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1. Introduction

During the early days of quantum mechanics and quantum field theory, continuous
space-time and Lorentz symmetry was considered inappropriate to describe the small scale
structure of the universe. It was also argued that one should introduce a fundamental length
scale, limiting the precision of position measurements. The introduction of fundamental
length is suggested to cure the ultraviolet divergencies occurring in quantum field theory. H.
Snyder was the first to formulate these ideas mathematically (1), introducing noncommutative
coordinates brings an uncertainty in the position. The success of the renormalisation made
people forget about these ideas for some time. But when the quantization of gravity was
considered thoroughly, it became clear that the usual concepts of space-time are inadequate
and that spacetime has to be quantised or noncommutative, in some way. Quantum
cosmology, is a simplified approach to the study of the very early universe, which means
that the gravitational and matter variables have been reduced to a finite number of degrees of
freedom (these models were extensively studied by means of Hamiltonian methods in the
1970’s, (for reviews see (2; 3)); for homogenous cosmological models the metric depends
only on time, this permits to integrate the space dependence and obtain a model with a
finite dimensional configuration space, minisuperspace, whose variables are the 3-metric
components. One way to extract useful dynamical information is through a WKB type
method. The semiclassical or WKB approximations are usually discussed in text books on
nonrelativistic quantum mechanics in the context of stationary states, i.e., determination of
the energy eigenvalues and eigenfunctions (4). This approximation can also be used to
obtain approximate and in some cases exact solutions of the dynamical problem, i.e., full
Schroedinger equation, so the utility of the semiclassical approximation in obtaining exact
solutions of the Schroedinger equation has not yet fully explored.
The same seems to be the case for the relativistic quantum mechanics. The importance
of the semiclassical approximation in the relativistic case is probably best appreciated in
quantum cosmology (5), specifically, in the analysis of the Wheeler-DeWitt equation, which
is essentially a Klein-Gordon equation on the minisuperspace (6). In the last few years
there have been several attempts to study the possible effects of noncommutativity in the
classical cosmological scenario (7–9). The proposal of authors in Ref 9 introduces the effects
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of noncommutativity at the quantum level, namely quantum cosmology, by deforming
the minisuperspace through a Moyal deformation of the Wheeler-DeWitt (WDW) equation,
similar to noncommutative quantum mechanics (10). The aim of this chapter is to introduce
a deformation in the minisuperscpace variables through the Moyal product of the Wheeler
DeWitt equation and apply a WKB type method to noncommutative quantum cosmology,
and find the noncommutative classical solutions, avoiding in this way the difficult task to
solve this cosmological models in the complicated framework of noncommutative gravity
(11). We know how to introduce noncommutativity at a quantum level, by taking into account
the changes that the Moyal product of functions induces on the quantum equation, and
from there calculate the effects of noncommutativity at the classical level. This also has the
advantage that for some noncommutative models for which the quantum solutions can not
be found, the noncommutative classical solutions arise very easily from this formulation. This
procedure is presented through many examples: first the Kanstowski-Sachs (KS) cosmological
model is presented and the formalism developed in this model, is the applied to the
Friedmann-Robertson-Walker (FRW) universe coupled to a scalar field and cosmological
constant, besides we show the noncommutative proposal applied to a stringy model and the
Bianchi I with Baratropic perfect fluid and Λ cosmological.

2. Cosmology

We start by reviewing the quantum cosmological models in which we are interested, and find
the classical evolution through the WKB-type approximation.

2.1 Kantowski-Sachs (KS) Cosmology

The first example that we are interested because the simplest anisotropic, is the KS universe,
part of the interest in this universe model is due to the wide set of analitycal solutions it
admits, even if particular types of matter are coupled to gravity.
The Kanstowski-Sachs line element (12) is

ds2 = −N2dt2 + e2
√

3βdr2 + e−2
√

3βe−2
√

3Ω
(

dθ2 + sin2 θdϕ2
)

. (1)

from the general relativity lagrangian we can construct the canonical momenta,

ΠΩ = − 12

N
e−

√
3β−2

√
3Ω

Ω̇

Πβ =
12

N
e−

√
3β−2

√
3Ω β̇, (2)

and the corresponding Hamiltonian

H =
N

24
e−

√
3β−2

√
3Ω

[

−Π
2
Ω
+ Π

2
β + 48e−2

√
3Ω

]

, (3)

for this model we can use canonical quantization and obtain the Wheeler-DeWitt (WDW)

equation. Using the usual identifications ΠΩ = −i ∂
∂Ω

and Πβ = −i ∂
∂β we get

[

∂2

∂Ω2
− ∂2

∂β2
− 48e−2

√
3Ω

]

ψ(Ω, β) = 0, (4)
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in this parametrization the WDW equation has very simple form; the solutions to this equation
are given by

ψ = e±iν
√

3βKiν

(

4e−
√

3Ω

)

, (5)

where ν is the separation constant and Kiv are the modified Bessel functions. We now proceed
to apply the WKB method. For this we propose the wave function

Ψ(β, Ω) = ei(S1(β)+S2(Ω)), (6)

the WKB approximation is reached in the limit

∣

∣

∣

∣

∣

∂S2
1(β)

∂β2

∣

∣

∣

∣

∣

<<

(

∂S1(β)

∂β

)2
∣

∣

∣

∣

∣

∂S2
2(Ω)

∂Ω2

∣

∣

∣

∣

∣

<<

(

∂S2(Ω)

∂Ω

)2

(7)

this gives the Einstein-Hamilton-Jacobi (EHJ) equation

−
(

∂S2(Ω)

∂Ω

)2

+

(

∂S1(β)

∂β

)2

− 48e−2
√

3Ω = 0, (8)

solving (equation 8) gives the functions S1, S2 and using the definition for the momenta

Πβ =
dS1(β)

dβ
, ΠΩ =

dS2(Ω)

dΩ
, (9)

which combined with (equation 2) and fixing the value of N(t) = 24e−
√

3β−2
√

3Ω we find

S1(β) = Pβ0
β,

S2(ω) = − 1√
3

√

P2
β0

− 48e−2
√

3Ω +
Pβ0√

3
arctanh

⎡

⎣

√

P2
β0

− 48e−2
√

3Ω

Pβ0

⎤

⎦ , (10)

from this solutions and using (equation 2) and (equation 9) we obtain the classical solutions

Ω(t) =
1

2
√

3
ln

[

48

P2
β0

cosh2
(

2
√

3Pβ0
(t − t0)

)

]

,

β(t) = β0 + 2Pβ0
(t − t0), (11)

this solutions are the same that solving the field equations of General Relativity.

2.2 Friedmann-Robertson-Walker (FRW) Cosmology with scalar field and Λ

The next set of examples correspond to homogeneous and isotropic Universes, the so called
Friedmann-Robertson-Walker (FRW) universe coupled to a scalar field and cosmological
constant. The FRW metric is given by

ds2 = −N2(t)dt2 + e2α(t)
[

dr2

1 − kr2
+ r2(dϑ2 + sin2ϑdϕ2)

]

, (12)

where a(t) = eα(t) is the scale factor, N(t) is the lapse function, and k is the curvature
constant that takes the values 0,+1,−1, which correspond to a flat, closed and open universes,
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respectively. The Lagrangian we are to work on, is composed by the gravity sector and the
matter sector, which for the FRW universe endowed with a scalar field and cosmological
constant Λ is

Ltot = Lg + Lφ = e3α

[

6
α̇2

N
− 1

2

φ̇2

N
− N

(

2Λ + 6ke−2α
)

]

, (13)

the corresponding canonical momenta are

Πα =
∂L
∂α̇

= 12e3α α̇

N
, Πφ =

∂L
∂φ̇

− e3α φ̇

N
, (14)

proceeding as before the WDW equation is obtained from the classical Hamiltonian. By the
variation of (equation 13) with respect to N, ∂L/∂N = 0, implies the well-known resultH = 0.

e−3α N

[

− 1

24

∂2

∂α2
+

1

2

∂2

∂φ2
+ e6α

(

2Λ + 6ke−2α
)

]

Ψ(α, φ) = 0. (15)

Now that we have the complete framework and the corresponding WDW equation, we can
proceed to study different cases.
In table 1 we can see the different cases that we solved1, all of them are calculated by using the
WKB type procedure, the classical solutions are the same we would get by solving Einstein’s
field equations. We can expect that this approximation includes all the gravitational degrees
of freedom of the particular cosmological model under study. This almost trivial observation
is central to the ideas we are presenting in the next section.

2.3 Stringy Quantum Cosmology

In the case of strings, this example is related to the graceful exit of pre-big bang cosmology
(13), this model is based on the gravi-dilaton effective action in 3+1 dimensions

S = −λs

2

∫

d4x
√

−ge−φ(R + ∂µφ∂νφ + V), (16)

in this expression λs is the fundamental string length, φ is the dilaton field with V the possible

dilaton potential. Working with an isotropic background, and setting a(t) = eβ(t)/
√

3, after
integrating by parts, we get

S = −λs

2

∫

dτ
(

φ̄′2 − β′2 + Ve−2φ̄
)

, (17)

we have used the time parametrization2 dt = e−φ̄dτ, the gauge g00 = 1, and defined φ̄ =

φ − ln
∫

(

d3 x
λ3

s

)

−
√

3β. From this action we calculate the canonical momenta, Πβ = λsβ′ and

Πφ̄ = −λsφ̄′. From the classical hamiltonian we find the WDW equation

[

∂2

∂φ̄2
− ∂2

∂β2
+ λ2

s V(φ̄, β)e−2φ̄

]

Ψ(φ̄, β) = 0, (18)

1 The case k �= 0, Λ �= 0 does not have a closed analytical solution to the WDW equation.
2 The prime denotes differentiation respect to τ.
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case Quantum Solution Classical Solution

k=0, Λ �= 0 ψ = e±iν
√

3
2

φKiν

(

4
√

Λ

3 e3α

)

φ(t) = φ0 − Pφ0
t,

and Jν for Λ < 0 α(t) = 1
6 ln

(

P2
φ0

4Λ

)

+ 1
3 ln

(

sech
[√

3
2 Pφ0

(t − t0)
])

,

k �=0, Λ = 0 ψ(1) = e
±i ν√

3
φ

Kiν

(

6e2α
)

φ(t) = φ0 − Pφ0
(t − t0),

for k = 1,

ψ(2) = e
±i ν√

3
φ

Jν
(

6e2α
)

α(t) = 1
4 ln

[

P2
φ0

12k

]

for k = −1 + 1
2 ln

(

sech
[

1√
3

Pφ0
(t − t0)

])

,

k �=0, Λ �= 0 Unknown φ(t) = φ0 − Pφ0
(t − t0),

∫ dα(t)√
Pφ0

−2e6α(2Λ+6ke−2α)
= 1√

12
(t − t0),

Table 1. Classical and quantum solutions for the FRW universe coupled to a scalar field φ.
For the case Λ �= 0 k �= 0, the classical solution for the scale factor is given in an implicit
expression. We have fixed the lapse function to N(t) = e3α.

in particular for a potential of the form V(φ̄) = −V0emφ̄, the quantum solution is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[

2λs
√

V0

m − 2
e(

m−2
2 )φ̄

]

. (19)

The classical solutions for the scale factor and the dilaton are

φ̄(τ) =
1

m − 2
ln

[

P2
β0

V0λ2
s

sech2

(

Pβ0

2λs
(m − 2)(τ − τ0)

)

]

,

β(τ) = β0 +
Pβ

λs
(τ − τ0), (20)

for m = 0 and m = 4, the solutions have been obtained in (13), and are used in connection to
the graceful exit from pre-big bang cosmology in quantum string.

2.4 Isotropization in Bianchi I with barotropic perfect fluid and Λ Cosmological

In our final example let us begin by recalling canonical formulation of the ADM formalism to
the diagonal Bianchi Class A cosmological models. The metrics have the form

ds2 = −(N2 − N j Nj)dt2 + e2Ω(t)e2βij(t) ωiω j, (21)

where N and Ni are the lapse and shift functions, respectively, Ω(t) is a scalar and βij(t)

a 3x3 diagonal matrix, βij = diag(β+ +
√

3β−, β+ −
√

3β−,−2β+), ωi are one-forms that

characterize each cosmological Bianchi type model, and that obey dωi = 1
2 Ci

jkω j ∧ ωk, Ci
jk the
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structure constants of the corresponding invariance group (8). The metric for the Bianchi type
I, takes the form

ds2
I = −N2dt2 + e2Ωe2β++2

√
3β−dx2 + e2Ωe2β+−2

√
3β− dy2 + e2Ωe−4β+dz2, (22)

The corresponding lagrangian density is

LTotal =
√

−g (R − 2Λ) + Lmatter, (23)

and using (equation 22), this have the following form

L = 6e3Ω

[

− Ω̇
2

N
+

β̇2
+

N
+

β̇2
−

N
− Λ

3
N +

8

3
πGNρ

]

. (24)

where the overdot denotes time derivatives. The canonical momentas to coordinate fields are
defined in the usual way

PΩ =
∂L

∂Ω̇
= −12e3Ω Ω̇

N
, P+ =

∂L

∂β̇+
= 12e3Ω β̇+

N
, P− =

∂L

∂β̇−
= 12e3Ω β̇−

N
, (25)

and the correspondent Hamiltonian function is

H =
Ne−3Ω

24

[

−P2
Ω
+ P2

+ + P2
− − 48Λe6Ω + 384πGMγe−3(γ−1)Ω

]

= 0, (26)

together with barotropic state equation p = γρ, the Hamilton-Jacobi equation is obtained

when we substitute Pqµ → dSi
dqµ into (equation 26). In what follows, we should consider the

gauge N = 1.

2.4.1 Classical Solutions á la WKB

The quantum Wheeler-DeWitt (WDW) equation for these models is obtained by making the
canonical quantization Pqµ by −i∂qµ in (equation 26) with qµ = (Ω, β+ , β−) is

e−3Ω

24

[

∂2

∂Ω2
− ∂2

∂β2
+

− ∂2

∂β2
−

− λe6Ω + bγe−3(γ−1)Ω

]

Ψ = 0. (27)

where λ = 48Λ, bγ = 384πGMγ. We now proceed to apply the WKB semiclassical
approximation using the ansatz

Ψ (Ω, β±) = ei[S1(Ω)+S2(β+)+S3(β−)], (28)

into (equation 27), and without any loss of generality, one can consider the condition d2Si

dq2
i

be

small i.e.,

( dS1

dΩ

)2
>>

d2S1

dΩ2
,

( dS2

dβ2
+

)2
>>

d2S2

dβ2
+

,
( dS2

dβ2
−

)2
>>

d2S2

dβ2
−

, (29)

to get the classical Einstein-Hamilton-Jacobi equation

−
( dS1

dΩ

)2
+

( dS2

dβ+

)2
+

( dS3

dβ−

)2
− λe6Ω + be−3(γ−1)Ω = 0, (30)
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which can be separate in a set of differential equations

−
( dS1

dΩ

)2
+ a2

1 − λe6Ω + be−3(γ−1)Ω = 0, (31)

( dS2

dβ+

)2
= n2

1, (32)

( dS3

dβ−

)2
= p2

1, (33)

where a2
1, n2

1 and p2
1 are the separation constants and their relations is a2

1 = n2
1 + p2

1. Therefore
using the relations between (equation 25), (equation 31), (equation 32) and (equation 33) we
have the following equations of motion

±
√

a2
1 − λe6Ω + bγe−3(γ−1)Ω ≡ −12e3Ω Ω̇

N
, (34)

±n1 ≡ 12e3Ω β̇+

N
, (35)

±p1 ≡ 12e3Ω β̇−
N

. (36)

The main master equation to solved in the gauge N = 1, is

dt

12
=

dΩ
√

a2
1e−6Ω + bγe−3(γ+1)Ω − λ

, (37)

the other two equations (equation 35) and (equation 36) are trivially integrable. For particular
stadium of the universe evolution, given by the γ parameter, we present these classical
solutions in table 2.

2.4.2 Classical solutions via Hamiltonian formalism

In order to find the commutative equation of motion, we use the classical phase space
variables (Ω, β±), where the Poisson algebra for these minisuperspace variables are

{Ω, β±} = {β+ , β−} = {PΩ, P±} = {P+, P−} = 0,
{

qµ, Pqµ

}

= 1, (38)

and recalling the Hamiltonian (equation 26), we obtain the classical solutions with the
following procedure.
The classical equations of motion for the phase variables Ω, β± , P±, and PΩ are

Ω̇ = {Ω, H} = − 1

12
e−3ΩPΩ, (39)

˙β− = {β−, H} =
1

12
e−3ΩP−, (40)

˙β+ = {β+, H} =
1

12
e−3ΩP+, (41)

ṖΩ = {PΩ, H} =
1

8
e−3Ω

[

−P2
Ω
+ P2

− + P2
+ + λe6Ω + γbγe−3(γ−1)Ω

]

, (42)

Ṗ− = {P−, H} = 0, → P− = ±p1 = const. (43)

Ṗ+ = {P+, H} = 0, → P+ = ±n1 = const. (44)
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Case Commutative solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ω = 1
3 Ln

[

e2qt−4a2
1

16qeqt

]

, q2 = 24πGM−1 − 3Λ,

β+ = ± 2
3

n1
a1

arctanh
[

eqt

2a1

]

, a2
1 = n2

1 + p2
1,

β− = ± 2
3

p1

a1
arctanh

[

eqt

2a1

]

.

γ = 1, Λ < 0, ρ1 = M1e−6Ω
Ω = 1

3 Ln
[

e2qt−4a2
1

16qeqt

]

, q =
√

3|Λ|,
β+ = ± 2

3
n1
a1

arctanh
[

eqt

2a1

]

, a2
1 = n2

1 + p2
1 + 384πGM1,

β− = ± 2
3

p1

a1
arctanh

[

eqt

2a1

]

.

γ = 1, Λ = 0, ρ1 = M1e−6Ω
Ω = 1

3 Ln [ a1
4 t], a2

1 = n2
1 + p2

1 + 384πGM1,

β+ = ±Ln [t
− n1

3a1 ],

β− = ±Ln [t
− p1

3a1 ].

γ = 0, Λ = 0, ρ0 = M0e−3Ω
Ω = 1

3 Ln
[

b0t2

64 + a1t
4

]

, b0 = 384πGM0,

β+ = ± n1
3a1

Ln
[

16a1+b0t
t

]

, a2
1 = n2

1 + p2
1,

β− = ± p1

3a1
Ln

[

16a1+b0t
t

]

.

Table 2. Classical Solutions for γ = −1, 1, 0, and constraints q, a1 and b0.

Introducing (equation 26) into (equation 42), we have

8e−3ΩṖΩ = 2λ + (γ − 1)bγe−3(γ+1)Ω, (45)

which can be integrate to obtain the relation for PΩ

PΩ = ±
√

a2
1 − λe6Ω + bγe−3(γ−1)Ω, (46)

where a2
1 = n2

1 + p2
1.

The set of equations (equation 39), (equation 40) and (equation 41) are equivalents to the set of
equations (equation 34), (equation 35) and (equation 36), equations used to obtain the classical
solutions.
Just to remark, the solutions obtained with the Hamiltonian formalism and the WKB-like
procedure are equivalent to solving GR field equations.

3. Noncommutative Quantum Cosmology

There is a huge interest to noncommutative theories to explain the appropriate modification
of Classical General Relativity, and hence of spacetime symmetries at short-distance scales,
that implies modifications at large scales. General Quantum Mechanics arguments indicate
that, it is not possible to measure a classical background spacetime at the Planck scale, due
to the effects of gravitational backreaction (14). It is therefore tempting to incorporate the
dynamical features of spacetime at deeper kinematical level using the standard techniques of
noncommutative classical field theory based in the so called Moyal product in which for all
calculations purposes (differentiation, integration, etc.) the space time coordinates are treated
as ordinary (commutative) variables and noncommutativity enters into play in the way in
which fields are multiplied (16). Using a deformation in the minisuperspace of this space
variables in the Hamilton approach, as we are trying with the idea of noncommutative space
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time, we propose that the minisuperspace variables do not commute, for that purpose we will
modified the Poisson structure, this approach does not modify the hamiltonian structure in
the noncommutative fields.
Finding the classical cosmological solutions for any cosmological model in noncommutative
gravity (5) is a very difficult task, this is a consequence of the highly nonlinear character of the
theory. To avoid these difficulties, we will follow the original proposals of noncommutative
quantum cosmology that was developed in (12). We start by presenting, in quite a general
form the construction of noncommutative quantum cosmology and the WKB type method to
calculate the classical evolution.
Let us start with a generic form for the commutative WDW equation, this is defined in the
minisuperspace variables x, y. As mentioned in (12) a noncommutative deformation of the
minisuperspace variables is assumed

[x, y] = iθ, (47)

this noncommutativity can be formulated in terms of noncommutative minisuperspace
functions with the Moyal product of functions

f (x, y) ⋆ g(x, y) = f (x, y)e
i θ

2

(←−
∂x

−→
∂y −

←−
∂y
−→
∂x

)

g(x, y). (48)

Then the noncommutative WDW equation can be written as

(

−Π
2
x + Π

2
y − V(x, y)

)

⋆ Ψ(x, y) = 0, (49)

we know from noncommutative quantum mechanics, that the symplectic structure is
modified changing the commutator algebra. It is possible to return to the original
commutative variables and usual commutation relations if we introduce the following change
of variables

x → x +
θ

2
Πy and y → y − θ

2
Πx, (50)

the efects of the Moyal star product are reflected in the WDW equation, only through the
potential

V(x, y) ⋆ Ψ(x, y) = V(x +
θ

2
Πy, y − θ

2
Πx), (51)

taking this into account and using the usual substitutions Πqµ=−i∂qµ we arrive to

[

∂2

∂x2
− ∂2

∂y2
− V

(

x − i
θ

2

∂

∂y
, y + i

θ

2

∂

∂x

)]

Ψ(x, y) = 0, (52)

this is the Noncommutative WDW equation (NCWDW) and its solutions give the quantum
description of the noncommutative universe. We can use the NCWDW to find the temporal
evolution of our noncommutative cosmology by a WKB type procedure.

3.1 Noncommutative Kantowski-Sachs Cosmology

Using the method outlined and using (equation 4) we find the NCWDW equation

[

∂2

∂Ω2
− ∂2

∂β2
− 48e

−2
√

3
(

Ω−i θ
2

∂
∂β

)
]

ψ(Ω, β) = 0, (53)
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assuming that we can write Ψ(Ω, β) = e
√

3νβX(Ω) the equation for X(Ω) is
[

− d2

dΩ2
+ 48e−3iνθe−2

√
3Ω + 3ν2

]

X(Ω) = 0, (54)

then the solutions of the NCWDW equation are

Ψ(Ω, β) = e±i
√

3νβKiν

(

4e−
√

3± 3
2 νθ

)

, (55)

as already mentioned the NCWDW equation has the same problems as its commutative
counterpart, it has no time dependence and unfortunately it can not be normalized. Usually
the next step is to construct a ” Gaussian" wave packet that can be normalized and do the
physics with the new wave function. This is not needed for our purposes, as we will be
applying the WKB method as in the previous section. Using equations (equation 6) and
(equation 7) we arrive at

S1(β) = Pβ0
β,

S2(β) = − 1√
3

√

P2
β0
− 48e−

√
3θPβ0 e−2

√
3Ω

+
Pβ0√

3
arctanh

⎡

⎢

⎢

⎣

√

P2
β0
− 48e−

√
3θPβ0 e−2

√
3Ω

Pβ0

⎤





⎦

, (56)

using (equation 50) we get

β̇C =
1

2
β − 1

2
ṖΩ, Ω̇C =

1

2
Ω +

1

2
Ṗβ (57)

and the fact that the momenta are not modified we arrive to

Ω(t) =
1

2
√

3
ln

[

48

P2
β0

cosh2
(

2
√

3Pβ0
(t − t0)

)

]

− 1

2
θPβ0

,

β(t) = β0 + 2Pβ0
(t − t0)

− θ

2
Pβ0

tanh2
[

2
√

3Pβ0
(t − t0)

]

, (58)

this solutions have already been obtained in (15), in that paper they do a deformation
of the simplectic structure at a classical level, modifying the Poisson brackets, to include
noncommutativity.

3.2 Noncommutative FRW Cosmology with scalar field and Λ

We can use the NCWKB type method to FRW universe coupled to a scalar field. Proceeding
as before the corresponding NCWDW equation is

[

− 1

24

∂2

∂α2
+

1

2

∂2

∂φ2
+ e

6(α−i θ
2

∂
∂φ )

(

2Λ + 6ke
−2(α−i θ

2
∂

∂φ )
)

]

Ψ = 0. (59)

From the NCWDW equation, we use the method developed in the previous sections and
calculate the classical evolution by appliying the NCWKB type method. These results are
presented in the next table
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case NC Quantum Solution NC Classical Solution

k=0, Λ �= 0 ψ = e±iν
√

3
2

φKiν

[

4
√

Λ

3 e3(α− 3
2 νθ)

]

φ(t) = φ0 − Pφ0
t

−
√

3θPφ0
tanh

(√
3

2 Pφ0
(t − t0)

)

,

and Jν for Λ < 0 α(t) = θ
2 Pφ0

+ 1
6 ln

(

P2
φ0

4Λ

)

+ 1
3 ln

(

sech
[√

3
2 Pφ0

(t − t0)
])

,

k �=0, Λ = 0 ψ(1) = e
±i ν√

3
φ

Kiν

[

6e2(α− θ
2 ν)

]

for k = 1 φ(t) = φ0 − Pφ0
(t − t0)

−
√

3θPφ0
tanh

(

Pφ0√
3
(t − t0)

)

,

ψ(2) = e±iν/
√

3φ Jν

[

6e2(α− θ
2 ν)

]

, for k = −1 α(t) = θ
2 Pφ0

+ 1
4 ln

[

P2
φ0

12k

]

+ 1
2 ln

(

sech
[

1√
3

Pφ0
(t − t0)

])

k �=0, Λ �= 0 Unknown φ(t) = φ0 − Pφ0
(t − t0)

+6θ
∫

e6α
(

Λ + 2e−2α
)

dt,
∫ dα(t)

√

Pφ0
−2e

6α+3θPφ0

(

2Λ+6ke
−2α−θPφ0

)

= 1√
12
(t − t0),

Table 3. Classical and quantum solutions for noncommutative FRW universe coupled to a
scalar field. For these models noncommutativity is introduced in the gravitational and matter
sectors. As in the commutative scenario, for Λ �= 0 and k �= 0 the noncommutative classical
solution is given in an implicit form, and there is not a closed analytical quantum solutions.
As in the commutative case we have fixed the value of the lapse function N(t) = e3α.

3.3 Stringy Noncommutative Quantum Cosmology

As in the previous examples we introduce the noncommutative relation [φ̄, β] = iθ, and from
the classical hamiltonian we find the NCWDW equation

[

∂2

∂φ̄2
− ∂2

∂β2
− λ2

s V(φ̄, β)e
(m−2)(φ̄−i θ

2
∂

∂β
)
]

Ψ(φ̄, β) = 0. (60)

The noncommutative wave function is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[

2λs
√

V0

m − 2
e(m−2)(φ̄∓ m−2

4 θν)
]

, (61)

using the NCWKB type method the classical solutions for the noncommutative stringy
cosmology are

φ̄(τ) =
1

m − 2
ln

[

P2
β0

V0λ2
s

sech2

(

Pβ0

2λs
(m − 2)(τ − τ0)

)

]

− θ

2
Pβ0

,

β(τ) = β0 +
Pβ

λs
(τ − τ0)

+ θ
Pβ0

2
tanh

[

Pβ0

2λs
(m − 2)(τ − τ0)

]

, (62)
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the classical evolution for string cosmology can be calculated for m = 0 and m = 4. An
interesting issue concerns the B field that is turned off in the string cosmology model (13) and
does not contribute to the effective action. In open string theory, however noncommutativity
arises precisely in the low energy limit of string theory in the presence of a constant B field.
The θ parameter we have introduced in the minisuperspace could then be understood as a
kind of B-field related with the Neveu-Schwarz B-field.

3.4 Noncommutative solutions of the isotropization in Bianchi I with barotropic perfect fluid

and Λ cosmological

Let us begin introducing the noncommutative deformation of the minisuperspace in the
WDW equation, this time, between all the variables of the minisuperspace, assuming that
Ωnc and β±nc obey the commutation relation

[Ωnc, β−nc] = iθ1, [Ωnc, β+nc] = iθ2, [β−nc, β+nc] = iθ3. (63)

Instead of working directly with the physical variables Ω and β± we may achieve all the

above solutions by making use of the auxiliary canonical variables Ωnc and β±nc defined as

Ωnc ≡ Ω − θ1

2
P− − θ2

2
P+, (64)

β−nc ≡ β− +
θ1

2
PΩ − θ3

2
P+, (65)

β+nc ≡ β+ +
θ2

2
PΩ +

θ3

2
P−. (66)

maintaining the usual commutation relations between the fields, i.e., [qµ, qν] = 0 and the
identifications PΩ = PΩnc and P± = P±nc. With this shift and the usual canonical quantization
Pqµ → −i∂qµ , we arrive to the noncommutative WDW equation

[

∂2

∂Ω2
nc

− ∂2

∂β2
+nc

− ∂2

∂β2
−nc

− λe6Ωnc + bγe−3(γ−1)Ωnc

]

Ψ(Ω, β±) = 0, (67)

where λ = 48Λ, bγ = 384πGMγ. At this point we have a noncommutative WDW equation
and noncommutative hamiltonian. In what follows, we shall consider a wave function and
apply the WKB procedure to obtain classical solutions.

3.4.1 Noncommutative classical solutions á la WKB

In order to find noncommutative classical solutions through the WKB approximation, we

use the fact that eiθ ∂
∂x eηx ≡ eiηθeηx , and the ansatz for the wavefunction Ψ(Ωnc, β±nc) =

ei[S1(Ωnc)±n1β+nc±p1β−nc], where we use explicitly S2(β+nc) = ±n1β+nc and S3(β−nc) =
±p1β−nc to get the classical noncommutative Einstein-Hamilton-Jacobi (EHJ) equation

−
( dS1

dΩnc

)2
+

( dS2

dβ+nc

)2
+

( dS3

dβ−nc

)2
− λe6Ωnc + be−3(γ−1)Ωnc = 0, (68)

which can be separate in a set of differential equations with m2
1 = n2

1 + p2
1. We have the
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Case Noncommutative Solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ωnc =
1
3 Ln

[

e2qt−4a2
1

16qeqt

]

− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1 , β+nc = ± 2

3
n1
a1

arctanh
[

eqt

2a1

]

+ θ2
8

(

eqt

4 + a2
1e−qt

)

− θ3
2 p1,

q2 = 24πGM−1 − 3Λ, β−nc = ± 2
3

p1

a1
arctanh

[

eqt

2a1

]

+ θ1
8

(

eqt

4 + a2
1e−qt

)

+ θ3
2 n1,

γ = 1, Λ < 0, ρ1 = M1e−6Ω
Ωnc =

1
3 Ln

[

e2qt−4a2
1

16qeqt

]

− θ1
2 p1 − θ2

2 n1, q =
√

3|Λ|,
a2

1 = n2
1 + p2

1 + 384πGM1, β+nc = ± 2
3

n1
a1

arctanh
[

eqt

2a1

]

+ θ2
8

(

eqt

4 + a2
1e−qt

)

− θ3
2 p1,

β−nc = ± 2
3

p1

a1
arctanh

[

eqt

2a1

]

+ θ1
8

(

eqt

4 + a2
1e−qt

)

+ θ3
2 n1,

γ = 1, Λ = 0, ρ1 = M1e−6Ω
Ωnc =

1
3 Ln [ a1

4 t]− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ±Ln [t

− n1
3a1 ] + θ2

2 a1 − θ3
2 p1,

β−nc = ±Ln [t
− p1

3a1 ] + θ1
2 a1 +

θ3
2 n1,

γ = 0, Λ = 0, ρ0 = M0e−3Ω
Ωnc =

1
3 Ln

[

b0t2

64 + a1t
4

]

− θ1
2 p1 − θ2

2 n1,

b0 = 384πGM0, β+nc = ± n1
3a1

Ln
[

16a1+b0t
t

]

+ θ2
2

√

a2
1 +

b0t2

64 + a1t
4 − θ3

2 p1,

a2
1 = n2

1 + p2
1, β−nc = ± p1

3a1
Ln

[

16a1+b0t
t

]

+ θ1
2

√

a2
1 +

b0t2

64 + a1t
4 + θ3

2 n1.

Table 4. Noncommutative solutions for, γ = −1, 1, 0, and constraints q, a1 and b0.

following noncommutative equations of motion

±
√

a2
1 − λe6Ωnc + bγe−3(γ−1)Ωnc ≡ −12e3Ωnc

Ω̇nc

N
, (69)

±n1 ≡ 12e3Ωnc
β̇+nc

N
, (70)

±p1 ≡ 12e3Ωnc
β̇−nc

N
. (71)

One just need to be careful in (equation 69), (equation 70) and (equation 71), and apply the
chain rule to the variables (equation 64), (equation 65) and (equation 66), in order to get the

right solution, β̇−nc =
∂β−
∂t +

∂β−nc

∂PΩ

∂pΩ

∂t +
∂β−nc

∂P+

∂p+

∂t +
∂β−nc

∂P−
∂p−
∂t = β̇− + θ1

2 ṖΩ. In this sense,

all solutions to find in the commutative case, remain for the noncommutative case with the
corresponding shift, as we show in the table 4.

3.4.2 Noncommutative classical solutions á la Hamilton

In the commutative model we know that the solutions to hamiltons equations are the same as
in General Relativity. Now the natural extension is to consider the noncommutative version
of our model, with the idea of noncommutative between the three variables (Ωnc, β±nc), so
we apply a deformation of the Poisson algebra. For this we start with the usual hamiltonian
(equation 26), but the symplectic structure is modify as follow

{PΩ, P±}⋆ = {P+, P−}⋆ = 0,
{

qµ, Pqµ

}

⋆
= 1, (72)

{Ω, β−}⋆ = θ1, {Ω, β+}⋆ = θ2, {β−, β+}⋆ = θ3. (73)
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where the ⋆ is the Moyal product. In the second case, the hamiltonian is modify by the shift
(equation 64),(equation 65) and (equation 66) resulting

Hnc =
Ne−3Ωnc

24

[

−P2
Ω
+ P2

+ + P2
− − λe6Ωnc + bγe−3(γ−1)Ωnc

]

= 0, (74)

but the symplectic structure is the one that we know, the commutative one (equation 38).
The noncommutative equations of motion, for the first formalism that we exposed have the
original variables, but with the variables modified,

˙q
µ
nc = {qµ, H}⋆,

˙P
µ
nc = {Pµ, H}⋆, (75)

and for the second formalism we use the shifted variables but with the original (commutative)
symplectic structure

˙q
µ
nc = {q

µ
nc, Hnc},

˙P
µ
nc = {P

µ
nc, Hnc}, (76)

in both approaches we have the same result. Therefore the equations of motion take the form

Ω̇nc = {Ω, H}⋆ = {Ωnc, Hnc} = − e−3Ωnc

12
PΩ, (77)

β̇−nc = {β−, H}⋆ = {β−nc, Hnc} =
e−3Ωnc

12
P− +

θ1

2
ṖΩ, (78)

β̇+nc = {β+, H}⋆ = {β+nc, Hnc} =
e−3Ωnc

12
P+ +

θ2

2
ṖΩ, (79)

ṖΩ = {PΩ, H}⋆ = {PΩ, Hnc} =
e−3Ωnc

8

[

6λe6Ωnc + 3(γ − 1)bγe−3(γ−1)Ωnc

]

, (80)

Ṗ− = {P−, H}⋆ = {P−, Hnc} = 0, → P− = p1, (81)

Ṗ+ = {P+, H}⋆ = {P+, Hnc} = 0, → P+ = n1. (82)

if we proceed as in the commutative case we get the solutions showed in the table IVA.

4. Conclusions and outlook

In this chapter we have presented the NCWKB type method for noncommutative quantum
cosmology and with this procedure, found the noncommutative classical solutions for several
noncommutative quantum cosmological models.
Noncommutativity is incorporated in the minisuperspace variables, in a similar manner as it is
a proposal that originally emerged at the quantum level, by this reason we considered it as in
standard quantum mechanics. By means of the WKB approximation on the corresponding
NCWDW equation, one gets the noncommutative generalized Einstein-Hamilton-Jacobi
equation (NCEHJ), from which the classical evolution of the noncommutative model is
obtained. The examples we studied were the Kantowski-Sachs cosmological model, the
FRW universe with cosmological constant and coupled to a scalar field, a string quantum
cosmological model and Bianchi I with Barotropic perfect fluid and Λ Cosmological.
In the commutative scenario, that the classical solutions found from the WKB-type method
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are solutions to the corresponding Einsteins field equations. Due to the complexity of
the noncommutative theories of gravity(5), classical solutions to the noncommutative field
equations are almost impossible to find, but in the approach of noncommutative quantum
cosmology and by means of the WKB-type procedure, they can be easily constructed. Also the
quantum evolution of the system is not needed to find the classical behavior, from table 2 we
can see that for the case Λ �= 0 and k �= 0 the wave function can not be analitacally calculated,
but still the noncommutative effects can be incorporated and the classical evolution is found
implicitly. This procedure gives a straightforward algorithm to incorporate noncommutative
effects to cosmological models. In this approach the effects of noncommutativity are encoded
in the potential through the Moyal product of functions (equation 51). We only need the
NCWDW equation and the approximations (equation 7), to get the NCEHJ and from it,
the noncommutative classical behavior can easily be constructed. As already mentioned,
in(11) the effects of noncommutativity were studied in connection with inflation, but the
noncommutative deformation was only done in the matter sector neglecting the gravity sector.
For completeness to the section 2.4 and 3.4 we present the solutions in the gauge N = 24e3Ω

(see appendix A and B), one of the advantages of this gauge is that the solutions are very9
simple, this is something to take into account when we introduce a more complex form of
matter, where in the gauge N(t) = 1 analytical solutions can not be found. The procedure
developed here has the advantage that we can implement noncommutativity in both sectors
in a straightforward way and find the classical solutions (i.e. inflationary models). The
study on deformed phase space for all of this cosmologies should be constructed with this
noncommutative proposal. These ideas are being explored and will be reported elsewhere.
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6. Appendix

A Commutative classical solutions in the Gauge N = 24e3Ω

In this appendix we present the classical solutions in the gauge N = 24e3Ω, the equations are
much more simpler to solve in this guage.

A.1 Commutative Classical Solutions á la WKB

The master equation becomes

2dt =
dΩ

√

a2
1 − λe6Ω + bγe−3(γ−1)Ω

, (83)

and the other two equations are immediately integrable. Again for particular cases in the γ
parameter, we present the classical solutions, table 5

A.2 Classical solutions via Hamiltonian formalism

With the gauge fixed to N = 24e3Ω we can see that the hamiltonian takes the form

H = −P2
Ω
+ P2

+ + P2
− − λe6Ω + bγe−3(γ−1)Ω = 0. (84)
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Case Commutative solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ω = 1
6 Ln

[

− a2
1

384πGM−1−48Λ
Sech2 (6a1t)

]

, a2
1 = n2

1 + p2
1,

β+ = ±2n1t,
β− = ±2p1t.

γ = 1, Λ �= 0, ρ1 = M1e−6Ω
Ω = 1

6 Ln
[

a2
1

48Λ
Sech2(6a1t)

]

, a2
1 = n2

1 + p2
1 + 384πGM1,

β+ = ±2n1t,
β− = ±2p1t.

γ = 1, Λ = 0, ρ1 = M1e−6Ω
Ω = 2

√

a2
1 + b1t, a2

1 = n2
1 + p2

1 + 384πGM1,

β+ = −2n1t,
β− = −2p1t.

γ = 0, Λ = 0, ρ0 = M0e−3Ω
Ω = 1

3 Ln
[

− a2
1

b0
sech2(3a1t)

]

, b0 = 384πGM0,

β+ = ±2n1t, a2
1 = n2

1 + p2
1,

β− = ±2p1t.

γ = 1
3 , Λ = 0, ρ0 = M 1

3
e−4Ω

Ω = 1
2 Ln

[

− a2
1

b 1
3

sech2(2a1t)

]

, a2
1 = n2

1 + p2
1,

β+ = ±2n1t, b 1
3
= 384πGM 1

3
,

β− = ±2p1t.

Table 5. Classical Solutions for γ = −1, 1
3 , 1, 0, and constraints a1, b0 and b1.

The Poisson brackets structure yields to equations of motion

Ω̇ = {Ω, H} = −2PΩ, (85)

˙β− = {β−, H} = 2P−, → β− = ±2p1t, (86)

˙β+ = {β+, H} = 2P+, → β+ = ±2n1t, (87)

ṖΩ = {PΩ, H} =
[

+6λe6Ω + 3(γ − 1)bγe−3(γ−1)Ω

]

, (88)

Ṗ− = {P−, H} = 0, → P− = ±p1 = const. (89)

Ṗ+ = {P+, H} = 0, → P+ = ±n1 = const. (90)

Using (equation 84), introducing (equation 89) and (equation 90), we obtain the expression for
PΩ

PΩ =
√

m2
1 − λe6Ω + bγe−3(γ−1)Ω, (91)

being self-consistent with equation (equation 88), where a2
1 = n2

1 + p2
1. Introducing this

equation into (equation 85) we get the master equation found to solve the Einstein field
equation in this gauge, where the classical solutions are presented in table IIIA.

B Noncommutative classical solutions

B.1 Noncommutative classical solutions in the Gauge N = 24e3Ω á la WKB and via

Hamiltonian formalism

The noncommutative solutions in the space qµ become
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Case Noncommutative Solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ωnc =
1
6 Ln

[

− a2
1

384πGM−1−48Λ
Sech2 (6a1t)

]

− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,

γ = 1, Λ �= 0, ρ1 = M1e−6Ω
Ωnc =

1
6 Ln

[

a2
1

48Λ
Sech2(6a1t)

]

− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,

γ = 1, Λ = 0, ρ1 = M1e−6Ω
Ωnc = 2a1t − θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = −2n1t + θ2

2 a1 − θ3
2 p1,

β−nc = −2p1t + θ1
2 a1 +

θ3
2 n1,

γ = 0, Λ = 0, ρ0 = M0e−3Ω
Ωnc =

1
3 Ln

[

− a2
1

b0
sech2(3a1t)

]

− θ1
2 p1 − θ2

2 n1,

b0 = 384πGM0, β+nc = ±2n1t + θ2a1
2 tanh(3a1t)− θ3

2 p1,

a2
1 = n2

1 + p2
1, βnc− = ±2p1t + θ1a1

2 tanh(3a1t) + θ3
2 n1.

γ = 1
3 , Λ = 0, ρ0 = M 1

3
e−4Ω

Ωnc =
1
2 Ln

[

− a2
1

b 1
3

sech2(2a1t)

]

− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(2a1t)− θ3
2 p1

β−nc = ±2p1t + θ1a1
2 tanh(2a1t) + θ3

2 n1.

Table 6. Noncommutative solutions for γ = −1, 1
3 , 1, 0, and constraints a1, b0 and b1.
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