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1. Introduction

The effort toward making quantum mechanics and general relativity compatible (quantum
gravity) has lasted more than a century. The string theory and loop quantum gravity both
stand out as strong candidates and currently they both make popular research subjects in
quantum gravity. As we known, Loop quantum gravity (LQG)(Ashtekar & Lewandowski,
2004; Rovelli, 1998; 2004; Thiemann, 2007) is a background independent and non-perturbative
canonical quantum gravity theory. LQG has made many breakthroughs in recent years:
the establishment of the quantum Einstein equations Ashtekar & Tate (1994); Ashtekar et al.
(1995a); Corichi & Zapata (1997); Lewandowshi & Thiemann (1999); Rovelli & Smolin (1994);
Thiemann (1996; 1998a;b;c; 2001), the proof that the Riemannian operators have
discrete eigenvalues Ashtekar et al. (1995b); Lewandowski (1997); Loll (1995a;b; 1997a;b);
Rovilli & Smolin (1995); Thiemann (1998d;e),results concerning the entropy of the black hole
horizon and cosmological horizon entropy with statistical mechanics Ashtekar et al. (1998;
1999; 2000; 2001; 2002; 2003a;b); Berreira et al. (1996); Rovelli (1996a;b); Smolin (1995), and so
on. As an application of loop quantum gravity to cosmology, loop quantum cosmology (LQC)
Bojowald (2005a; 2008); Date (2002) also presents itself as a possible path toward answers to
the cosmological and astrophysical riddles.
As a symmetry reduced model of LQG, LQC inherits the quantum schemes originated from
LQG that dealt with the isotropic and homogeneous universe firstly and then extended to
the inhomogeneous and anisotropic model Bojowald (2002a). It plays an important role in
connecting the LQG theory and the measureable world. On one hand, it is used to test the
full theory, which, in its own form, is extremely complex and difficult to directly apply.On the
other hand, making connections to the real world sheds light on further improvement of the
LQG theory. These reasons make LQC a promising and enlightening subject to study.
In LQC, the collapsing and expanding phases are connected by the cyclic or oscillatory models
Lidsey et al. (2004), and the universe is automatically born with a small scale factor at the fixed
point near the Planck phase Bojowald (2005); Mulryne et al. (2005a). Unlike in the emergent
universe model, this fixed point here is stable and allows the universe to start in an initial
phase of oscillation. Then an inflationary phase is entered, which is the relevant regime for
structure formation. In LQC, there are many different inflationary scenarios Artymowski et al.
(2009); Bojowald et al. (2004); Mulryne et al. (2005b); Zhang & Ling (2007), among which the
one without inflation is the most attractive, mainly because it can explain the inflationary
phase directly from LQG. But, unfortunately, it is difficult to study the structure formation.
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To know how and why this is true requires a study of the mathematical structure and the
physical meaning of LQC.
As is well known, LQC is based on the connection dynamics. So far, the successful
quantization of the cosmological model is still confined to the homogeneous Bianchi A
class because one can refer to the diagonal technique Bojowald (2003). With the Ashtekar’s
new variables, the Hamilton constraint can be written as a difference equation. One of
the major successes in LQC is that the big bang singularity can be replaced by the big
bounce Ashtekar et al. (2006a;b; 2008). (The robust demonstration of bounces in LQC is
confined to the cases where quantum back reaction can be safely ignored.). For the general
case, the quantization is more complex and the research is still going on. For the general
inhomogeneous cosmology, there have been three different approaches. The first one is to
introduce the inhomogeneous matter, but still based on the isotropic quantum geometry
and its effective theory. The second approach starts with the full constraint, splits it into
the homogeneous part and the inhomogeneous part, and then obtains the effective theory
Bojowald et al. (2006; 2007; 2008; 2009) (it has achieved a series of successes so far). The third
approach is to deal with the inhomogeneous symmetric model explicitly, and to shed light on
the full theory. At the time of writing, we still do not know whether the general solution is a
difference equation or not.
As we all know, the difference equation of state is difficult to analyze even in the homogeneous
and isotropic model. Thus we need a new tool to extract physical information out of the
theory. That is why the effective theory comes in. The effective theory shares the form
of the classical theory, but contains correction terms from the quantum theory (LQC). The
commonly considered ones include the inverse volume correction, the holonomy correction
and the back reaction correction. The inverse volume correction Bojowald (2002b;c) is used

to solve the quantization problem p−
3
2 in the matter Hamiltonian which cannot be quantized

directly. Instead, we write the equivalent form of p−
3
2 in the classical form, which can be

promoted to the well-defined operator in the quantum theory. This brings a correction term
to the classical theory. And the matter Hamiltonian derived in this way will behave differently
from the classical one on small scales. The matter Hamiltonian shows a repulsive behavior.
The holonomy correction originates from the fact that there does not exist an operator in the
quantum theory corresponding to the connection c Banerjee & Date (2005); Date & Hossain
(2004). When quantized, c should be expressed as sin (µc)/µ. It is obvious that the classical
expression recovers only at the small value of c. This provides a new correction to the classical
equation. The back reaction correction is the main source of correction in genuine quantum
systems Bojowald et al. (2007); Chiou (2008). If brought together, they may counteract each
other. Therefore, it is important to bring all possible quantum corrections together in a
consistent manner and study the corresponding physics. Based on these theories, many
interesting cosmological riddles have been studied, such as the big bang nucleosynthesis,
the already mentioned inflationary scenario, the anisotropy of CMB, and the gravitational
wave and so on. At the same time, many issues still need to be clarified in LQC, such as
the ambiguity problemBojowald et al. (2004) and the different quantum schemes Chiou & Li
(2009a;b); Mielczarek & Szyd (2008); Yang et al. (2009).
Very recently, an integral formulation of loop quantum cosmology with the Feynman
procedure has been discussed, which again shows that the loop quantum cosmology is
different from the Wheeler-DeWitt theory Ashtekar (2010). The spin foam model of LQC has
also been constructed (for recent progress see Ashtekar et al. (2009)). These theories add to the
appeal of LQC from different perspectives.
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In this Chapter, we will focus our attention on the effective theory from which we can easily
extract the physical result, and analyzing the explicit model can in turn shed light on the full
theory. The effective LQC theory is a semiclassical theory, and can be derived in different
ways, such as the WKB approximation, the coherent state, and so on. And they are consistent
with each other in the leading term. The effective theory is valid in the semiclassical region,in
between the quantum one and the classical one. And this theory will go back to the classical
theory in the classical region. So we can use effective loop quantum cosmology for both the
semiclassical and the classical region. One the other hand, along with the development of
modern space technology and high-precision measurement techniques, we have accumulated
a large amount of experimental data,probably more than that can be explained well by the
current theory, such as the Pioneer anomaly, dark matter, and the accelerating expansion of the
universe,to name a few. Close connection between the theoretical results and real experiments
is crucial, and motivates us to apply LQC to explicit physical models, and then to compare
theoretical results with real or gedarken experiments. The works to be summarized in this
chapter can be divided into the following three parts.
(I) We discuss the stability properties of an autonomous system in the effective LQC
Xiao & Zhu (2010). The system is described by a self-interacting scalar field φ with positive
potential V, coupled with a barotropic fluid in the Universe. With Γ = VV ′′/V ′2 considered
as a function of λ = V ′/V, the autonomous system is extended from three dimensions to
four dimensions. We find that the dynamic behaviors of a subset, not all, of the fixed points
are independent of the form of the potential. Considering the higher-order derivatives of
the potential, we get an infinite-dimensional autonomous system which can describe the
dynamical behavior of the scalar field with more general potential. We find that there is just
one scalar-field-dominated scaling solution in the loop quantum cosmology scenario.
(II) We discuss the null energy condition in the effective LQC Li & Zhu (2009). Wormhole and
time machine are objects of great interest in general relativity. However, it takes exotic matters
which are impossible on the classical level to support them. But if we introduce the quantum
effects of gravity into the stress-energy tensor, these peculiar objects can be constructed
self-consistently. LQC, with the potential to bridge the classical theory and quantum gravity,
provides a simple way to study quantum effect in the semiclassical case. We investigate the
averaged null energy condition in LQC in the framework of effective Hamiltonian, and find
out that LQC do violate the averaged null energy condition in the massless scalar field coupled
model.
(III) We consider the covariant entropy bound conjecture in the effective LQC Li & Zhu
(2010a). The covariant entropy bound conjecture is an important hint for the quantum gravity,
with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing
showed the consistence between the loop gravity theory and one version of this conjecture.
Recently, S. He and H. Zhang proposed a version for the dynamical horizon of the universe,
which validates the entropy bound conjecture for the cosmology filled with perfect fluid in
the classical scenario when the universe is far away from the big bang singularity. But their
conjecture breaks down near the big bang region. We examine this conjecture in the context of
LQC. With the example of photon gas, this conjecture is protected by the quantum geometry
effects.

2. Effective Theory of Loop Quantum Cosmology

LQC is a symmetry-reduced sector of LQG. It is a direct application of the quantization
technique that originated from LQG. This section serves two purposes: First, we show
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that one can indeed find semiclassical solution which is an approximation to the classical
Einstein equations at late times. Second, we derive the effective equations incorporating the
dominating quantum corrections within the framework of geometric quantum mechanics.
The derivation of the effective equation utilizes two main tools: the geometric quantum
mechanics and the “shadow state framework".

2.1 Classical framework

The classical phase space Γ is constructed by the Ashtekar variables (Ai
a, Ea

i ), where Ai
a is

an SU(n) connection and Ea
i is the corresponding canonically conjugate variable. With the

Ashtekar variables, the classical constraint of the gravitational part can be expressed as

Cgrav = −γ−2
∫

V
d3xǫijke−1EaiEbjFi

ab. (1)

In the following, we will see that the Ashtekar variables can describe the classical theory very
well, as the ordinary ADM variables do. Considering isotropic and homogeneous universe,
the pair, (Ai

a, Ea
i ), is equivalent to the following form:

Ai
a = coV− 1

3 oωi
a, (2)

Ea
i = p

√
oqoV− 2

3
oea

i , (3)

where oe is a fiducial background triad, oωi
a is the connection, and oV is the volume of the

fiducial cell. From the above set of equations, we see that all the information about Ai
a and

Ea
i are contained in the pair of new variables (c, p). The classical Hamiltonian constraint for a

spatially flat FRW universe with a free massless scalar field is

C = − 3

κγ2
c2 p

1
2 +

1

2

p2
φ

p
3
2

= 0. (4)

For convenience, we replace the pair (c, p) with (β, V) through the following relationship

β =
c√
p

, (5)

V = p
3
2 . (6)

Then the Hamiltonian constraint can be expressed as

C = − 3

κγ2
β2V +

1

2

p2
φ

V
= 0, (7)

with the symplectic structure Ω = 2
κγ dβ ∧ dV + dφ ∧ dpφ . The phase space Γ consists of all

possible points (β, V, φ, pφ). The Poisson bracket on the phase space is given by

{
f , g
}
=

κγ

2

( ∂ f

∂β

∂g

∂V
− ∂g

∂β

∂ f

∂V

)
+

∂ f

∂φ

∂g

∂pφ
− ∂g

∂φ

∂ f

∂pφ
. (8)
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The evolution of the canonical variable depends on the Poisson equations. Therefore, the
classical equations of motion are given by

β̇ =
{

β, C
}
= − 3

2

β2

γ
− κγ

4

p2
φ

V2
, (9)

V̇ =
{

p, C
}
= 3

β

γ
V, (10)

φ̇ =
{

φ, C
}
=

pφ

V
, (11)

ṗφ =
{

pφ, C
}
= 0. (12)

We can verify that the above equation set is equivalent to the Friedmann equation for a free
scalar field when it is written in terms of the ordinary ADM variables. The new canonically
conjugate variables are related to the old geometrodynamics variables via β = γ ȧ

a and V = a3.

Then, with the definition of the density ρ = 1
2

p2
φ

p3 , we can get the classical Friedmann equation

and the Raychauduri equation as follows

H2 =
κ

3
ρ, (13)

3
ä

a
= −2κρ. (14)

2.2 Quantum framework

LQC is the symmetry reduced model of LQG, and it inherits the quantization schemes of LQG.
LQC is essentially different from the WDW theory. In LQC, the kinematical Hilbert space is in
the “polymer representation” for p, instead of the standard Schrödinger representation. There
is no operator corresponding to c. In addition, it is not densely defined if the inverse volume
function |p|−3/2 is naively quantized as the operator with eigenvalues equal to the inverse of
the volume eigenvalues. Thus, to construct the Hamiltonian constraint operator, we have to

express the classical constraint in terms of the triad variable p and the holonomy h
(µ̄)
k , both of

which have direct quantum analogs.
In the development of LQC, there exist two different quantum schemes: the µ0 scheme and the
µ̄ scheme. In the µ0 scheme, µ0 is a constant on the phase space, and the difference equation
is in uniform step size. The greatest success of this scheme so far is that it can replace the
big bang singularity with the big bounce, which reflects the nature of the quantum geometry
effect. Unfortunately, it suffers from serious physical problems. For example, the critical
value, ρcrit, of the matter density at which the bounce occurs can be made arbitrarily small
by increasing the initial momentum pφ of the scalar field. In other words, large values of pφ

are permissible in the late universe, which leads to bounce at low matter density. This is a
serious drawback because we do not expect the quantum effect to modify the evolution of the
universe in the classical region. In the µ̄ scheme, µ̄ is a function on the phase space, unlike
the constant µ0 in the µ0 scheme. This difference turns out to be enough to remove the major
weakness of the µ0 scheme, while keeping the desirable features of the original scheme. In
this section, we only review the quantization procedure in the µ̄-scheme.
In the µ̄ scheme,one can shrink the loop �ij until the area of the loop approaches the area gap
∆, measured by the physical metric qab. The physical area of the elementary cell is |p|. Each
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side of �ij is µ̄(p) times the edge of the elementary cell, which leads to

µ̄2|p| = ∆ ≡ (2
√

3πγ)l2
pl. (15)

Therefore, µ̄ is a non-trivial function on the phase space and can be rewritten as

µ̄ =

√
∆

p
, (16)

where γ is the Immirzi parameter1.
Following Dirac, in the quantum theory, we should first construct a kinematical description.
The Hilbert space H

grav
kin is the space L2(RBohr, dµBohr) consisting of square integrable functions

on the Bohr compactification of the real line. To specify states concretely, we work with the
representation of the operator p̂ in which the operator p̂ is diagonal. Eigenstates of p̂ are
labeled by a real number µ and satisfy the orthonormality relation:

〈µ1|µ2〉 = δµ1, µ2 . (17)

The right-hand side of the above equation is the Kronecker delta rather than the Dirac delta

distribution. A general state in H
grav
kin can be expressed as a countable sum 〈Ψ| = ∑n c(n) 〈µn|,

where c(n) are complex coefficients and the inner product is given by

〈Ψ1| Ψ2〉 = ∑
n

c̄
(n)
1 c

(n)
2 .

The fundamental operators are p̂ and exp(îµ̄c/2). The action of the operator p̂ on its
eigenvalue is

p̂ |µ〉 =
8πγl p2

6
µ |µ〉 (18)

and the action of the operator exp(îµ̄c/2) on |µ〉 will be given later.
In order to achieve quantization, we should represent the Hamiltonian constraint operator

Ĉgrav in terms of the above well-defined operators. Following the full theory, with the

Thiemann trick, we can rewrite the term that involves the inverse triad e−1 as

e−1ǫi
jkEa

j Eb
k = ∑

l

oq1/3

2πGγµ̄L
ǫjkloea

j
oeb

kTr(h
(µ̄)
l {(h(µ̄)

l )
−1

, V}τi), (19)

where the holonomy

h
(µ̄)
l = P exp

∫ µ̄L

0
τi A

i
adxa = exp (µ̄cτl) (20)

1 The general form of µ̄ = ( ∆
p )

x , 0 < x < 1. Here we choose x = 1
2 according to the suggestions of

Ashtekar. However, we still cannot determine it for the following two reasons. (1) The coordinate area
is more natural than an invariant geometrical area when we consider the quantization of the single
curvature components. (2)The quantization requires the area operator which is not well understood in
the full theory.
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is along the edge of coordinate length µ̄L aligned with the direction of oea
l ∂a. τi is the generator

of the SU(2) and satisfies the relationship [τi, τj] = ǫk
ijτk, where τi =

1
2i σi and σi are the Pauli

matrices in the standard convention.
According to the techniques in the gauge theory, the field strength Fi

ab can be expressed as

Fk
ab = −2 lim

Ar�→0
Tr(

h
(µ̄)
�ij

− 1

µ̄2V2/3
0

)τkoωi
a

oω
j
b, (21)

where

h
(µ̄)
�jk

:= h
(µ̄)
j h

(µ̄)
k (h

(µ̄)
j )−1(h

(µ̄)
k )−1 (22)

is the holonomy along the the four edges of �ij.
Combining Eq.(19) with Eq.(21), the classical Hamiltonian constraint for the gravitational
sector can be rewritten as

Cgrav = − 4sgn(p)

8πγ3µ̄3 ∑
ijk

ǫijkTr(h
(µ̄)
j h

(µ̄)
k (h

(µ̄)
j )−1(h

(µ̄)
k )−1h

(µ̄)
i {(hµ̄

i )
−1, V})

= sin(µ̄c)[− 4

8πγ3

sgn(p)

µ3 ∑
k

Trτkh
(µ̄)
i {(h(µ̄)

i )−1, V}] sin(µ̄c), (23)

where in the last step we have used a symmetric ordering of the three terms for later
convenience.

Now, we consider the action of the operator ê
iµ̄c
2 on the state |µ〉. Although the geometrical

meaning of this action of ̂exp i(µ̄c/2) is simple, its expression in the |µ〉 representation is

complicated because µ is not an affine parameter along the integral curve of the vector µ̄ d
dµ .

After calculation, we get

êi µ̄c
2 Ψ̃(µ) = Ψ̃(sgn(µ̃)|µ̃| 2

3 ), where µ̃ = sgn(µ)|µ| 3
2 +

1

K
. (24)

Next, we will change to the v representation for simplicity. In the v representation, the action

of ̂ei(µ̄c/2) on |v〉 is extremely simple

ê
iµ̄c
2 Ψ(v) = Ψ(v + 1), (25)

and the action of the volume operator on it is

V̂|v〉 = (
8πγ

6
)

3
2
|v|
K

|v〉, (26)

where v = Ksgn(µ)|µ| 3
2 and K = 2

√
2

3
√

3
√

3
. Therefore, we will use the v representation in the

following.
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We can straightforwardly get the action of the operators
̂

sin(
µ̄c
2 ) and

̂
cos(

µ̄c
2 ) on v

representation,

̂
sin(

µ̄c

2
)|v〉 = 1

2i
[|v + 1〉 − |v − 1〉], (27)

̂
cos(

µ̄c

2
)|v〉 = 1

2
[|v + 1〉+ |v − 1〉]. (28)

Then we promote the corresponding physical quantities sin(
µ̄c
2 ),cos(

µ̄c
2 ) and V to the

operators. We have

Ĉgrav =
̂

sin(
µ̄c

2
)[

24isgn(µ)

8πγ3µ̄3
(
̂

sin(
µ̄c

2
)V̂

̂
cos(

µ̄c

2
)−

̂
cos(

µ̄c

2
)V̂

̂
sin(

µ̄c

2
))]

̂
sin(

µ̄c

2
)

= : ̂sin(µ̄c)Â ̂sin(µ̄c). (29)

The action of the operator Â on the state Ψ(v) can be written as

ÂΨ(v) = − 27K

4

√
8π

6γ3/2
|v||v − 1|| − |v + 1||Ψ(v). (30)

One needs to use caution when deriving this expression. sgn(ν) is unambiguously defined
only on states other than the point v = 0. Since the right-hand side vanishes at v = 0, it is just
the domain of sgn(µ), where Â is well defined. Therefore, the operator on the right-hand side
is densely defined.
The action of the gravitational constraint on Ψ(v) is given by

ĈgravΨ(v) = f+(v)Ψ(v + 4) + f0(v)Ψ(v) + f−(v)Ψ(v − 4) (31)

with

f+(v) =
27

16

√
8π

6

Klpl

γ3/2
|v + 2|||v + 1| − |v + 3|| (32)

f−(v) = f+(v − 4) (33)

f0(v) = − f+(v)− f−(v). (34)

From the above, we can see that the gravitational constraint is again a difference operator.
Compared with the µ0-scheme, the new constraint involves steps which are constant in the
eigenvalues of the volume operator V̂, not in the eigenvalues of p̂.
Next, we continue to quantize the matter part of the constraint

Cmatt = 8π|p|− 3
2 p2

φ. (35)

It turns out that despite the existence of an inverse operator p̂−
3
2 , one can quantize it

successfully. With the Thiemann trick, one can always write the inverse operator in an
equivalent way, which contains the quantities that can be easily promoted to the operators.
We express the inverse triad as

312 Aspects of Today´s Cosmology
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|p|−n = (| 3

γκlµ̄j(j + 1)(2j + 1) ∑
i

Tr(jτi
jh

µ̄
i {

j(h
µ̄
i )

−1, V2l/3})|) n
1−l

= (| 9

γκlµ̄j(j + 1)(2j + 1)
Tr(jτ3

jh
µ̄
3 {j(h

µ̄
3 )

−1, V2l/3})|) n
1−l . (36)

In this quantization, there are two ambiguities Bojowald (2002b; 2005), labeled by a half
integer j and a real number l in the range 0 < l < 1. Following the considerations in Perez
(2006); Vandersloot (2005), we will set j = 1/2, and the general case for j can be found in
Chiou & Li (2009a;b). For l, there is no universally accepted concept, and l = 1/2 and l = 3/4
have been used in the literature. Fortunately, the results do not change qualitatively with the
exact choice. Here, we choose j = 1/2 and l = 3/4. Then

̂|p|− 3
2 Ψ(v) =

(
6

8πγ

)3/2

B(v) Ψ(v) (37)

where

B(v) =

(
3

2

)3

K |v|
∣∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣∣
3

. (38)

Combining all the results above, we can write down the full constraint

Ĉ Ψ(v) =
(
Ĉgrav + Ĉmatt

)
Ψ(v) = 0 (39)

as follows:

p2
φΨ(v, φ) = [B(v)]−1

(
C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ)

)

=: −Θ Ψ(v, φ) (40)

where the coefficients C±(v) and Co(v) are given by:

C+(v) =
3πKG

8
|v + 2|

∣∣|v + 1| − |v + 3|
∣∣

C−(v) = C+(v − 4)

Co(v) = −C+(v)− C−(v). (41)

2.3 Effective theory

The effective theory can be derived through the geometric quantum mechanics method.
Because of the fiber bundle structure, any horizontal section can be identified with the classical
phase space. If we can find such a section, then the quantum dynamics on it can be expressed
in terms of effective Hamiltonian, which is simply the expectation value of the quantum
Hamiltonian constraint operator. The expectation value yields the classical term as the leading
term and has quantum correction in the subleading terms. This is the key idea for deriving
the effective equation. Here we can look for a natural section that is approximately preserved
by the flow of the Hamiltonian constraint in a precise sense.
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In order to obtain the effective theory, we should choose a coherent state. Here we use a
Gaussian coherent state mostly for the reason that it is the simplest for getting the effective
equation with a late-time, large-volume approximation. We can also choose a more general
form to do this. The Gaussian coherent state is as follows:

(ψβ′,V ′;φ′,p′
φ
| =

∫
dpφ ∑

v

e−
1
2 ǫ2(v−v′)2

e
i
2

√
∆β′(v−v′)

×e−
1
2 ǫ2

φ(pφ−p′
φ)

2

e−iφ′(pφ−p′
φ)(v; pφ |

=:
∫

dpφ ∑
v

ψn(pφ)(v; pφ |, (42)

where v and v′ are defined as V = ( 8πγ
6 )

3
2

l3
p

K v and V ′ = ( 8πγ
6 )

3
2

l3
p

K v′, here K = 2
√

2

3
√

3
√

3
.

Additionally, we should put on it three constraints:

(1)v′ ≫ 1,
√

δβ′ ≪ 1. This pair of conditions means that the scalar factor is much larger than
the Planck length and demands that the rate of change of the scale factor is much smaller than
the speed of light, which holds even in the early universe.

(2)v′ǫ ≫ 1 and ǫ ≪
√

δβ′. This pair means that the spreads of operator v̂ and β̂ must be small.
(3)φ ≫ ǫφ and pφǫφ ≫ 1. The last pair of restrictions on parameters demands that the spreads
of φ and pφ are small.
We need to show that the semiclassical state is sharply peaked at the classical point
(β′, V ′, φ′, p′φ). Here, we face two difficulties. First, the operator corresponding to p̂ in the

Schrödinger representation is not defined in the polymer framework. So we need to define a
fundamental operator in Hpoly which is approximated by p̂ of the Schrödinger representation.
We define this operator as follows:

β̂∆ =
1

i
√

∆
(
̂
e

i
2

√
∆β − ̂

e−
i
2

√
∆β). (43)

The operator β̂∆ agrees approximately with the classical β in the regime
√

∆β ≪ 1. And its
action on the basis kets |v; pφ〉 is

β̂|v; pφ〉 =
1

i
√

∆
(|v + 1; pφ〉 − |v − 1; pφ〉). (44)

The second difficulty is that the coherent state defined in Eq.(42) lies on Cyl∗. But there is
no inner product on the Cyl∗. In other words, the solutions to the constraints do not reside
in the kinematical Hilbert space, but rather in its algebraic dual space, therefore the required
expectation values cannot be defined on it. Fortunately, we can carry out calculation within
the“shadow state framework". Each shadow captures only a part of the information contained
in our state, but the collection of shadows can be used to determine the full properties of the
state in Cyl∗. We can indeed prove this Gaussian coherent state is sharply peaked at some
classical values (β′, V ′, φ′, p′φ). Here we do not give the detailed proof, and refer interested

readers to Taveras (2008).
The required projection P̂γ from Cyl∗ to Cylγ can be defined as

(Ψ| P̂γ := ∑
xj∈γ

Ψ(xj) |xj〉 ≡ |Ψshad
γ 〉. (45)
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The corresponding shadow state in our case is

|Ψshad
γ 〉 =

∫
dpφ ∑

n
e−

1
2 ǫ2(n−N)2

e−
i
2

√
∆β′(n−N)

×e−
1
2 ǫ2

φ(pφ−p′
φ)

2

eiφ′(pφ−p′
φ)|n; pφ〉. (46)

Then one can compute the expectation value of the constraint operator directly

〈Ĉ〉 = − 3

16πGγ2µ̄′2 p
1
2

[
1 + e−4ǫ2

(
2 sin2(

√
∆β′)− 1

)]

+
1

2

(
p′2φ +

1

2ǫ2
φ

)(
6

8πγl2
p

) 3
2

K

[
1

v′
+ O(v′−3, v′−3ǫ−2)

]
. (47)

Furthermore, we want to know that the equations of motion for the other physical quantities
O. We will use the commutator between O and the Hamiltonian. The corresponding results
are as follows:

〈β̇〉 ≃ − 1

16π

27

16

(
8πγ

6

) 1
2 K

γ2
√

∆

[
4e−

25
4 ǫ2

cos

(
5

2

√
∆β′
)
+ 4e−

9
4 ǫ2

cos

(
3

2

√
∆β′
)

−8e−
1
4 ǫ2

cos

(
1

2

√
∆β′
)]

−
(

p′φ
2 +

1

2ǫ2
φ

)
1

2V ′2 ,

〈V̇〉 ≃ 3V ′

γ
e−4ǫ2 sin(2

√
∆β′)

2
√

∆
,

〈φ̇〉 ≃
p′φ
V ′ +O

(
1

V ′3

)
,

〈 ṗφ〉 = 0.

2.4 Ordinary formalism

As mentioned above, in the geometric quantization picture, we take the expectation values as
our basic observables, and try to obtain an effective description in terms of these variables. We
denote the expectation of β, V, φ, pφ as β̄, V̄, φ̄, p̄φ , respectively. Then we obtain the effective
equations of motion to the first order as follows

C̄ = − 3

κγ2
V̄ β̄2

(
1 − 1

4
∆β̄2

)
− 6ǫ2

κγ2

V̄

∆

+
p̄2

φ

2V̄

[
1 + O(V̄−2, V̄−2ǫ−2)

]
, (48)

˙̄β =
3

4γ

√
1 − 1

4
∆β̄2

[
−2β̄2 + ∆β̄4

]

− κ

4

√
1 − 1

4
∆β̄2

p̄2
φ

V ′2 [1 + O(V̄−2, V̄−2ǫ−2)], (49)

˙̄V = 3
β̄

γ
V̄

√
1 − ∆β̄2

4

(
1 − 1

2
∆β̄2

)
, (50)
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˙̄φ =
p̄φ

V̄
+ O(V̄−3), (51)

˙̄pφ = 0. (52)

Combining Eq.(48) with Eq.(49), we get the effective Friedmann equation

H2 =
κρ

3
(1 − ρ

ρcrit
) + O(ǫ2), (53)

where H = ȧ
a and ρcrit =

3
κγ2∆

originated from the quantum effect.

From the effective theory, we can easily see that the semiclassical states follow the classical
trajectory until the scalar field density is on the order of 1% of the Planck density where
deviations from the classical trajectory emerge. Then there can be major deviations from the
classical theory. The existence of the correction ρcrit can allow H = 0, meaning a bounce is
possible.
Also, from the equation of motion, we can get the conservation equation and the corrected
Raychaudhuri equation for this effective theory. With the Poisson bracket, we can calculate
ρ̇ = {ρ, C̄}, and get the conservation equation

ρ̇ + 6
ȧ

a
ρ = 0, (54)

which is the same as the classical conservation equation.

Similarly, we calculate ¨̄V = { ˙̄V, C̄}, and express it in terms of the scale factor a. Then we get

3
ä

a
= −2κρ(1 − 5

2

ρ

ρc
) + o(ǫ2). (55)

Compared with the classical Raychaudhuri equation, it also gets a quantum correction term
ρ2

ρc
. Classically, this equation is always negative, but in the effective framework, there is a

bounce at the
ρ
ρc

= 1, which makes ä positive when ρ > 2
5 ρc.

In the end, there are still two points that need to be clarified. First, theoretically, Eq.(53) cannot
describe the correct dynamics near the bounce point because the bounce point

ρ
ρc

= 1 is

outside of the regime of our approximation. The effective framework is applicable only to

a late-time, large-volume universe because ǫ ≪
√

∆β′ is violated badly at the point of
ρ
ρc

= 1.

However, numerical work Ashtekar et al. (2006a;b) has shown that the dynamics derived by
the above describes the evolution of the universe very well even at the bounce, and hence the
results obtained in the effective framework continue to be reliable even beyond their expected
regime. Second, we omit the high-order correction term o(ǫ2) in the modified Friedmann
equation Eq.(53). We should note that near the bounce point, the term in parentheses in the
modified Friedmann equation is approaching 0. It is not known if O(ǫ2) should be omitted

there because ǫ ≪
√

∆β′ is violated. But the numerical results show that the modified
Friedmann equation holds with negligible O(ǫ2) corrections. Therefore, the effective theory
remains valid beyond the domain for which it is constructed.
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2.5 Phenomenological analysis

In the above subsection, we obtain the effective framework of LQC systematically. In this one,
we analyze the holonomy correction and the inverse volume correction phenomenologically,
which is easy to handle and can describe the evolution of the universe correctly. Meanwhile,
it can lead us to new physics heuristically.

2.5.1 The holonomy correction

As mentioned above, the classical Hamiltonian with a free scalar field for the k = 0 FRW
model is given by

Hcl = − 3N

8πGγ2
c2
√
|p|+

Np2
φ

2 |p|3/2
(56)

in terms of the Ashtekar variables c and p. pφ is the conjugate momentum of φ. N is the lapse
function and γ is the Barbero-Immirzi parameter. At the heuristic level, we can impose the
loop quantum corrections of LQC phenomenologically. We simply replace c with

c −→ sin(µ̄c)

µ̄
. (57)

Then we get the description of "holonomization". This effective dynamics is solved as if the
dynamics was classical but governed by the new "holonomized" Hamiltonian, which reads as

He f f = − 3N

8πGγ2

sin2 µ̄c

µ̄2

√
|p|+

Np2
φ

2 |p|3/2
. (58)

As to be expected, the bouncing scenario can be easily obtained at the level of heuristic
effective dynamics without invoking the sophisticated features of LQC. In particular, with the
“improved” scheme imposed for µ̄, the modified Hamiltonian constraint Cµ̄ = 0 immediately
sets an upper bound for the matter density:

ρφ :=
p2

φ

2|p|3 =
3

8πGγ2∆
sin2 µ̄c ≤ 3ρPl, (59)

where the Planckian density is defined as

ρPl := (8πGγ2∆)−1. (60)

With this effective Hamiltonian, we have the canonical equation

ṗ =
{

p, He f f

}
= − 8πγ

3

∂He f f

∂c
, (61)

or,

ȧ =
sin(µ̄c) cos(µ̄c)

γµ̄
. (62)

Combining that with the constraint on Hamiltonian, He f f = 0, we obtain the modified
Friedmann equation

H2 =
8π

3
ρ

(
1 − ρ

ρc

)
, (63)
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where H ≡ ȧ
a denotes the Hubble rate, and ρc ≡ 3

8πγ2µ̄2 p
is the quantum critical density.

Compared with the standard Friedmann equation, we can define the effective density

ρe f f = ρ

(
1 − ρ

ρc

)
. (64)

Taking derivative of Eq.(63) and also using the conservation equation of matter, ρ̇ +
3H (ρ + P) = 0, we obtain the modified Raychaudhuri equation

ä

a
= Ḣ + H2 = − 4π

3

{
ρ(1 − ρ

ρc
) + 3

[
P(1 − 2ρ

ρc
)− ρ2

ρc

]}
. (65)

Comparing that with the standard Raychaudhuri equation, we can define the effective
pressure,

Pe f f = P

(
1 − 2ρ

ρc

)
− ρ2

ρc
. (66)

In terms of the effective density and the effective pressure, the modified Friedmann,
Raychaudhuri and conservation equations take the following forms,

H2 =
8π

3
ρe f f , (67)

ä

a
= Ḣ + H2 = − 4π

3

(
ρe f f + 3Pe f f

)
, (68)

ρ̇e f f + 3H
(

ρe f f + Pe f f

)
= 0. (69)

Therefore, we can get the important features of LQC without going into the detailed
construction of LQC at all. This can help us to extract the physics easily and provide insight
into the full theory.

2.5.2 The inverse volume correction

The inverse volume |p|− 3
2 of the matter Hamiltonian can get a quantum correction and the

matter Hamiltonian obtained in this manner will behave differently at small p. This is called
the inverse volume correction, and can be interpreted as providing a natural curvature cut-off.
For a scalar field, the modified matter Hamiltonian is

Hmatt =
1

2
d(a)p2

ϕ + a3V(ϕ) , (70)

where pϕ is the momentum canonically conjugate to ϕ, and d(a), which is classically 1/a3,
encodes the quantum corrections. In the semi-classical regime, where spacetime may be
treated as continuous, it is given by

d(a) =
D(q)

a3
, q =

a2

a2∗
, a∗ =

√
γj

3
ℓPl . (71)

and

D(q) = q−3/2

{
3

2l

(
1

l + 2

[
(q + 1)l+2 − |q − 1|l+2

]

− q

1 + l

[
(q + 1)l+1 − sgn(q − 1)|q − 1|l+1

])}3/(2−2l)

. (72)
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Here γ is the Barbero-Immirzi parameter. Since the expression for a−1 is rather complicated,
the final quantization contains quantization ambiguities of different types. Here, j (a half
integer) is resulted from the use of arbitrary representations, and 0 < l < 1 is another
quantization parameter. The approximation to the eigenvalues becomes better for values of j
larger than the minimal one, 1/2.
The scale below which non-perturbative modifications become important is given by a∗.
Typically, one chooses j ≫ 1, so that a∗ ≫ ℓPl. The Planck scale marks the onset of discrete
spacetime effects. For ℓPl < a ≪ a∗, the universe is in the semiclassical regime. In this regime,
q ≪ 1. With the Taylor expansion, the geometrical density d(a) behaves as

d(a) ∼
[(

3

1 + l

)3/(2−2l)( a

a∗

)3(2−l)/(1−l)
]

1

a3
. (73)

The Hamiltonian determines the dynamics completely. The equation of motion for the matter
is

ϕ̇ = {ϕ,H} = d(a)pϕ . (74)

Combined with the Hamiltonian equation of motion for pϕ, the above equation can be cast
into a second order equation for ϕ Bojowald & Vandersloot (2002); Singh & Toporensky (2004);
Vereshchagin (2004); Tsujikawa et al. (2004),

ϕ̈ +

(
3H − Ḋ

D

)
ϕ̇ + D V,ϕ = 0 . (75)

For ℓPl < a ≪ a∗ , we find that Ḋ/D > 3H, which leads to the classical frictional term for an
expanding universe. The case is the opposite if the universe is contracting.
The Friedman equation and the Raychaudhuri equation are as follows:

H2 =
8πG

3

[
ϕ̇2

2D(a)
+ V(ϕ)

]
, (76)

ä

a
= − 8πG

3

[
ϕ̇2

D

(
1 − Ḋ

4HD

)
− V(ϕ)

]
. (77)

The Friedman equation implies a bounce in the scale factor, i.e., ȧ = 0 and ä > 0, which
requires a negative potential. (In a closed model, the curvature term allows for a bounce
with positive potential Singh & Toporensky (2004); Vereshchagin (2004).) Vanishing Hubble
parameter at the bounce implies

ϕ̇2 = −2D(a)V(ϕ) , (78)

so that at the bounce,

ä

a
=

4πG

3

(
6 − d ln D

d ln a

)
V . (79)

Classically, i.e., for D = 1, a bounce for a negative V(ϕ) is not allowed. With the modified
D(a), however, d ln D/d ln a > 6 will hold for sufficiently small a, so ä > 0 is possible. Thus,
the universe has to collapse sufficiently deep into the modified regime before it can bounce
back.
So far, the two corrections appear independently in the discussion. We hope to find a
consistent way to bring them together and study their impact on the universe. All the works
discussed in the following are based on the effective theory.
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3. Stability analysis of an autonomous system

Scalar field plays an important role in modern cosmology. Indeed, scalar field cosmological
models have great importance in the study of the early universe, especially in the investigation
of inflation. The dynamical properties of scalar fields also make an interesting research topic
for modern cosmological studies Copeland et al. (2006); Coley (2003). The dynamical behavior
of scalar field coupled with a barotropic fluid in spatially flat Friedmann-Robertson-Walker
(FRW) universe has been studied by many authors (see Copeland et al. (2006); Coley (2003);
Leon et al. (2010), and the first section of Copeland et al. (2009)).
The phase-plane analysis of the cosmological autonomous system is a useful method for
studying the dynamical behavior of scalar field. One always considers the dynamical behavior
of a scalar field with an exponential potential in the classical cosmology Copeland et al. (1998);
Hao & Li (2003; 2004) or modified cosmology Li & Hao (2004); Samart & Gumjudpai (2007).
And, if one considers the dynamical behavior of a scalar field coupled with a barotropic
fluid, the exponential potential is also the first choice Billyard & Coley (2000); Ferreira & Joyce
(1998); Hoogen et al. (1999); Yu & Wu (2008). The exponential potential V leads to the facts
that the variables Γ = VV ′′/V ′2 equals 1 and that λ = V ′/V is also a constant. Then the
autonomous system is always 2-dimensional in the classical cosmology Copeland et al. (1998),
and 3-dimensional in LQC Samart & Gumjudpai (2007). Although one can also consider
a more complex case with λ being a dynamically changing quantity Copeland et al. (2006);
Macorra & Piccinelli (2000); Ng et al. (2001), the fixed point is not a real one, and this method
is not exact. Recently, Zhou et al Fang et al. (2009); Zhou (2008) introduced a new method
by which one can make Γ a general function of λ. Then the autonomous system is extended
from 2-dimensional to 3-dimensional in the classical cosmology. They found that this method
can help investigate many quintessence models with different potentials. One of our goals
is to extend this method for studying the dynamical behavior of a scalar field with a general
potential coupled with a barotropic fluid in LQC.
Based on the holonomy modification, the dynamical behavior of dark energy in LQC scenario
has recently been investigated by many authors Fu et al. (2008); Lamon & Woehr (2010);
Li & Ma (2010); Samart & Gumjudpai (2007); Wei & Zhang (2007); Xiao & Zhu (2010). The
attractor behavior of scalar field in LQC has also been studied Copeland et al. (2008); Lidsey
(2004). It was found that the dynamical properties of dark-energy models in LQC are
significantly different from those in the classical cosmology. In this section, we examine
the background dynamics of LQC dominated by a scalar field with a general positive
potential coupled with a barotropic fluid. By considering Γ as a function of λ, we investigate
scalar fields with different potentials. Since the Friedmann equation has been modified by
the quantum effect, the dynamical system will be very different from the one in classical
cosmology, e.g., the number of dimensions of autonomous system will change to four in LQC.
It must be pointed out that this method cannot be used to describe the dynamical behavior of
scalar field with arbitrary potential. To overcome this problem, therefore, we should consider
an infinite-dimensional autonomous system.
This section is organized as follows. We present in Subsection 3.1 the basic equations and
the 4-dimensional dynamical system, and discuss in Subsection 3.2 the properties of this
system. In Subsection 3.3, we give more discussions on the autonomous system, and also on
an infinite-dimensional autonomous system. We conclude the section in the last subsection.
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3.1 Basic equations

We focus on the flat FRW cosmology. The modified Friedmann equation in the effective LQC
with holonomy correction can be written as

H2 =
1

3
ρ

(
1 − ρ

ρc

)
, (80)

in which ρ is the total energy density and the natural unit κ = 8πG = 1 is adopted for
simplicity. We consider a self-interacting scalar field φ with a positive potential V(φ) coupled
with a barotropic fluid. Then the total energy density can be written as ρ = ρφ + ργ, with the

energy density of scalar field ρφ = 1
2 φ̇2 + V(φ) and the energy density of barotropic fluid ργ.

We consider that the energy momenta of this field to be covariant conserved. Then one has

φ̈ + 3Hφ̇ + V ′ = 0, (81)

ρ̇γ + 3γHργ = 0, (82)

where γ is an adiabatic index and satisfies pγ = (γ − 1)ργ with pγ being the pressure of the
barotropic fluid, and the prime denotes the differentiation w.r.t. the field φ. Differentiating
Eq. (80) and using Eqs. (81) and (82), one can obtain

Ḣ = − 1

2

(
φ̇2 + γργ

) [
1 − 2(ργ + ρφ)

ρc

]
. (83)

Eqs. (80)-(82) or Eqs. (81)-(83) characterize a closed system which can determine the cosmic
behavior. To analyze the dynamical behavior of the universe, one can further introduce the
following variables Copeland et al. (1998); Samart & Gumjudpai (2007):

x ≡ φ̇√
6H

, y ≡
√

V√
3H

, z ≡ ρ

ρc
, λ ≡ V ′

V
, (84)

where the z term is a special variable in LQC (see Eq. (80)). In the LQC scenario, the total
energy density ρ should be less or equal to the critical energy density ρc, and thus 0 ≤ z ≤ 1.
Notice that, in the classical region, z = 0 for ρ ≪ ρc. Using these new variables, one can obtain

ργ

3H2
=

1

1 − z
− x2 − y2, (85)

Ḣ

H2
= −

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]
(1 − 2z (86)

Using the new variables (84), and considering Eqs. (85) and (86), one can rewrite Eqs. (80)-(82)
in the following forms,

dx

dN
= −3x −

√
6

2
λy2 + x

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]

×(1 − 2z), (87)

dy

dN
=

√
6

2
λxy + y

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]

×(1 − 2z), (88)

dz

dN
= −3γz − 3z (1 − z)

(
2x2 − γx2 − γy2

)
, (89)

dλ

dN
=

√
6λ2x (Γ − 1) , (90)
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where N = ln a and

Γ ≡ VV ′′

V ′2 . (91)

Note that the potential V(φ) is positive in this section, but one can also discuss a negative
potential. Just as Heard & Wands (2002) shown, the negative scalar potential could slow
down the growth of the scale factor and cause the Universe to be in a collapsing phase. The
dynamical behavior of scalar field with positive and negative potential in brane cosmology
has been discussed by Copeland et al. (2009). In this section we are concerned only with an
expanding universe, and both the Hubble parameter and the potential are positive.
Differentiating λ w.r.t. the scalar field φ, we obtain the relationship between λ and Γ,

dλ−1

dφ
= 1 − Γ. (92)

If we only consider a special case of the potential, like exponential potential Billyard & Coley
(2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al.
(1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), then λ and Γ are both
constants. In this case, the 4-dimensional dynamical system, Eqs. (87)-(90), reduces to a
3-dimensional one, since λ is a constant. (In the classical dynamical system, the z term does
not exist, and then the dynamical system is reduced from 3-dimensional to 2-dimensional.)
The cost of this simplification is that the potential of the field is restricted. Recently, Zhou
et al Fang et al. (2009); Zhou (2008) considered the potential parameter Γ as a function of
another potential parameter λ, which enables one to study the fixed points for a large number
of potentials. We will follow this method in this and the next subsections to discuss the
dynamical behavior of scalar field in the LQC scenario, and we have

Γ(λ) = f (λ) + 1. (93)

In this case, Eq. (93) can cover many scalar potentials.
For completeness’ sake, we briefly review the discussion of Fang et al. (2009) in the following.
From Eq. (92), one can obtain

dλ

λ f (λ)
=

dV

V
. (94)

Integrating out λ = λ(V), one has the following differential equation of potential

dV

Vλ(V)
= dφ. (95)

Then, Eqs. (94) and (95) give a route for obtaining the potential V = V(φ). If we consider
a concrete form of the potential (e.g., an exponential potential), the dynamical system is
specialized (e.g., the dynamical system is reduced to 3-dimensional if one considers the
exponential potential for dλ/dN = 0). These specialized dynamical systems are too special if
one hopes to distinguish the fixed points that are the common properties of scalar field from
those that are just related to the special potentials Fang et al. (2009). If we consider a more
general λ, then we can get the more general stability properties of scalar field in the LQC
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scenario. We will continue the discussion of this topic in Subsection 3.3. In this case, Eq. (90)
becomes

dλ

dN
=

√
6λ2x f (λ). (96)

Hereafter, Eqs. (87)-(89) along with Eq. (96) are definitely describing a dynamical system. We
will discuss the stability of this system in the following subsection.

3.2 Properties of the autonomous system

Obviously, the terms on the right-hand side of Eqs. (87)-(89) and (96) only depend on x, y, z, λ,
but not on N or other variables. Such a dynamical system is usually called an autonomous

system. For simplicity, we define dx
dN = F1(x, y, z, λ) ≡ F1,

dy
dN = F2(x, y, z, λ) ≡ F2, dz

dN =

F3(x, y, z, λ) ≡ F3, and dλ
dN = F4(x, y, z, λ) ≡ F4. The fixed points (xc, yc, zc, λc) satisfy Fi =

0, i = 1, 2, 3, 4. From Eq. (96), it is straightforward to see that x = 0, λ = 0 or f (λ) = 0 can
make F4(x, y, z, λ) = 0. Also, we must consider λ2 f (λ) = 0. Just as Fang et al. (2009) argued,

it is possible that λ2 f (λ) �= 0 and dλ
dN �= 0 when λ = 0. Thus the necessary condition for the

existence of the fixed points with x �= 0 is λ2 f (λ) = 0. Taking into account these factors, we
can easily obtain all the fixed points of the autonomous system described by Eqs. (87)-(89)
and (96), and they are shown in Tab. (1).
The properties of each fixed points are determined by the eigenvalues of the Jacobi matrix

M =

⎛
⎜⎜⎜⎜⎝

∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F1
∂λ

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F2
∂λ

∂F3
∂x

∂F3
∂y

∂F3
∂z

∂F3
∂λ

∂F4
∂x

∂F4
∂y

∂F4
∂z

∂F4
∂λ

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
(xc,yc,zc,λc)

. (97)

According to Lyapunov’s linearization method, the stability of a linearized system is
determined by the eigenvalues of the matrix M (see Chapter 3 of Slotine & Li (1991)). If all
of the eigenvalues are strictly in the left-half complex plane, then the autonomous system is
stable. If at least one eigenvalue is strictly in the right-half complex plane, then the system is
unstable. If all of the eigenvalues are in the left-half complex plane, but at least one of them is
on the iω axis, then one cannot conclude anything definite about the stability from the linear
approximation. By examining the eigenvalues of the matrix M for each fixed point shown
in Tab. (1), we find that points P1,2,4−8,10 are unstable and point P9 is stable only under some
conditions. We cannot determine the stability properties of P3 from the eigenvalues, and we
have gave the full analysis of P3 in the appendix of Xiao & Zhu (2010).
Some remarks on Tab.(1):

1. Apparently, points P2 and P6 have the same eigenvalues, and the difference between these
two points is just on the value of λ. As noted in the caption of Tab. (1), λ∗ means that λ can
be any value, and λa is just the value that makes f (λ) = 0. Obviously, λa is just a special
value of λ∗, and point P6 is a special case of point P2. P6 is connected with f (λ), but P2 is
not. From now on, we do not consider separately the special case of P6 when we discuss
the property of P2. Hence the value of λa is contained in our discussion ofλ∗.

2. It is straightforward to check that, if xc = λc = 0, yc can be any value y∗ when it is greater
than or equal 1. But, if y∗ > 1, then zc = 1 − 1/y2

∗ < 1, and this means that the fixed
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Fixed-points xc yc zc λc Eigenvalues

P1 0 0 0 0 M
T = (0,−3γ, 3

2 γ,−3 + 3
2 γ)

P2 0 0 0 λ∗ M
T = (0, 3

2 γ,−3γ,−3 + 3
2 γ)

S,

P3 0 1 0 0 M
T = (−3,−3γ, 0, 0) U,

S,

P4 1 0 0 0 M
T = (0,−6, 0, 6 − 3γ)

P5 −1 0 0 0 M
T = (0,−6, 0, 6 − 3γ)

P6 0 0 0 λa M
T = (0, 3

2 γ,−3γ,−3 + 3
2 γ)

P7 1 0 0 λa M
T =

(
−6, 6 − 3γ, 1

2

√
6λa + 3,

√
6λa A

)

P8 −1 0 0 λa M
T =

(
−6, 6 − 3γ,− 1

2

√
6λa + 3,−

√
6λa A

)

P9 −
√

6
6 λa

√
1 − λ2

a
6 0 λa M

T =
(
−λ2

a,−3 + 1
2 λ2

a, λ2
a − 3γ,−λ3

a − f1(λa)
)

S, for

U, for f

P10 −
√

3
2

γ
λa

√
3

2λ2
a
γ(2 − γ) 0 λa See the Eq. (98)

Table 1. The stability analysis of an autonomous system in LQC. The system is described by a self-int
positive potential V coupled with a barotropic fluid ργ. Explanation of the symbols used in this table
located in the 4-dimensional phase space, which are earmarked by the coordinates (xc, yc, zc, λc). λ∗
λa is the value that makes f (λ) = 0. M

T means the inverted matrix of the eigenvalues of the fixed po

Λ = 0, λa. A =

[
2 f (λa) + λa

(
d f (λ)

dλ

∣∣∣
λa

)]
. U stands for unstable, and S stands for stable.
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point is located in the quantum-dominated regions. Although the stability of this point
in the quantum regions may depend on f (λ), it is not necessary to analyze its dynamical
properties, since it does not have any physical meanings. The reason is the following. If
the universe is stable, it will not evolve to today’s pictures. If the Universe is unstable,
it will always be unstable. We will just focus on point P3 staying in the classical regions.
Then yc = y∗ = 1, zc = 1 − 1/y2

∗ = 0, i.e., for the classical cosmology region, ρ ≪ ρc.

3. Since the adiabatic index γ satisfies 0 < γ < 2 (in particular, for radiation γ = 4
3 and for

dust γ = 1), all the terms that contain γ should not change sign. A more general situation
of γ is 0 ≤ γ ≤ 2 Billyard et al. (1998). If γ = 0 or γ = 2, the eigenvalues corresponding
to points P1,2,4,5,9 will have some zero elements and some negative ones. To analyze the
stability of these points, we need to resort to other more complex methods, just as we did
in the appendix of Xiao & Zhu (2010) for the dynamical properties of point P3. In this
subsection, we just consider the barotropic fluid which includes radiation and dust, and
γ �= 0, 2. Notice that if one considers γ = 0, the barotropic fluid describes the dark energy.
This is an interesting topic, but will not be considered here for the sake of simplicity.

4. −
√

6 < λa <
√

6, λa �= 0 should hold for point P9, hence −3 + 1
2 λ2

a < 0.

5. λa > 0 should hold, since yc > 0 for point P10. The eigenvalue of this point is

M =

⎛
⎜⎜⎜⎜⎝

−3γ
−3λaγ f1(λa)

− 3
2 + 3

4 γ + 3
4λa

√
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

− 3
2 + 3

4 γ − 3
4λa

√
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

⎞
⎟⎟⎟⎟⎠

.

(98)

Since we just consider 0 < γ < 2 in this subsection, it is easy to check that
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) > 0 is always satisfied. And this point is unstable

with f1(λa) =
d f (λ)

dλ

∣∣∣
λ=λa

being either negative or positive, since − 3
2 + 3

4 γ +

3
4λa

√
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) is always positive.

Based on Tab. (1) and the related remarks above, we have the following conclusions.

1. Points P1,2: The related critical values, eigenvalues and stability properties do not depend
on the specific form of the potential, since λc = 0 or λ can be any value λ∗.

2. Point P3: The related stability properties depend on f1(0) =
d f (λ)

dλ

∣∣∣
λ=0

.

3. Points P4,5: The related eigenvalues and stability properties do not depend on the form of
the potential, but the critical values of these points should satisfy λ2 f (λ) = 0 since xc �= 0.

4. Point P6: It is a special case of P2, but f (λa) = 0 should be satisfied.

5. Points P7,8: Same as P6, they would not exist if f (λa) �= 0.

6. Point P9,10: f (λa) = 0 should hold. The fixed values and the eigenvalues of these two

points depend on f1(λa) =
d f (λ)

dλ

∣∣∣
λ=λa

.

Thus, only points P1,2 are independent of f (λ).
Comparing the fixed points in LQC and the ones in the classical cosmology (see the Table I of
Fang et al. (2009)), we can see that, even though the values of the coordinates (xc, yc, λc) are
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the same, the stability properties are very different. This is reasonable, because the quantum
modification is considered, and the autonomous system in the LQC scenario is very different
from the one in the classical scenario, e.g., the autonomous system is 4-dimensional in LQC
but 3-dimensional in the classical scenario. Notice that all of the fixed points lie in the classical
regions, and therefore the coordinates of fixed points remain the same from classical to LQC,
which we also pointed out in Xiao & Zhu (2010).
Now we focus on the later time attractors: point P3 under the conditions of γ = 1, f1(0) ≥ 0
and γ = 4/3, f1(0) = 0, and point P9 under the conditions of λ2

a < 6, f1(λa) > λa, λa < 3γ.
Obviously, these points are scalar-field dominated, since ργ = H2(1/(1 − zc)− x2

c − y2
c ) = 0.

For point P3, the effective adiabatic index γφ = (ρφ + pφ)/ρφ = 0, which means that the

scalar field is an effective cosmological constant. For point P9, γφ = λ2
a/2. This describes a

scaling solution that, as the universe evolves, the kinetic energy and the potential energy of the
scalar field scale together. And we can see that there is not any barotropic fluid coupled with
the scalar field dominated scaling solution. This is different from the dynamical behavior
of scalar field with exponential potential V = V0 exp(−λκφ) in the classical cosmology
Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004);
Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), and also
is different from the properties of the scalar field in brane cosmology Copeland et al. (2009), in
which λ = const. (notice that the definition of λ in Copeland et al. (2009) is different from the
one in this section) and Γ is a function of L(ρ(a)) and |V|. In these models, the universe may
enter a stage dominated by scalar field coupled with fluid when λ, γ satisfy some conditions
Copeland et al. (1998; 2009).
We discuss the dynamical behavior of the scalar field by considering Γ as a function of λ in this
and the preceding subsections. But Γ can not always be treated as a function of λ. We need to
consider a more general autonomous system, which we will introduce in the next subsection.

3.3 More discussions on the autonomous system

The dynamical behavior of scalar field has been discussed by many authors (e.g., see
Billyard & Coley (2000); Copeland et al. (1998; 2006); Coley (2003); Ferreira & Joyce (1998);
Hao & Li (2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007);
Yu & Wu (2008)). If one wants to get the potentials that yield the cosmological scaling

solutions beyond the exponential potential, one can add a
dφ
dN term into the autonomous

system Nunes & Mimoso (2000). All of these methods deal with special cases of the dynamical
behavior of scalar fields in backgrounds of some specific forms. By considering Γ as a function
of λ, one can treat potentials of more general forms and get the common fixed points of
the general potential, as shown in Fang et al. (2009); Zhou (2008) and in the two preceding
subsections. However, as is discussed in Fang et al. (2009), sometimes Γ is not a function of λ,
and then the dynamical behaviors of scalar fields discussed above are still not general in the
strict sense. For a more general discussion, we must consider the higher order derivatives of
the potential. We define

(1)Γ =
VV3

V ′2 , (2)Γ =
VV4

V ′2 , (3)Γ =
VV5

V ′2 ,

· · · (n)Γ =
VVn+2

V ′2 , · · · (99)
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in which Vn = dnV
dφn , n = 3, 4, 5, · · · . Then we can get

dΓ

dN
=

√
6x
[
Γλ + (1)Γ − 2λΓ2

]
, (100)

d
(
(1)Γ
)

dN
=

√
6x
[
(1)Γλ + (2)Γ − 2λΓ

(
(1)Γ
)]

, (101)

d
(
(2)Γ
)

dN
=

√
6x
[
(2)Γλ + (3)Γ − 2λΓ

(
(2)Γ
)]

, (102)

d
(
(3)Γ
)

dN
=

√
6x
[
(3)Γλ + (4)Γ − 2λΓ

(
(3)Γ
)]

, (103)

· · · · · ·
d
(
(n)Γ

)

dN
=

√
6x
[
(n)Γλ + (n+1)Γ − 2λΓ

(
(n)Γ

)]
, (104)

· · · · · ·

To discuss the dynamical behavior of scalar field with more general potential, e.g., when
neither λ nor Γ is constant, we need to consider a dynamical system described by Eqs.
(87)-(90) coupled with Eqs. (100)-(104). It is easy to see that this dynamical system is also
an autonomous one. We can discuss the values of the fixed points of this autonomous system.
Considering Eq. (90), we can see that the values of fixed points should satisfy xc = 0, λc = 0,
or Γc = 1. Then, we can get the fixed points of this infinite-dimensional autonomous system.

1. If xc = 0, considering Eqs. (87)-(89), one can get (yc, zc, λc) = (0, 0, 0) or (yc, zc, λc) =

(0, 0, λ∗), and Γc, (n)Γc can be any values.

2. If λc = 0, considering Eqs. (87)-(89), one can see that the fixed points of (x, y, z) are

(xc, yc, zc) = (0, y∗, 1 − 1/y2
∗)and (xc, yc, zc) = (±1, 0, 0). If xc = 0, Γc and (n)Γc can be

any values, and if xc = ±1, (n)Γc = 0.

3. If Γc = 1, considering Eqs. (87)-(89), one can get that the fixed points of (x, y, z, λ) are

(xc, yc, zc, λc) = (0, 0, 0, λ∗) and (xc, yc, zc, λc) = (±1, 0, 0, λ∗). And (n)Γc should satisfy
(n)Γc = λn

∗ . There are other fixed points, which will be discussed below.

Based on the above analysis and Tab. (1), one can find that points P1−10 are just special cases
of the fixed points of an infinite-dimensional autonomous systems. Considering the definition
of Γ (see Eq. (91)), the simplest potential is an exponential potential when Γc = 1. The
properties of these fixed points have been discussed by many authors Billyard & Coley (2000);
Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al. (1999);
Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008). If xc = 0 and yc = 0, this
corresponds to a fluid-dominated universe, which we do not consider here. If xc = ±1,

Γc = 0 and (n)Γc = 0, we do not need to consider the Γ and the (n)Γ terms. Then the
stability properties of these points are the same as points P4,5 in Tab. (1), and there are

unstable points. The last case is (xc, yc, zc, λc) = (0, y∗, 1 − 1/y2
∗, 0) and Γ, (n)Γ can be any

value. To analyze the dynamical properties of this autonomous system, we need to consider

the (n)Γc terms. We will get an infinite series. In order to solve this infinite series, we

must truncate it by setting a sufficiently high-order (M)Γ to be a constant, for a positive

integer M, so that d
(
(M)Γ

)
/dN = 0. Thus we can get an (M + 4)-dimensional autonomous
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system. One example is the quadratic potential V = 1
2 m2φ2 with some positive constant

m that gives a 5-dimensional autonomous system, and another example is the Polynomial
(concave) potential V = M4−nφn Kallosh et al. (1991); Linde et al. (1991; 1994) that gives an
(n+ 3)-dimensional autonomous system. Following the method we used in the two preceding
subsections, we can get the dynamical behavior of such finite-dimensional systems.
In the rest of this subsection, we discuss whether this autonomous system has scaling solution.

If xc = 0, then Γc �= 0, (n)Γc �= 0, and the stability of the fixed points may depend on

the truncation. As an example, if we choose (2)Γ = 0, then we can get a 6-dimensional

autonomous system. The eigenvalues for the fixed point (xc, yc, zc, λc, Γc, (1)Γc) =

(0, 0, 0, λb, Γ∗, (1)Γ∗), where λb = 0 or λb = λ∗, is

M
T = (0, 0, 0,

3

2
γ,−3γ,−3 +

3

2
γ).

Obviously, this is an unstable point, and it has no scaling solution. The eigenvalues for the

fixed point (xc, yc, zc, λc, Γc, (1)Γc) = (0, 1, 0, 0, Γ∗, (1)Γ∗) is

M
T = (0, 0, 0, 0,−3γ,−3 − 3γ).

According to the center manifold theorem (see Chapter 8 of Khalil (1996), there are two
non-zero eigenvalues, and we need to reduce the dynamical system to 2-dimensional to get
the stability properties of the autonomous system. This point may have scaling solution, but
we need more complex mathematical method. But it is easy to find that this point is scalar
field dominated if it has a scaling solution.
We discuss the last case. If Γc = 1, we can consider an exponential potential. Then
the autonomous system is reduced to 3-dimensional. It is easy to check that the values
(xec, yec, zec) of the fixed points are just the values (xc, yc, zc) of points P6−10 in Tab. (1). We
focus on the two special fixed points:

F1 : (xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0),

F2 : (xec, yec, zec) = (−
√

3/2γ/λ,
√

3γ(2 − γ)/(2λ2), 0).

Using Lyapunov’s linearization method, we can find that F2 is unstable and F1 is stable
if λ < 3γ. It is easy to check that ργ = H2[1/(1 − zec) − x2

ec − y2
ec] = 0 when

(xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0). From the above analysis, we find that there is just
the scalar-field-dominated scaling solution when we consider the autonomous system to be
described by a self-interacting scalar field coupled with a barotropic fluid in the LQC scenario.

3.4 Conclusions

To discuss the dynamical properties of scalar field in the LQC scenario, we take Γ as a function
of λ, and extend the autonomous system from 3-dimensional to 4-dimensional. We find
this extended autonomous system has more fixed points than the 3-dimensional one does.
And we find that for some fixed points, the function f (λ) affects either their values, e.g., for
points P4−10, or their stability properties, e.g., for points P3,9. In other words, the dynamical
properties of these points depend on the specific form of the potential. But some other fixed
points, e.g., points P1,2,are independent of the potential. The properties of these fixed points
are satisfied by all scalar fields. We also find that there are two later time attractors, but the
universe is scalar-field-dominated since ργ = 0 at these later time attractors.
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The method developed by Fang et al. (2009); Zhou (2008) can describe the dynamical behavior
of the scalar field with potential of a more general form than, for example, an exponential
potential Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li
(2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu
(2008). But it is not all-encompassing. If one wants to discuss the dynamical properties of
a scalar field with an arbitrary potential, one needs to consider the higher-order derivatives
of the potential V(φ). Hence the dynamical system will extend from 4-dimensional to
infinite-dimensional. This infinite-dimensional dynamical system is still autonomic, but it
is impossible to get all of its dynamical behavior unless one considers Γc = 1 which just
gives an exponential potential. If one wants to study as much as possible the dynamical
properties of this infinite-dimensional autonomous system, one has to consider a truncation

that sets (M)Γ = Const., with M above a certain positive integer. Then the infinite-dimensional
system can be reduced to (M + 4)-dimensional. And we find that there is just the
scalar-field-dominated scaling solution for this autonomous system.
We only get the scalar-field-dominated scaling solutions, whether we consider Γ as a function
of λ or consider the higher order derivatives of the potential. This conclusion is very different
from the autonomous system which is just described by a scalar field with an exponential
potential Samart & Gumjudpai (2007).

4. Averaged null energy condition

Wormholes and time machines are attractive objects in general relativity, always among top
reasons that draw young minds to the study of this subject Morris & Thorn (1988), and they
continue to be active research fields in general relativity Lobo (2007). The stress-energy tensor
components of these exotic spacetime violate all known pointwise energy conditions, which
is forbidden in classical general relativity. In contrast, the energy condition violation can
be easily met in the semiclassical case because of quantum fluctuations Epstein et al. (1965);
Klinkhanmmer (1991); Pitaevsky & Zeldovich (1971). For example, the Casimir vacuum
for the electromagnetic field between two perfectly conducting plates has a negative local
energy density Casimir (1948); squeezed states of light can result in negative energy densities.
Based on semiclassical gravitational analysis, many self-consistent wormhole solutions have
been found Barcelo & Visser (1999); Garattini (2005); Garattini & Lobo (2007); Hochberg et al.
(1997); Khusnutdinov (2003); Sushkov (1992). On the other hand, the topological censorship
theorem proved by Friedman, Schleich, and Witt Friedman et al. (1993) implies that the
existence of macroscopic traversable wormholes requires the violation of the averaged null
energy condition (ANEC). ANEC can be stated as

∫

γ
Tµνkµkνdl ≥ 0, (105)

where the integral is along any complete, achronal null geodesic γ , kµ denotes the geodesic
tangent, and l is an affine parameter. Unfortunately the quantum effects in semiclassical
gravitational analysis are always confined to an extremely thin band Roman (2004). So
it seems impossible to find a macroscopic traversable wormhole based on semiclassical
gravitational analysis.
As a quantum gravitational theory, loop quantum gravity (LQG) Ashtekar & Lewandowski
(2004); Rovelli (1998); Smolin (2004); Thiemann (2007) is a non-perturbative and
background-independent quantization of gravity. Physically, the Einstein equation in LQG
is modified, while the stress-energy tensor Tµν is unchanged. But mathematically, we can
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move the terms modified by LQG to the side of the stress-energy tensor, and combine them
with the stress-energy tensor to get an effective stress-energy tensor. This viewpoint allows
to directly apply some previous analysis results in the considered situation. For instance, that
proof of censorship theorem in Friedman et al. (1993) uses the Einstein equation extensively.
But the proof places no restrictions on the form of matter. Instead, the geometric quantities are
of paramount importance in the proof. Therefore with the concept of effective stress-energy
tensor, the proof in Ref. Friedman et al. (1993) can be directly applied in the LQG-corrected
spacetime.
The application of the techniques of LQG to the cosmological sector is known as loop
quantum cosmology (LQC). Some of the main features of LQG such as discreteness of spatial
geometry are inherited in LQC. A major success of LQC is that it resolves the problem of
classical singularities both in an isotropic model Bojowald (2001) and in a less symmetric
model Bojowald (2003), replacing the big bang spacetime singularity of cosmology with a
big bounce. This bouncing scenario depends crucially on the discreteness of the theory. It
has also been shown that non-perturbative modification of the matter Hamiltonian leads to
a generic phase of inflation Bojowald (2002c); Date & Hossain (2005); Xiong & Zhu (2007a).
These inflation models are built by taking only certain modification terms which affect the
stress-energy tensor while ignoring the discretized geometry effect. But these modifications
are also negligible for semiclassical gravitational theory. The effective stress-energy tensor
in the inflation models has already been found to violate several kinds of energy conditions.
For example, in loop quantum cosmology, non-perturbative modification to a scalar matter
field at short scales induces a violation of the strong energy condition Xiong & Zhu (2007b).
The ANEC is different from the other energy conditions such as the strong energy condition
mentioned above in that the ANEC is an integral along any complete null-like geodesic,
instead of being confined to the neighborhood of a certain point of the space-time. For a
system without symmetry, it is a very complicated issue, making it almost impossible to
calculate. But in the context of isotropic LQC, we can get an exact result, which can provide
a hint for studying the wormholes in LQG and testing the validity of LQG. In this paper, we
adopt effective method to study the quantum effect of effective stress-energy in loop quantum
cosmology. From our calculation, we find that LQC does violate the averaged null energy
condition in the massless scalar field coupled model.
This section is organized as follows. We introduce an exactly solvable model containing a
massless scalar field in Subsec. 4.1. Then in Subsec. 4.2, we investigate the averaged null
energy condition in this exactly solvable model. Finally, Subsec. 4.3 contains the discussion of
our results and their implications. In this section we adopt c = h̄ = G = 1.

4.1 An exactly solvable model

The effective dynamics of LQC was formulated in Refs. Ashtekar et al. (2006a;b);
Singh & Vandersloot (2005); Taveras (2008). Here we follow closely Mielczarek et al. (2008)
to consider a universe containing a massless scalar field. Then the matter Hamiltonian in
equation (58) can be written as

HM(p, φ) =
1

2

p2
φ

p3/2
,
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where pφ is the conjugate momentum for the scalar field φ. The complete equations of motion
for the universe containing a massless scalar field are

⎧
⎪⎨
⎪⎩

ċ = − 1
γ

∂
∂p

(√
p
[

sin(µ̄c)
µ̄

]2
)
− κγ

4

p2
φ

p5/2 ,

ṗ = 2
γ

√
p

µ sin (µ̄c) cos (µ̄c) ,
(106)

and {
φ̇ = p−

3
2 pφ ,

ṗφ = 0,
(107)

where κ = 8π. In addition, the Hamiltonian constraint He f f = 0 becomes

3

8πγ2µ̄2

√
p sin2 (µ̄c) =

1

2

p2
φ

p3/2
. (108)

Combining equations (106) with (108), we obtain

(
dp

dt

)2

= Ω1 p−1 − Ω3 p−4, (109)

with Ω1 = 2
3 κp2

φ and Ω3 = 1
9 κ2γ2ξ2 p4

φ. Equation (107) implies that pφ is a constant which

characterizes the scalar field in the system. To solve equation (109) we introduce a new
dependent variable u in the form

u = p3. (110)

With this new variable u, Eq.(109) becomes

(
du

dt

)2

= 9Ω1u − 9Ω3, (111)

and has a solution

u =
Ω3

Ω1
+

9

4
Ω1t2 − 9

2
Ω1C1t +

9

4
Ω1C2

1 , (112)

where C1 is an integral constant. We can choose C1 = 0 through coordinate freedom. Then
the solution for p is

p =

[
Ω3

Ω1
+

9

4
Ω1t2

]1/3

. (113)

4.2 The averaged null energy condition in LQC

Based on the above discussion, we calculate the averaged null energy condition in the context
of LQC in this section. Because of the homogeneity of the universe, the null geodesic curves
through different spatial points are the same. To investigate the ANEC, we only need to
consider one of the null geodesic lines through any point in space. Due to the isotropy of the
FRW metric, the null geodesic curves through the same point in different directions are also
the same. Therefore, our problem is reduced to test any but one null geodesic line. Specifically,
we consider a null geodesic line generated by vectors

(
∂

∂t

)µ

+
1

a

(
∂

∂x

)µ

.
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According to the definition of affine parameter, ( ∂
∂l )

µ∇µ(
∂
∂l )

ν = 0, we can reparameterize it
with l to get

kµ =

(
∂

∂l

)µ

=
1

a

(
∂

∂t

)µ

+
1

a2

(
∂

∂x

)µ

.

Then we can get the relationship between t and the affine parameter l,

t =
l

a
.

For the considered universe containing a massless scalar field, the energy density and the
pressure of matter can be expressed as

ρ =
1

2
φ̇2, (114)

P =
1

2
φ̇2, (115)

according to the definition of the density and pressure. The effective energy density and
pressure of matter take the forms

ρe f f =
1

2
φ̇2

(
1 − 1

2

φ̇2

ρc

)
, (116)

Pe f f =
1

2
φ̇2

(
1 − φ̇2

ρc

)
− 1

4

φ̇4

ρc
. (117)

Since the effective stress-energy tensor takes an ideal fluid form,

T
e f f
µν = ρe f f (dt)µ (dt)ν + a2Pe f f

×
[
(dx)µ (dx)ν + (dy)µ (dy)ν + (dz)µ (dz)ν

]
,

(118)

the average null energy condition (105) for the effective stress-energy tensor becomes

∫

γ
T

e f f
µν kµkνdl =

∫ ∞

−∞

1

a

(
ρe f f + Pe f f

)
dt

=
∫ ∞

−∞

1

a

(
φ̇2 − φ̇4

ρc

)
dt

= p2
φ

∫ ∞

−∞
(p−7/2 − p−13/2

p2
φ

ρc
)dt.
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In the last line we have used equation (107) and the relationship between p and a. Substituting
the exact solution (113) into the above equation, we get

∫

γ
T

e f f
µν kµkνdl = − Γ(5/6)Γ(2/3)

7ρcΩI(
ΩI I I
ΩI

)13/6
√

π
ΩI I I

p4
φ, (119)

where Γ is the gamma function. From the above result it is obvious that

∫

γ
T

e f f
µν kµkνdl < 0. (120)

The above result shows that, in addition to the violation of some local energy conditions,
the effective stress-energy tensor of loop quantum cosmology also violates the averaged null
energy condition.

4.3 Conclusions and discussion

Given some kinds of local energy condition violation in loop quantum cosmology and
motivated by the topological censorship theorem which rules out traversable wormholes in
spacetime where the averaged null energy condition is satisfied, we investigate this kind of
nonlocal energy condition in the context of LQC. Our analysis is based on a flat universe
containing a massless scalar field. This model can be solved analytically. With the help of the
analytical solution and taking advantage of the homogeneity and isotropy of the universe, we
calculate the average of energy directly. Although the quantum correction is focused on the
early universe around the Planck scale, the correction is so strong that it makes the universe
violate the null averaged energy condition. Mathematically we have written the modified
Einstein equation in LQC in the standard form but with effective stress-energy tensor. This
form of equations allows to directly apply the original proof of Ref. Friedman et al. (1993) in
the effective LQC. So the ANEC (for the original stress-energy tensor instead of the effective
one) argument cannot forbid the existence of traversable wormhole once the Loop Quantum
Gravity effects are taken into account. But we do not expect the existence of wormhole in
LQC, because it is too symmetric to support wormholes. For less symmetric situations, the
traversable wormholes might exist if quantum gravity effects make the effective stress-energy
tensor violate the ANCE. On the other hand, LQC adopts the essence of LQG, so our result
can shed some light on the ANEC of LQG. And we hope this result can give some hints on
looking for wormhole solutions in the LQG theory. These interesting objects will provide
some gedanken-experiments to test our quantum gravity theory.

5. Dynamical horizon entropy bound conjecture

The thermodynamical property of spacetime is an important hint for the quantization of
gravity. Starting from Hawking’s discovery of black hole’s radiation Hawking (1975), a theory
of thermodynamics of spacetime is being constructed gradually. Recently, the second law
of this thermodynamics was generalized to the covariant entropy bound conjecture Bousso
(1999). It states that the entropy flux S through any null hypersurface generated by geodesics
with non-positive expansion, emanating orthogonally from a two-dimensional (2D) spacelike
surface of area A, must satisfy

S

A
≤ 1

4l2
p

, (121)
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where lp =
√

h̄ is the Planck length. Here and in what follows, we adopt the units c = G =
kB = 1. Soon, Flanagan, Marolf and Wald Flanagan et al. (2000) proposed a new version of
the entropy bound conjecture. If one allows the geodesics generating the null hypersurface
from a 2D spacelike surface of area A to terminate at another 2D spacelike surface of area A′

before coming to a caustic, boundary or singularity of spacetime, one can replace the above
conjecture with

S

A′ − A
≤ 1

4l2
p

. (122)

More recently, He and Zhang related these conjectures to dynamical horizon and proposed
a covariant entropy bound conjecture on the cosmological dynamical horizon He & Zhang
(2007): Let A(t) be the area of the cosmological dynamical horizon at cosmological time t,
then the entropy flux S through the cosmological dynamical horizon between time t and t′

(t′ > t) must satisfy

S

A(t′)− A(t)
≤ 1

4l2
p

, (123)

if the dominant energy condition holds for matter.
Since it has been suggested that the holographic principle is a powerful hint and should
be used as an essential building block for any quantum gravity theory Bousso (2002), it
is important and tempting to investigate the covariant entropy bound conjecture in the
framework of the LQC, which is a successful application of the non-perturbative quantum
gravity scheme—the LQG. The authors of Ashtekar & Wilson-Ewing (2008) investigated the
Bousso’s covariant entropy bound Bousso (1999; 2002) with a cosmology filled with photon
gas and found that the conjecture is violated near the big bang in the classical scenario.
But they found the LQC can protect this conjecture even in the deep quantum region. In
Zhang & Ling (2007), He and Zhang proposed a new version of the entropy bound conjecture
for the dynamical horizon in cosmology and validated it through a cosmology filled with
adiabatic perfect fluid, governed by the classical Einstein equation when the universe is
far away from the big bang singularity. But when the universe approaches the big bang
singularity, the strong quantum fluctuation does break down their conjecture. In analogy
to Ashtekar and Wilson-Ewing’s result Ashtekar & Wilson-Ewing (2008), one may wonder if
He and Zhang’s conjecture can also be protected by the quantum geometry effect of the LQG.
Following Ashtekar & Wilson-Ewing (2008), we use photon gas as an example to investigate
this problem. As expected, we find that the loop quantum effects can indeed protect
the conjecture. Besides the result of Ashtekar & Wilson-Ewing (2008), our result presents
one more evidence for the consistence between the loop gravity and the covariant entropy
conjecture.
This section is organized as follows. In Subsec. 5.1, we describe the covariant entropy bound
conjecture proposed by He and Zhang He & Zhang (2007). Then in Subsec. 5.2, we test this
conjecture with cosmology filled with photon gas, and show that the LQC is able to protect
the conjecture in all. We conclude the paper in Subsec. 5.3 and discuss the implications.

5.1 The covariant entropy bound conjecture

According to Zhang & Ling (2007), the cosmological dynamical horizon Bousso (2002) is
defined geometrically as a three-dimensional hypersurface foliated by spheres, where at least
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one orthogonal null congruence with vanishing expansion exists. For a sphere characterized
by any value of (t, r), there are two future directed null directions

ka
± =

1

a

(
∂

∂t

)a

± 1

a2

(
∂

∂r

)a

, (124)

satisfying geodesic equation kb∇bka = 0. The expansion of these null directions is

θ := ▽aka
± =

2

a2

(
ȧ ± 1

r

)
, (125)

where the dot denotes differential with respect to t, and the sign +(−) represents the null
direction pointing to larger (smaller) values of r. For an expanding universe, i.e. ȧ > 0, θ = 0
determines the location of the dynamical horizon, rH = 1/ȧ, by the definition of dynamical
horizon given above. The LQC replaces the big bang with the big bounce, so the universe
is symmetric with respect to the point of the bounce, expanding on one side of the bounce
and contracting on the other side. The dynamical horizon in the contracting stage of the LQC
corresponds to rH = −1/ȧ, and all of the relations are similar to the ones given here. In this
paper we only consider the expanding stage for the LQC, but note that the contracting stage
is the same.
Since the area of the dynamical horizon is A = 4πa2r2

H = 4πH−2, the covariant entropy
bound conjecture in our question becomes

l2
pS ≤ π

[
H−2(t′)− H−2(t)

]
, (126)

where S is the entropy flux through the dynamical horizon between cosmological time t and

t′ (t′ > t), and H is the Hubble parameter. Considering that the cosmology model discussed
here is isotropic and homogeneous, we can write the entropy current vector as

sa =
s

a3

(
∂

∂t

)a

, (127)

where s is the ordinary comoving entropy density, independent of space. If the entropy

current of the perfect fluid is conserved, i.e., ∇asa = 0, s will be independent of t as well. For
simplicity we restrict ourselves to this special case. The entropy flux through the dynamical
horizon (shown in Fig.1) is given by

S =
∫

CDH
saǫabcd =

4πs

3

(
r3

H(t′)− r3
H(t)

)
(128)

where ǫabcd = a3r2 sin θ (dt ∧ dr ∧ dθ ∧ dφ)abcd is the spacetime volume 4-form. So the

conjecture is reduced to

H−2(t′)− 4

3
l2
psȧ−3(t′) ≥ H−2(t)− 4

3
l2
psȧ−3(t), t′ > t.

(129)
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Fig. 1. A schematic of the entropy current flowing across the cosmological dynamical
horizon. The thick solid line marked by “CDH” is the cosmological dynamical horizon. The
thin solid line is the region enclosed by the CDH at time t and t′ respectively. The dashed
lines are the entropy current.

5.2 Conjecture test for a cosmology filled with perfect fluid

Given that the FRW universe is filled with photon gas, the energy momentum tensor can be
expressed as

Tab = ρ(t)(dt)a(dt)b + P(t)a2(t) {(dr)a(dr)b

+r2[(dθ)a(dθ)b + sin2 θ(dφ)a(dφ)b]
}

. (130)

The pressure P and the energy density ρ satisfy a fixed equation of state

P = ωρ, (131)

where the constant ω = 1
3 . From ∇aTab = 0, we have the conservation equation

ρ̇ + 3H(ρ + P) = 0. (132)

The comoving entropy density s is given by

s = a3 ρ + P

T
= a3(1 + ω)

ρ

T
, (133)

and ρ depends only on the temperature T,

ρ = Kol
−2− 1+ω

ω
p T

1+ω
ω , (134)

where Ko is a dimensionless constant depending on the density of energy state of the perfect

fluid. For photon gas Ko = π2

15 . Plugging above thermodynamics relation into equation (133)

we get s = (1 + ω)K
ω

1+ω
o l

−1− 2ω
1+ω

p ρ
1

1+ω a3. Written the above conservation equation as

ρ̇ + 3(1 + ω)ρ
ȧ

a
= 0, (135)
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we have an integration constant C = ρ
1

1+ω a3. Then s = (1 + ω)K
ω

1+ω
o l

−1− 2ω
1+ω

p C. Combining
our equation of state Eq. (131) with the above conservation equation, we get the relationship
between ρ and the Hubble parameter,

H = − 1

3(1 + ω)

ρ̇

ρ
. (136)

Substituting the above relation (136) into the modified Friedmann equation (67), we can get

ρ =
1

6π(t + C1)2(1 + ω)2 + 1
ρc

(137)

where C1 is an integration constant without direct physical significance, and we can always
drop it by resetting the time coordinate. Setting C1 = 0 gives

H =
4πt (1 + ω)

6πt2 (1 + ω)2 + 1
ρc

. (138)

With the definition of the Hubble parameter, we can integrate once again to get

a(t) = C1/3

[
6πt2(1 + ω)2 +

1

ρc

] 1
3(1+ω)

. (139)

When ρc goes to infinity, all of the above solutions become the same as the classical ones 2

presented in Zhang & Ling (2007). In the classical scenario,

H−2 − 4

3
l2
psȧ−3

=
9

4
t2(1 + ω)2 −

9K
ω

1+ω
o l

1− 2ω
1+ω

p

2(6π)1/(1+ω)
t3− 2

1+ω (1 + ω)4− 2
1+ω .

(140)

When t ≪ 1, H−2 − 4
3 l2

psȧ−3 ∼ −t3− 2
1+ω = −t3/2 which is a decreasing function of t, so the

conjecture breaks down when the universe approaches the big bang singularity.
We introduce a new variable τ =

√
2πρc(1 + ω)t for the LQC to simplify the above

expressions to

H =
√

2πρc
2τ

3τ2 + 1
, (141)

a = C1/3ρ
− 1

3(1+ω)
c

(
3τ2 + 1

) 1
3(1+ω)

, (142)

ȧ = aH = 2τC1/3ρ
− 1

3(1+ω)
c

√
2πρc

(
3τ2 + 1

) 1
3(1+ω)−1

.

(143)

2 Note that the original result in Zhang & Ling (2007) used conformal time η, while we use universe time
t in this paper. η can be negative which divides the discussion into two cases. t is always positive and
makes the discussion simpler.

337Loop Quantum Cosmology: Effective Theory and Related Applications

www.intechopen.com



34 Will-be-set-by-IN-TECH

Fig. 2. Function H−2 − 4
3 l2

psȧ−3 and its derivative respect to τ for photon gas.

Then

H−2 − 4

3
l2
psȧ−3

=
1

2πρc

[(
3

2
τ +

1

2τ

)2

− (1 + ω)

6
√

2π
K

ω
1+ω
o (

√
3

16π2γ2
)

1
1+ω− 1

2

(
3τ2 + 1

)3− 1
(1+ω)

τ3

⎤
 .

(144)

It is obvious that the necessary and sufficient condition for meeting the covariant entropy
bound conjecture is that the above expression increases with τ. In order to investigate the
monotone property of above function, we plot H−2 − 4

3 l2
psȧ−3 itself and its derivative respect

to τ in Fig.2. The minimal value of the derivative is about 1.16 > 0. The covariant entropy
bound conjecture for dynamical horizon in cosmology is fully protected by loop quantum
effect.

5.3 Conclusions and discussion

The covariant entropy bound conjecture comes from the holographic principle and is an
important hint for the quantum gravity theory. In the recent years we have witnessed
more and more success of the loop quantum gravity, especially for the problem of the big
bang singularity in cosmology. The entropy bound conjecture usually breaks down in the
strong gravity region of spacetime where the quantum fluctuation is strong, and one would
expect the loop quantum correction to protect the conjecture from the quantum fluctuation.
And Ashtekar and Wilson-Ewing do find a result in Ashtekar & Wilson-Ewing (2008) which
is consistent with above expectation. In this paper, we generalized the covariant entropy
conjecture for the cosmological dynamical horizon proposed in Zhang & Ling (2007) to the
loop quantum cosmology scenario. We found that the quantum geometry effects of the loop
quantum gravity can also protect the conjecture. Our result gives out one more evidence for
the consistence of covariant entropy conjecture and loop quantum gravity theory. This adds
one more encouraging result of loop quantum gravity theory besides previous ones.
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6. Summary

Based on quantum geometry, the mathematical structure of LQC has been strictly defined.
LQC inherits the non-perturbative and background-independent quantization schemes of
LQG. In the framework of LQC, the evolution of the universe is described by the difference
equation. In the past years, LQC achieved great successes. The most outstanding result
is replacing the big bang space singularity of cosmology with a big bounce. LQC also
gives a quantum suppression of classical chaotic behavior near singularities in the Bianchi-IX
models. Furthermore, it has been shown that the non-perturbative modification of the matter
Hamiltonian leads to a generic phase of inflation. LQC gives some possible answers to
cosmological riddles due to the discreteness of the quantum geometry.
With the geometric quantum mechanics and the shadow state framework, we can get the
effective theory of LQC. In this effective theory, the classical Hamiltonian gets a quantum
correction, and the classical Einstein equation is replaced by the equations of motion induced
by the effective Hamiltonian. Our works are based on this effective theory.
Due to the space limitations, this Chapter includes only our recently following three works:
(1) We discussed the dynamical behavior of a scalar field with a general potential coupled with
a barotropic fluid in LQC. (2) We found that the averaged null energy condition is violated in
LQC which provides the possibility for the traversable time machine. (3) We found that the
dynamical horizon entropy bound conjecture breaks down in classical general relativity near
the big bang region but is protected by the quantum geometry effects in LQC.
It is undeniable that LQC is developing rapidly and showing its power in solving
cosmological riddles. However, it still faces two major challenges:

• So far, we have not proven that LQC is truly derived from the full theory;

• At the time of writing, the predictions made by LQC are yet to be compared with
cosmological observations.

Here involved is only a big branch of LQC. There are other issues worth studying, such as the
perturbation theory, the cosmological spin foam theory, and so on. There is still a long way to
go before the arrival of the victory.
Acknowledgments: This work was supported by the National Natural Science Foundation
of China under Grant No. 10875012 and the Fundamental Research Funds for the Central
Universities.
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