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1. Introduction 

A quantitative assessment of climate change impacts on water management depends 

heavily on the knowledge of basic climate variables, such as precipitation and temperature, 

and how they might change over time.  The approach of dynamical downscaling – nesting 

regional climate models (RCMs) within general circulation models (GCMs) – has shown 

promise in producing climate information at scales useful to e.g. water managers (Leung et 

al. 2006).  Organized efforts such as the European project PRUDENCE (Christensen et al. 

2007) and the North American Regional Climate Change Assessment Program (NARCCAP; 

Mearns et al. 2009) have demonstrated the value of dynamical downscaling on regional 

climate projections.  However, a significant degree of uncertainty in regional downscaling 

still exists.  The uncertainties are more so in mountainous and drought-prone regions such 

as the western United States (U.S.) (Lo et al. 2008), as this region of the U.S. is projected  

to experience significant warming and precipitation reduction that portend a drying climate 

scenario (IPCC 2007).  Hence, an assessment of climate projection uncertainties is 

paramount. 

The western U.S. relies both economically and socially on the development of winter 

mountain snowpack and the timely release of its retained water (Gleick and Chalecki 1999).  

Decreasing and early melting of the snowpack across the western U.S. have occurred during 

the past century (Cayan et al. 2001; Pierce et al. 2008) and are expected to continue due to a 

warming climate (McCabe and Wolock 1999; Leung et al. 2004).  RCMs are envisaged to be a 

crucial tool to simulate future projections at finer scales.  However, a recent analysis on 

change in snow property (Gillies et al. 2011) have noted that most NARCCAP models tend 

to produce persistent cold biases in the surface over the western U.S., thus leading to an 

overestimation of the snowfall and the snow depth.  Analyzing several mesoscale forecast 

models, Coniglio et al. (2010) have observed similar cold biases in daily minimum 

temperature, which are attributable to the models’ inability to break down the morning 

inversion layer quickly enough.  Such cold biases are most serious in the interior West.  

While temperature biases alone may be corrected by statistical methods, these documented 

cold biases in RCMs can and do alter the climate projections; this is because the amount of 

available water in the atmosphere is also a function of evapotranspiration, which changes 

exponentially with temperature variations (Nash and Gleick 1993).  Moreover, the impacts 
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of such temperature biases on many derived variables (such as snow) cannot be statistically 

corrected in the downscaling.   
Precipitation simulation has been a challenge in the western U.S. as well.  A study by Wang 

et al. (2009) (hereafter WGTG) examined the precipitation seasonal and interannual 

variabilities simulated by six RCMs that participated in NARCCAP (models described in 

Figure 1).  The results of WGTG indicated that all the models driven by reanalysis data 

persistently overestimated the winter precipitation amounts but underestimated summer 

precipitation amounts.  Such biases, which are consistent with those found in other 

simulations over the western U.S. (Leung et al. 2004; Caldwell et al. 2009; Qian et al. 2010), 

result in a severe distortion of the seasonal cycle, particularly over regions that are further 

inland (cf. areas B, C, & D in Figure 1).  For instance, the distinct semi-annual variation of 

the Wasatch Range (area B) was simulated as a winter-dominant annual cycle by all models, 

while the dry spring and wet summer in the Colorado Rockies (area C) were portrayed 

erroneously as wet spring and dry summer in 3 out of 6 models.  Among these common 

biases, the monsoon rainfall (area D) was severely underestimated by 5 models resulting in 

an incorrect winter-predominant precipitation regime.  WGTG further showed that the 

overprediction in the winter precipitation leads to a “false association” with the El Niño-

Southern Oscillation (ENSO) while in reality, the ENSO-precipitation correlation is quite 

low in this region (e.g., Dettinger et al. 1998). What is more, recent observational studies 

(e.g., Anderson et al. 2010) point out that the summer precipitation in southwest U.S. has 

increased over the past half century and is associated with a broader coverage through 

enhanced monsoon rainfall.  However, such an observation contradicts the projected 

decrease in summer precipitation over the same region by the IPCC (2007).  Given the 

ubiquitous RCM biases in the monsoon rainfall – as is evident in Figure 1 – the reliability of 

climate projections downscaled from RCMs remains highly uncertain.  

The challenge in regional downscaling is further exemplified by the projected changes in 

winter precipitation over the western U.S. (Figure 2) simulated by two NARCCAP models: 

the Canadian RCM (left) and the UC-Santa Cruz RCM3 (right), both of which are 

downscaled from the Canadian GCM Version 3.  Despite apparent agreement in 

precipitation changes at higher latitudes, the downscaled results for the subtropics and 

monsoon affected regions are noticeably different between the two models, particularly in 

the Southwest. In this region, the CRCM simulated an overall increase in winter 

precipitation, while the RCM3 simulated much less of an increase and even has some areas 

experiencing a decrease.  Since these projections were forced by the same GCM boundary 

conditions, their discrepancies pose a concern regarding the extent to which climate change 

scenario is representative.  Such discrepancies are compounded further when it comes to the 

evaluation of RCMs downscaled output.  Conventional detection and attribution methods 

(e.g., Hegerl et al. 2006) are generically developed from signal processing and so, require a 

large number of simulations to generate ensemble means; this requires a significant capacity 

in computing resources. At present, few operational institutions are capable of this level of 

computation and data storage.  Thus, a more efficient performance measure is needed to 

evaluate simulation discrepancies as has been revealed in Figures 1 and 2. 

While ongoing efforts continue to improve the physics schemes in RCMs, a different set of 

challenge lies in the inherent biases of the GCM forcing data.  That is, even if an RCM can 

produce a realistic regional climate when driven by observations, any biases in the parent 
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GCM will inevitably distort the downscaled climate (e.g., Lo et al. 2008).  An example from 

our recent in-house study shows just such an effect (Figure 3): the reanalysis-driven 

simulation of the Weather Research and Forecasting (WRF) model produced a realistic 

temperature downscaling over the western U.S. (Figures 3a and 3b); however, temperature 

downscaled from a GCM revealed widespread cold biases (Figure 3c).  Similar temperature 

biases were also reported by Caldwell et al. (2009).   

 

 

Fig. 1. Cold season (Nov-May) precipitation distribution and monthly observed (bar) and 
simulated (lines) precipitation at four designated areas.  Modified from Wang et al. (2009). 

These results strongly suggest that realistic regional downscaling is only achievable with a 
calibrated RCM driven by an un-biased GCM forcing. In this chapter, we propose an 
economic and efficient method to reduce uncertainties in climate projections, with a specific 
focus on the western U.S.  Model settings and data sources necessary for developing this 
method are introduced in Section 2.  Simulation design is outlined in Section 3.  Results and 
discussions are presented in Section 4.  A summary and some conclusions are given in 
Section 5. 
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Fig. 2. Difference of winter precipitation in percentage between periods of 2041-2070 and 
1971-2000 downscaled from CGCM3 by CRCM (left) and RCM3 (right) of the NARCCAP.  
The Southwest region with large discrepancy is circled. 

 

 

Fig. 3. Surface temperature (oC) in December 1999 from a) PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) data (4 km), b) coupled WRF-CLM simulations 
driven by the National Centers for Environmental Prediction reanalysis data I (NCEP-1) (30 
km), and c) WRF-CLM simulations driven by CCSM (30 km).  
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2. Model and data sources 

We used the latest version WRF model (version 3.2) for the dynamical downscaling.  Figure 
4 shows the simulation domain centered over the western U.S. but also covering adjacent 
areas including the Pacific.  We decided upon a 30 km resolution to better account for the 
complex terrain of the region, but at the same time comparable to the 50 km resolution of 
NARCCAP.  The WRF model was configured with 28 vertical sigma layers from the surface 
to the 50 hPa level.  In addition, the WRF model was coupled to the Community Land 
Model version 3.5 (CLM), hereafter WRF-CLM.  The CLM was designed to describe snow, 
soil, and vegetation processes for global and regional applications (Bonan et al. 2002; Jin et 
al. 2010a, b); this latest version includes a 5-layer snow scheme, a 10-layer soil scheme, and a 
single layer vegetation scheme. The vegetation involves solar radiation reflected and 
absorbed by the canopy as well as its transfer within the canopy (Sellers 1985).  Up to 10 
sub-grids per model grid are included in CLM to represent sub-grid heterogeneity of the 
land surface.  The surface is classified into 24 land categories, including different types of 
vegetation, bare soil, oceans, lakes, wetlands, and glaciers.  The soil layer is divided into 19 
categories defined as percentages of sand and clay. 
 

 

Fig. 4. Proposed simulation domains for the WRF model at 30 km resolution. 

Reanalysis to drive the WRF model was obtained from the National Centers for 

Environmental Prediction-Department of Energy Global Reanalysis II (NCEP-2; Kanamitsu 

et al. 2002) available 1979-present.  The GCM to drive the WRF model is the Community 

Climate System Model (CCSM) used in the IPCC Fourth Assessment Report.  Other 

observational data sets used in this study included monthly 0.5o x 0.5o gridded precipitation 

and temperature (Legates and Willmott 1990), the North American Regional Reanalysis at a 

32-km resolution (NARR; Mesinger et al. 2006), and 4-km precipitation and temperature 

data from the PRISM.   

For downscaling evaluations, we used the NARCCAP output.  NARCCAP’s six RCMs 
(including WRF) were driven by NCEP-2 reanalysis and a set of atmosphere-ocean general 
circulation models (AOGCMs) over a domain that covers the continental U.S. and much of 
Canada.  The AOGCMs (including CCSM) were forced with the A2 Emissions Scenario 
which has cumulative CO2 concentrations projected to be around 575 ppm by the middle of 
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the 21st century.  Reanalysis-forced simulations were also produced for the period 1979-2004; 
those simulations were analyzed by WGTG.  For climate downscaling, the RCMs are nested 
in the AOGCMs for the historical period 1971-2000 and for a future period 2041-2070.  All 
the RCMs were run at a spatial resolution of 50 km.  For details about NARCCAP see 
Mearns et al. (2009) and their website at http://www.narccap.ucar.edu/.  

3. Simulation framework 

To assess the range of projection uncertainties in regional downscaling, we conducted (1) a 
physics-calibrated RCM that was forced by (2) a set of bias-corrected GCM data, (3) to 
produce a set of calibrated/corrected downscaling data, and (4) to evaluate this data set 
with control simulations as well as the NARCCAP output.  These approaches are illustrated 
schematically in (Figure 5) and are detailed further. 
 

 

Fig. 5. Schematic illustration of the simulation framework. 

(1) WRF model calibration and validation 

Winter precipitation is primarily a large-scale process linked more closely to cloud 
microphysics than cumulus convection (Grubišić et al. 2005; Yuan et al. 2008), while summer 
monsoonal precipitation is mainly a cumulus convection process and is sensitive to the 
microphysics involved (e.g., Yang et al. 2009).  Consequently, treatments to suppress any 
excessive winter precipitation often results in loss of summer precipitation; likewise, 
methods to increase summer convective rainfall can easily enhance the already 
overestimated winter precipitation.  With this challenge in mind, we calibrated the WRF 
model by first obtaining the best microphysics scheme for winter and second, tested the 
cumulus convective schemes for summer but retaining the selected microphysics scheme in 
winter.  The purpose was to correct the biases in seasonal precipitation in order to simulate 
an accurate annual cycle.  

(2) CCSM output bias correction 

In order to reduce the impact of GCM biases on regional downscaling, any GCM forcing 

data can be “corrected” prior to being used to drive any dynamic downscaling.  The goal 
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here is to have the CCSM output to approximate the reanalysis data so that the calibrated 

WRF-CLM can achieve consistent performance when driven by the CCSM.  An initial step 

for a bias correction was to apply statistical downscaling techniques on the CCSM forcing 

data.  Statistical downscaling generally consists of (a) the development of statistical 

relationships between observed climate variables and large-scale predictors, and (b) the 

application of such relationships to the GCM output (Wilby et al. 1998).  Here, we modified 

the technique somewhat by developing a regression model for each variable between the 

CCSM and the reanalysis towards eliminating their climatological differences. This type of 

analysis generates a set of “climatologically viable” CCSM data to force WRF-CLM.  

(3) Downscaling for the western U.S.  

Using the calibrated WRF-CLM forced by corrected CCSM boundary conditions, we 
produced regional climate simulations for the western U.S. Three sets of data were 
generated: (a) those driven by reanalyses, b) those driven by the original CCSM, and (c) 
those driven by the climatologically corrected CCSM.  These three sets of simulations were 
evaluated against each other and with observations.  A comparison with NARCCAP 
outputs ensue to provide an uncertainty assessment. 

4. Results  

4.1 WRF-CLM calibration and validation  
Through Fourier analysis, WGTG decomposed the seasonality of western US precipitation 
into an annual cycle (1st harmonic) and a semiannual cycle (2nd harmonic).  These annual 
and semiannual precipitation cycles were subjected to Empirical Orthogonal Function (EOF) 
analysis, obtaining two leading modes for each cycle.  In the annual cycle, EOF1 and EOF2 
represent a winter-summer seesaw and a spring-fall oscillation, respectively.  The winter-
summer seesaw depicts a precipitation pattern divided by the Rocky Mountains, reflecting 
the seasonal march of upper-level winds interacting with the orography.  The spring-fall 
oscillation and the semiannual cycle both reveal an oscillating dipole between the northwest 
and the southwest; the latter cycles are particularly sensitive to convective precipitation.  
Figure 6 shows the results from the NARCCAP simulations depicting the combined spring-
fall and EOF1-semiannual modes (left) of precipitation in Colorado (area C in Figure 1), in 
comparison to the EOF2-semiannual mode (right).  It is apparent in Figure 6 that most 
models produced a distorted seasonal cycle due to an overly strong spring-fall oscillation 
and an out-of-phase semiannual cycle; the WRF model was among them.   
Winter precipitation overprediction over terrain has been a common deficiency within many 

Bulk Microphysical Parameterization schemes (BMPS), because most BMPS treat snow and 

graupel as two separate categories without partial riming within the cloud; correcting this 

error would help improve the amounts of cloud water and reduce the surface precipitation 

over windward slopes (Colle and Lin 2010).  We have found through various experiments 

that cumulus parameterization schemes (CPSs) have very little impact on winter 

precipitation amounts in the western US.  Thus, we focused on the microphysics coupled 

with the WRF model and selected one that is most effective in reducing the overprediction 

of precipitation.  After obtaining the optimal microphysics scheme for winter precipitation it 

was used for sensitivity testing of CPSs for summer precipitation.  By experimenting with 

the full combination of BMPS and CPSs available in WRF-CLM, we selected the Morrison 2-

moment BMP (Thompson et al. 2008) that reduces the most of the overprediction bias.  We 
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also found that the Grell-Devenyi ensemble CPS – a multi-closure, multi-parameter, 

ensemble method (Grell and Devenyi 2002) – most accurately reflected the summer 

precipitation in the Southwest monsoon region.  The inclusion of CLM also improves the 

precipitation simulation in the western U.S., as has been shown in Jin et al. (2010a, 2010b). 

 

 

Fig. 6. Precipitation reconstructions in area C (Fig. 2) from the combined spring-fall mode 
and the first semiannual mode (left) and second semiannual mode.  Modified from Wang et 
al. (2009). 

To illustrate the calibration effectiveness, we present the result in 2008.  The control run was 
forced by the NCEP-2 with the same physics packages as the NARCCAP WRF, denoted as 

WRF(Ctrl).  Figure 7 shows the monthly precipitation of WRF(Ctrl) over the Wasatch Range 
(area B in Figure 1) and northern Arizona (area D).  Compared to the observations (blue 

histograms), precipitation biases similar to those in Figure 1 still prevail – overestimation in 
cold-season amounts and underestimation in warm-season amounts.  Next we applied the 

calibration, denoted as WRF(Exp).  Except for the optimal BMPS and CPS settings and the 
coupling with CLM, the rest of model parameters (e.g., land surface physics and boundary 

layer schemes) remained the same as in WRF(Ctrl).  As shown in Figure 7 (red lines), 
precipitation in WRF(Exp) already reveals a marked improvement towards a more accurate 

seasonal variability where reduced winter precipitation and the enhanced summer 

(monsoon) rainfall are more adequately simulated.  A further improvement is revealed in 
the summer daily precipitation events.  As shown in Figure 8 (left) across 37°N, pronounced 

diurnal rainfall episodes occurred during 4-12 August 2008.  However, the diurnal rainfall 
signal is very weak in WRF (Ctrl) resulting in less than a half of the observed amounts 

falling over the terrain (middle).  But this is remedied by WRF(Exp) substantially increases 
the diurnal rainfall leading to a more realistic seasonal distribution (right).  The precipitation 

frequency is also enhanced.  

4.2 Forcing data correction and WRF simulations for the western U.S. 
In previous analysis (Figure 3), we saw that WRF-CLM could produce reasonably accurate 
simulations if forced with the reanalysis data. However, when the model is forced with 
CCSM data it generated unrealistic simulations that were obviously biased.  To reduce the 
bias, which in this case was inherited from the CCSM, we developed a set of statistical 
functions between the forcing variables in CCSM and NCEP-2.  These statistical functions 
covered various timescales including a diurnal range (6 hr data), season and annual cycles, 
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and climate mean state.  The training period for the statistical functions is 1979-1999.  The 
statistical functions followed those used in Dettinger et al. (2004) and Miller et al. (2008).  
The point to note is that the differences between CCSM and NCEP-2 are minimized  
 

 

 

Fig. 7. Monthly precipitation of 2008 in areas B and D from the observation (bars), WRF(Ctrl) 
(black dashed line), and WRF(Exp) (red solid line).  The observation here uses the North 
American Regional Reanalysis (NARR). 

based upon bilinear regression parameters that were derived during their training period.As 

an example, Figure 9 shows the regression-corrected CCSM annual temperature and 

precipitation in the southwestern U.S. (42oN 114.3oW, 32oN 102oW) versus the original 

simulation.  The original CCSM appears to overestimate the trends in both temperature and 

precipitation.  However, the statistically corrected temperature and precipitation time series 

are in good agreement with the PRISM data during the historical period (1895-1999), a result 

we consider to enhance the reliability of future projections (2000-2099), which are being 

generated for further studies.  We then applied this regression-based correction method to 

all variables in the CCSM used to force WRF-CLM.  These variables included air 

temperature, moisture, geopotential height, wind, and sea surface temperature, all of which 

were updated at a 6-hour frequency.   
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Fig. 8. Longitude-time cross sections of precipitation averaged at 37-40°N from 3 August to 
12 August 2008 with the July-August accumulation (bottom), derived from the NARR (left), 
WRF(Ctrl) (middle), and WRF(Exp) (right).  Terrain is illustrated as black shadings. 

Figure 10 shows the winter (December-February) precipitation for the western U.S. 
averaged over the period 1989-1999, including two sets of gridded observations: PRISM 
(Figure 10a) and the University of Delaware data (Figure 10b).  Note that even these 
observations exhibit some apparent differences, especially at high elevations over mountain 
ranges along the Rockies.  Nevertheless, the WRF simulation forced with the NCEP-2 data 
(Figure 10c) is in good agreement with both observation data sets, with an average bias of 26 
mm/month over the entire simulation domain compared to PRISM.  However, when the 
same WRF-CLM is forced with the original CCSM output, the model severely overestimates 
the precipitation and the domain-wide averaged bias doubles to 59 mm/month.  This 
difference clearly demonstrates the inherited biases from the CCSM forcing data – biases 
that are difficult to diagnose.  After correcting the CCSM forcing data through the aforesaid 
statistical functions, the result (Figure 10e) exhibits a marked improvement – the domain-
averaged bias was reduced to 31 mm/month.  

4.3 Long-term trend in the Western U.S. 
The reanalysis-driven calibration simulation for the period 1979-2004 (in line with 
NARCCAP) is promising in the context of the provision of useful assessments for projection  
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Fig. 9. CCSM projections of annual temperature (left) and precipitation (right) over the 
southwestern U.S.  The black line is for the original CCSM projections, the green line is for 
statistically-corrected CCSM projections, and the red line is for PRSIM data.  In this project 
we will use a similar method to correct the CCSM forcing data for WRF-CLM. 

uncertainties.  Figure 11 shows the linear trends in precipitation over the central western 
U.S. (Areas B and C in Figure 1) simulated from the six reanalysis-driven NARCCAP 
models.  Except for the Hadley Center RCM (HRM3), none of the models capture  
the observed downtrend in precipitation.  After the calibration process as described in 
Section 4.1 was applied, WRF-CLM simulated a much more realistic precipitation trend.  It 
is therefore reasonable to expect that, by evaluating climate projections made from the 
calibrated/corrected downscaling against the original and existing (i.e. NARCCAP) ones, 
the uncertainty range of the climate projections can be quantified.  We may also be able to 
address the challenge outlined in Figure 2, that is, to identify a representative projection 
with physically based assessment and with higher confidence.    
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Fig. 10. Winter (December, January, and February) precipitation and observations and 
simulations avarged over the period of 1989-1999.  a) PRISM data; b) University of Delaware 
observations; c) WRF forced with NCEP; d) WRF forced with original CCSM output; e) WRF 
forced with the regressed CCSM output.    

a b 

d 

e 

c 
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Fig. 11. Least-square trends in winter (December-February) precipitation averaged over 
Areas B and C (as in Figure 1) simulated by 6 NARCCAP models (grey; WRF in golden), 
calibrated WRF-CLM forced by NCEP-2 (red), and the University of Delaware observation 
(black) for the period 1979-2004.  Year 1979 is omitted to avoid potential spin-up problems.    

5. Summary and conclusions 

Proper interpretation of climate projections that exhibit a wide range of uncertainties has 

been a challenge for the management of water resources.  The common detection and 

attribution method validating GCM simulations is expensive when it comes to dynamical 

downscaling because of the large ensemble members required.  In this chapter we 

demonstrated an economic approach through effective combination of dynamical and 

statistical downscaling towards reducing the range of projection uncertainties.  The 

demonstration consists of (1) calibration of a regional climate model (WRF-CLM) towards 

realistic precipitation seasonal cycles, (2) data correction of a global climate model (CCSM) 

to minimize climatological biases of the forcing variables, and (3) generation of regional 

downscaling from (1) and (2) followed by evaluation against existing climate downscaling 

(NARCCAP) to quantify and reduce the range of projection uncertainties.  We focused on 

the Upper Colorado River Basin of the western U.S. not only because of its critical role in the 

western water resource, but also because this region has complex precipitation seasonal 

cycles and that these cycles were not simulated properly by the NARCCAP models.   

Our analyses showed that the calibrated simulation successfully reduced overprediction of 

windward precipitation amounts and reasonably captured the monsoon precipitation.  This 

subsequently improved seasonal variability in precipitation when compared to that 

produced by the NARCCAP models. The improved simulation revealed a realistic long-

term trend in precipitation that was not captured by the same model prior to the calibration.  

In addition, GCM forcing data corrected from climatological biases produced a downscaled 

climate that was significantly improved over that driven by original GCM forcing data.  

Consequently, by comparing the calibrated/corrected regional downscaling with existing 
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ones such as those provided by NARCCAP, the range of uncertainties in those baseline 

projections (i.e. NARCCAP) can be quantified.  Subsequently, the water management 

community will have a better tool in assessing future water needs.  A long-term (2000-2100) 

climate simulation derived from the calibrated/corrected regional downscaling is being 

generated with an expected complete date in summer 2011. 
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