixed x from both t and –t (relative to the singularity at  
t = 0) are identical. 
We wish to make clear that there is no imperative from solving the Dirac equation alone that 
the pre and post singularity wavefunctions have any relationship. Indeed, the opposite 
seems true at first; the wavefunctions on either side of the singularity have no non-zero 
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components in common and so are completely decoupled. Thus the input from the 
Friedmann equation that the two universes be related amounts to an extraneous constraint 
on the relationship between the two wavefunctions. It means that the two components that 
‘survive’ on each side must somehow be related. 

9.2 The ‘No-Copy’ assumption 

In the following we seek a picture that is consistent with both the symmetries of the Dirac 
equation in conformal spacetime and the Friedmann equation. A reasonable conclusion is 
that the post singularity universe is in some sense a copy of the pre-singularity universe. 
The most efficient explanation from an Ockham’s Razor point of view is that there is no 
copy: the post-singularity universe and the post-singularity universe are physically the same 
universe. Then the geodesics mirrored in the conformal singularity in Figure 2 are to be 
taken as standing for the development of the ensemble as a whole, presumed therefore to be 
faithfully mirrored in detail at every level.  
If we put the conformal singularity at t = 0, then the no copy constraint says that the 
universe at t  and -t, are the same, and therefore the state of affairs described physically on 

either side are related by an unobservable transformation. It does not have to mean that 
Cosmology is cyclic when parsed with monotonically increasing t  – it would only be so if 

the same condition were applied at the Big Bang. Given this, below we enumerate the 
possibilities consistent with the no-copy assumption. 

9.3 Time-reversed image 

The post-singularity wavefunction will be an identical copy of the pre-singularity 
wavefunction if the coordinate system is folded back upon itself in such a manner that the 
pre and post singularity coordinates (t,x) and (-t,x) are physically the same point. Then, 

given a pre-singularity solution ψ(-t,x), t > 0  the ‘no-copy’ requirement is that there must 

exist a post-singularity solution ψ(t,x) = ηψ(-t,x), t > 0 where η is a constant unobservable 
phase. We would prefer these be compatible with the point of view that the wavefunction 
crosses the boundary propagating according to business as usual from the perspective of the 
Dirac equation (51), and then folding the space along the conformal singularity to find the 
post-singularity evolution is identical with the pre-singularity evolution. There is a problem 
however: From the right-most column of Table 1 one sees that there is no symmetry 

corresponding to ψ(t,x) = ηψ(-t,x), t > 0  because time reversal introduces γ 0 which can be 
removed only with a parity inversion. Hence this possibility can be discounted. 

9.4 Parity inversion 

Motivated by CPT invariance of QED, we seek a ‘no-copy’ interpretation of the post-
singularity universe in which (t,x) and (-t,-x) are physically the same points. The ‘no copy’ 

requirement then becomes ψ(t,x) = ηψ(-t,-x), t > 0. Reading off from Table 1 the possibilities 
are 

 [ ] or   or  or ; , ,ρ ρ ρ ρ ρ ρ ρ ρη ρ ρ ρ− + + −= ∈ + − = −P T M P T C P T M P T C . (99) 

The identical universe requires also that 

 ( ) ( )A x A xµ µ− =  (100) 
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with no room for absorption of an arbitrary factor. Note this is a point symmetry, not a local 
one. With reference to Table 1, charge inversion is therefore discounted, leaving only 

 or   ρ ρ ρ ρη − += P T M P T M . (101) 

This is as far as we can proceed unambiguously. Possibly there is no physically meaningful 
distinction to be made between the alternatives, in which case attempting to isolate one is a 
waste of effort. Acknowledging this risk, we give the following argument in favor of a 
particular combination. We would like to ascribe the process of mass inversion solely with 
propagation of the Dirac function across the boundary, in accord with the effect of the scale 
factor in the Dirac equation. As we have said, the singularity swaps the positive and 

negative energy solutions, which is achieved by both M + and M – (proportional to γ 5 and γ 2 
respectively). Despite the singular behavior of the Dirac wavefunction at the boundary we 
would prefer to regard this exchange as the limit of an analytical process, which does not 
seem possible if the operation is anti-linear. This singles out M +. Similar reasoning 
concerning the coordinate folding at the singularity singles out the real operations P T+ − . 

This reasoning isolates η = P T M+ − +  as the only viable candidate. There is a close connection 

with CPT invariance here. Unlike the latter, we have set ourselves the constraint that the 
wavefunction and the EM fields transform back to themselves with no room in the latter for 
a sign inversion which is the reason mass inversion was favored over charge conjugation.  
As briefly discussed in an earlier work (Ibison, 2010) a parity inversion can be achieved in 

the de Sitter spacetime at the time of a pair of conformal singularities by identification of the 

two hypersurfaces of co-dimension 1 there (Calabi, E. & Marcus, L., 1962; Hawking, S. W. & 

Ellis, G. F. R., 1973). In our case, the parity inversion and the ‘no-copy’ assumption can be 

achieved through the identification of two 4-volumes. In the case of the first of (3) and 

putting the conformal singularity at t = 0, the two volumes are inversions of each other 

through the origin. If there are no topological implications of the Big Bang then the topology 

is 

 4 4/ , x x x− ∀ ∈    . (102) 

In practice the conformal time since the Big Bang is finite so this manifold is only partially 

occupied by our universe. A wavefunction in our half-space t < 0 is unaffected by this 

identification, though at t = 0 it requires ψ(0,x) = ψ(0,-x) for all x. Not wanting to favor any 

particular location, this implies ψ(0,x) = constant - a future boundary condition on the 

development of the Dirac wavefunction in our half-space. In the second quantized theory it 

is expected that this condition will take a form that requires every particle be annihilated by 

its anti-particle at the boundary. 

The effects of the boundary condition will not generally be noticeable far from boundary, 
and similar to that of EM fields as discussed in more detail elsewhere (Ibison, 2010). Since 
only Fourier modes having wavelengths approaching that of the distance to the boundary 
are appreciably affected, effects become noticeable locally only at very low speeds and 
perhaps also at very low accelerations. The possibility of a connection with Modified 
Newtonian Dynamics (MOND) should be mentioned because the threshold acceleration for 
the onset of MOND effects is around  a0 ~ 10-10 m/s2 ~ cH as most recently reported 
(Swaters, R. A., Sanders, R. H., and McGaugh, S. S., 2010) and H sets the length scale 
(specifically c/H) at which wavelengths one expects to notice departures from standard 
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theories that do not include a future boundary. Discussion of the implications for entropy 
and the second law of thermodynamics are omitted here, though it is hard to see how these 
could escape unmodified. 

10. Summary 

We examined in detail the effect of the conformal factor on the discrete symmetries usually 

present in the Dirac theory and analyzed the behavior of the Dirac wavefunction near the 

future conformal singularity. We found that only two of the 4 bi-spinor components survive 

to the boundary, one effect of which is to cause the geodesics to experience a drag towards 

the Hubble frame. We then presented arguments for the existence of a genuine boundary 

condition on the wavefunction at the future conformal singularity based upon the 

assumption there does not exist a redundant copy of the universe in the post-conformal 

singularity era. The future boundary condition affects the spectral decomposition of the 

wavefunction and this might be locally testable, i.e. at the present time. 

11. Appendix A: discrete symmetries in Minkowski spacetime 

Equation Section (Next). In order to catalog the effects of the conformal factor let us first 

review the discrete symmetries as they would be in Minkowski spacetime, i.e. with f(x) = 1 

in (1). 

 ( )( )( ) ( ) 0i eA x m xµ
µ µγ ψ− ∂ + + = . (A1) 

We deal first with Lorentz scalars and vectors, and subsequently with the Dirac equation. 

This appendix is a review and compilation of material which can be found, for example, in 

(Itzykson, C. & Zuber, J.-B., 1985; Peskin, M. E. & Schroeder, D. V., 1995; Weinberg, S., 2005). 

A.1 Lorentz quantities 

Let C,P, T,M  denote charge parity time and mass inversions. By mass here we mean rest-

mass, which is a Lorentz scalar. Mass and charge inversions are internal to the particle and 

not part of the Minkowski geometry and not, therefore, members of the Lorentz Group.  

Let I  be any member of this set of discrete inversions; [ ] 2, , , 1∈ =I P T,C M I . Fundamentally 

their effects are just to change signs of the associated quantities as summarized in Table A1. 
 

 e m x

P  + + x  

T  + + x− 

C - + x

M + - x

Table A1. Effects of charge, parity, time and mass inversions on e, m, and x.  
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Here, ‘–‘ denotes a sign inversion and 

 { }

1 0 0 0

0 1 0 0
, :

0 0 1 0

0 0 0 1

x h x hµ ν µ
ν ν

 
 − = =  −
  − 

 . (A2) 

The Lorentz scalar fields transform straightforwardly as 

 ( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )1 1 1; , ; , ; ,f x e m f x e m f x e m− − −  = = I I I I I I I , (A3) 

the second step following because 2 1=I . To determine the effect on a Lorentz vector we 
could perhaps take as our template the derivative of a scalar field associated perhaps with a 

charge e and mass m: ( ); ,f x e m . It’s transformation is easily determined from the 

substitutions ′→ = −x x x  so ∇ → −∇ and t t t′→ = −  so / /t t→ −∂ ∂ ∂ ∂ 3: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

; , ; ,

; , ; ,

; , ; ,

; , ; ,

f x e m f x e m

f x e m f x e m

f x e m h f x e m

f x e m h f x e m

µ µ

µ µ

ν
µ µ ν

ν
µ µ ν

 ∂ = ∂ − 
 ∂ = ∂ − 
 ∂ = ∂ 
 ∂ = − ∂ − 





M

C

P

T

. (A4) 

However, it is traditional to regard the zeroth component of a Lorentz vector as something 
that keeps its sign even under time reversals. For example the retarded Liénard-Wiechert 

potentials of a source following a path ( )s tx  are sometimes written 

 ( )
( )( )

( ) ( )( ) ( )
( )

1, /
, ;

/

s
s

s s s

e d t dt
A t t t t

t t d t dt
µ

′ ′
′ ′= − = −

′ ′ ′ ′− − −

x
x x x

x x x x . x
 (A5) 

which does not have the transformation property ( ) ( )A x h A xν
µ µ ν  = − −  T  that would be 

inferred from (A4). This is easiest to see in the limit of a static charge: 

 ( ),
s

e
tφ =

−
x

x x
 (A6) 

                                                 
3 Another way of thinking about this is to regard the parity operation for example as converting the 
contra-variant to the covariant form and vice-versa: 

 ( ) ( ) ( )( ) ( )2
 and 1V x V x V x V x

µ µ

µ µ= =  =    P P P .  

However this has the effect of scrambling the Lorentz indexes in a product of a vector with a gamma 
matrix (because the latter are treated as universal constants): 

 ( ) ( )[ ] ( )V x V x V x
µ µ µ µ

µ µγ γ γ= =   P P .  

Here we prefer to treat the transformation matrix as a mixed tensor as defined in (A2). 
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which shows no capacity for changing sign under time reversal. The effects of time-reversal 

are felt instead in the space part, due to the presence there of derivatives with respect to 

time. Bearing this in mind, and taking into account also that the dependence on charge is 

known explicitly: ( ) ( ) ( ) ( ); sgn ;A x A x e e A x eµ µ µ= = , the inversions of the vector potential 

are 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

A x A x

A x A x

A x h A x

A x h A x

µ µ

µ µ

ν
µ µ ν

ν
µ µ ν

  = 
  = − 
  = 
  = − 





M

C

P

T

. (A7) 

We will see below that ( ) ( )A x h A xν
µ µ ν  = −  T  is consistent with the standard interpretation 

of the time reversal operator on the Dirac wavefunction and, consequently, on the 4-current. 

A.2 Gamma matrices and slashed vectors 

In discussing whether or not these symmetries exist the gamma matrices are treated here as 

universal constants, and not subject to or affected by the inversions. It will be useful in the 

following to have in hand the inversion of the slashed vectors: 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

† 0 0

0 0

A x A x

A x A x

A x h A x A x A x

A x A x

µ µ
µ µ

µ µ
µ µ

µ µ ν µ µ
µ µ ν µ µ

µ µ
µ µ

γ γ

γ γ

γ γ γ γ γ γ

γ γ γ γ

  = 
  = − 
  = = = 
  = − 

  



M

C

P

T

, (A8) 

and 

 
0 0

0 0

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

γ γ

γ γ

γ γ γ γ

γ γ γ γ

 ∂ = ∂ 
 ∂ = ∂ 
 ∂ = ∂ 
 ∂ = − ∂ 

M

C

P

T

. (A9) 

Inversion operations are symmetries of the Dirac equation if there exists an ( )xψ  I  

compliant with (A2) for which 

 ( )( )( ) ( ) ( )( ) ( ) 0i eA x m x i eA x m xµ µ
µ µ µ µγ ψ γ ψ   − ∂ + + = − ∂ + +   =   I I I  (A10) 

where ( )xψ  I  can be written in terms of ( )xψ .  
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A.3 Linear and anti-linear inversion operations on the Dirac equation 
Two possibilities are allowed for: I  is linear and unitary, or anti-linear and anti-unitary. Let 
us distinguish between these two with subscripts as follows 

 
[ ] ( ) [ ]( ) [ ]( )

[ ] ( ) [ ]( ) [ ]( )

1

* 1 *

i i x U x U x

i i x U x U x

ψ ψ ψ

ψ ψ ψ

−
+ + + + + +

−
− − − − − −

=   = = 

= −   = = 

I , I I I

I , I I I

 (A11) 

where ,U U+ −
 
 are 4x4 matrices. The coordinates are insensitive to the distinction: 

 [ ] [ ] [ ]x x x+ −= =I I I . (A12) 

It will be useful to write U−  in terms of U+  so that just one of the two cases need be solved 

for. Applying (A11) and (A12) to (A10) gives  

 ( ) [ ]( ) [ ]( ) 0i eA x m U xµ
µ µγ ψ+ + − ∂ + + = I I I  (A13) 

and 

 ( ) [ ]( ) [ ]( ) ( ) [ ]( ) [ ]( )* * 0i eA x m U x i eA x m U xµ µ
µ µ µ µγ ψ γ ψ− − + −   − ∂ + + = ∂ + + =   I I I I I I . (A14) 

Taking the conjugate of the latter: 

 ( ) [ ]( ) [ ]( )* * 0i eA x m U xµ
µ µγ ψ+ − − ∂ + + = I I I . (A15) 

We introduce a charge conjugation matrix C  defined by the property 

 1T C Cµ µγ γ −− =  (A16) 

C depends on the representation of the µγ . We will need 

 * 0 1 0 0 5 5 1 0C C C Cµ µ µγ γ γ γ γ γ γ γ γ− −= − =  (A17) 

with which (A15) can be written 

 ( ) [ ]( ) [ ]( )5 1 0 * 0i eA x m C U xµ
µ µγ γ γ ψ−

+ − − ∂ + + = I I I . (A18) 

Comparing with (A13) one infers that 

 [ ]( ) [ ]( )5 1 0 * * * 0 5 0* * 5* *U x C U x U C U U C Uψ κγ γ ψ η γ γ ηγ γ−
+ − − + − +=  =  =I I  (A19) 

where η  and κ are phase factors. In the Dirac representation 

 2 0 * 1 0 2C i C C i Cγ γ γ γ−= =  = = −  (A20) 

and so (A19) is 

 0 5 * 0 2 0 5 2 5 *U C U i U Uηγ γ ηγ γ γ γ λγ γ− + + += = =  (A21) 
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where λ is another phase factor. In the following we look at each inversion operation in 
detail, summarizing the results in Table A2. 

A.4 Parity inversion 
From (A8) and (A9), 

 ( )( ) ( )( )0 0i eA x m i eA x mµ µ
µ µ µ µγ γ γ γ+

 − ∂ + + = − ∂ + +  P . (A22) 

We see that unless ( ) ( )A x A xµ µ= , +P  is not a symmetry of the single particle Dirac 

equation. (An example where it is a symmetry is a central potential, for which 

( ) ( ) ( )/ ,A x e A xµ µ= =x 0  ). Hence the dynamics are not generally invariant under parity 

inversion, though the kinematics of the free particle may be. Note we are not investigating 
here whether or not parity inversion is a symmetry which, if applied to all of physics, 

including therefore the sources of  Aµ , leaves the dynamics unchanged. That is, we are not 

looking here for a systematic symmetry in the sense defined earlier. Instead, we are asking if 
there is a symmetric partner for a solution in a given field, which field is held constant 
whilst asking the question. 
On the other hand, (A22) tells us that linear parity inversion is a local symmetry of the free 
Dirac particle equation with 

 ( ) ( )0x xψ ηγ ψ+   =  P . (A23) 

That is, for every solution ( )xψ  there exists another solution ( )0 xηγ ψ  . Here and in the 

following η  stands for a continuously re-definable phase factor which in each case we will 

choose so that the operator squares to 1. Hence in this case 1η = . We can read off from 

(A19)  that the anti-linear version of parity inversion is 

 ( ) ( )( )
*0 5 0x C xψ η γ γ γ ψ−   =  P . (A24) 

Using (A21) with (A23), in the Dirac representation this is  

 ( ) ( )2 5 0 *x xψ γ γ γ ψ−   =  P  (A25) 

(with η  chosen so 2 1− =P ). We now examine the relationship between the energy of the 

original particle and its parity inverted partner. A stationary particle solving (2) varies in 

time as exp(-iγ0mt) , so the original has expectation 

 3 † 3 † 0E d x i m d x
t

ψ ψ ψ γ ψ
∂ 

= = ∂   . (A26) 

Replacing ( )xψ  with ( )0 xγ ψ   changes the expectation to 

 3 † 0† 0 3 † 0E d x i m d x
t

ψ γ γ ψ ψ γ ψ
∂ 

= = ∂   . (A27) 
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The components of the bi-spinor are chosen so that the mass and energy are positive in 

(A26). And whatever that choice, positivity of mass and energy are preserved in the parity-

inverted case +P . The parity inverted solution corresponding to −P  varies as exp(iγ0mt). Its 

stationary energy is therefore 

 

( )( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( )

†3 2 5 0 * 2 5 0 *

3 0 5 2 2 5 0 *

3 *

*
3 †

T

T

E d x x i x
t

d x x i x
t

d x x i x
t

d x x i x
t

γ γ γ ψ γ γ γ ψ

ψ γ γ γ γ γ γ ψ

ψ ψ

ψ ψ

∂ 
=  ∂ 

∂ 
= −  ∂ 

∂ 
=  ∂ 

 ∂ 
= −  ∂  









 

 

 

 

. (A28) 

This energy is negative if ( )xψ  has positive energy. In any case, its energy is negated with 

respect to that of ( )xψ . 

A.5 Time reversal 

From (A8) and (A9), 

 ( )( ) ( )( )†i eA x m i eA x mµ µ
µ µ µ µγ γ+

 − ∂ + + = ∂ + − +  T . (A29) 

Taking the complex conjugate: 

 
( )( ) ( )

( )( )( ) ( )

* *†

*

0

0T

i eA x m x

i eA x m x

µ
µ µ

µ
µ µ

γ ψ

γ ψ

+

+

   ∂ + − +   =   

  − ∂ + − +   =  





T

T

. (A30) 

Since 5 5 1T C Cµ µγ γ γ γ −=  then
 

 ( ) ( ) ( ) ( )
*5 1 * 1* 5* *C x x x C xγ ψ ηψ ψ η γ ψ− −

+ +   = −    = −      T T . (A31) 

It follows that +T  is not in general a symmetry of the coupled Dirac equation, unless 

perhaps ( ) ( )A x A xµ µ− = , though it is a local symmetry of the free Dirac particle equation 

according to (A31). In the Dirac representation this is  

 ( ) ( )2 5 0 *x xψ γ γ γ ψ+   = −  T  (A32) 

(with η  chosen so 2 1+ =T ). Applying (A21), the conjugate operator is 

 ( ) ( )0x xψ γ ψ−   = −  T . (A33) 
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Following the steps in the section on parity inversion, the energy of a ( )xψ+   T  solution 

(staying with the Dirac representation) is 

 

( )( ) ( )

( )
( )

( )
( )

( )
( )

†3 5 0 2 * 5 0 2 *

*
3 2† 0† 5† 5 0 2

*
3

3 †

T

T

E d x x i x
t

x
i d x x

t

x
i d x x

t

x
i d x x

t

γ γ γ ψ γ γ γ ψ

ψ
ψ γ γ γ γ γ γ

ψ
ψ

ψ
ψ

∂ 
= − − ∂ 

∂ −
= −

∂

∂ −
= −

∂
∂ −

= − −
∂









 










. (A34) 

If again the original solution varies as 
0i mte γ−  then that will have energy given by (A26) 

whilst ( )
0i mtx e γψ −    which in (A34) gives  

 3 † 0E m d xψ γ ψ=   (A35) 

so that the energy of the +T  operation remains positive. For the ( ) ( )0x xψ γ ψ−   = −  T  

solution the energy is negative due to the change in sign of the exponent. 

A.6 Charge conjugation 

Charge makes its appearance in the Dirac equation only through the term eγµAµ(x). If charge 
conjugation is applied to both the vector potential according to (A8) and the charge e of the 
particle according to Table A1 represented by the wavefunction, then this term and 
therefore the Dirac equation as a whole is unaffected by inversion; charge conjugation is a 
systematic symmetry of QED. 
More interesting is if, for a wavefunction solving Dirac’s equation for a given potential 
(sourced by fixed charges), there exists another simply-related wavefunction associated with 
a oppositely-charged particle. In this case  

 ( ) ( ) ( ) ( ),A x A x eA x eA xµ µ µ µ   = = −   C C  (A36) 

and then 

 ( )( ) ( )( )i eA x m i eA x mµ µ
µ µ µ µγ γ+

 − ∂ + + = − ∂ + + C . (A37) 

Charge conjugation is a symmetry if there exists a ( ) ( )c x xψ ψ+=   C  that solves  

 ( )( )( ) ( ) 0ci eA x m xµ
µ µγ ψ− ∂ + + = . (A38) 

Taking the complex conjugate: 

 ( )( )( ) ( )* * 0ci eA x m xµ
µ µγ ψ∂ − + = . (A39) 
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Using (A17) this is 

 ( )( )( ) ( )0 1 0 * 0cC C i eA x m xµ
µ µγ γ γ ψ− − ∂ + + = . (A40) 

This is (A1) provided 

 ( ) ( ) ( ) ( ) ( )( )
*1 0 * 0

c cx C x x x C xψ γ ψ ψ ψ γ ψ−
+=  =   = C . (A41) 

In the Dirac representation: 

 ( ) ( )( ) ( )( ) ( )
* *0 2 0 2 2 *x i x i x i xψ γ γ γ ψ γ ψ γ ψ+   = = − = − C . (A42) 

From (A19)  

 ( ) ( )0* * 5* 0x C C xψ γ γ γ ψ−   = C  (A43) 

which, in the Dirac representation, is 

 ( ) ( ) ( ) ( )0 5 0 0 2 0 5 0 2 0 5x C C x x xψ γ γ γ ψ γ γ γ γ γ γ γ ψ γ ψ−   = − = − = − C . (A44) 

The energy of ( )xψ+   C  is 

 

( )( ) ( )( )

( ) ( )

( ) ( )

3 2 2

3 2 2

3

†* *

T † *

*
†

E d x i x i i x
t

d x x i x
t

d x x i x
t

γ ψ γ ψ

ψ γ γ ψ

ψ ψ

∂ = − − 
∂ 
∂ =  
∂ 

∂  = −   ∂  







 (A45) 

which is the negative of the original state. The energy of ( )xψ−   C  is clearly positive. 

A.7 Mass negation 
With the action as defined in Table A1, applying (A10) and using (A8) and (A9), 

 ( )( ) ( )( ) ( )( )( )5 5i eA x m i eA x m i eA x mµ µ µ
µ µ µ µ µ µγ γ γ γ γ+

 − ∂ + + = − ∂ + − = − − ∂ + + M  (A46) 

one immediately has 

 ( ) ( ) ( )5x x xψ γ ψ ψ+ −  = − =     M C . (A47) 

It follows that 

 ( ) ( ) ( )( )
*0x x C xψ ψ γ ψ− +  =   =   M C . (A48) 

Notice that ± = M C  is to be expected from a cursory consideration of their effect on the 

Dirac equation. The energies however are not the same as for the equivalent charge 
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conjugations. If ( )ψ x  is a solution with rest mass m, then ( )γ ψ5 x  is a solution of the same 

equation but with rest mass –m. I.E. 

 ( ) ( )5; ;x m x mψ γ ψ− = − . (A49) 

The effects of all the inversions are summarized in Table A2. 
 

 

Table A2. Inversions in Minkowski Spacetime. 

Notes: The constraints on the coupling in the case of parity and time inversion are always 

satisfied if 0Aµ µ=  - i.e. there is no EM coupling. The symmetric partner under charge 

conjugation is the wavefunction of an oppositely charge particle (to that associated with the 

original solution ψ(x)) in the same field – i.e. without changing the sign of the charge of the 

sources of that field. Charge conjugation is a systematic symmetry of QED, in which case 

ψ(x) is unaffected. 
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