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On the Dilaton Stabilization by Matter

Alejandro Cabo Montes de Oca
Departamento de Física Teórica, Instituto de Cibernética, Matemática y Física, La Habana

Cuba

1. Introduction

The Dilaton field is a scalar partner of the graviton in the context of superstring theory (1).
Then, the background fields in the vacuum state of this theory should involve its component
in common with the metric ones in the basic action (2; 3). To the simplest approximation
the Dilaton is a massless scalar field showing a special sort of interaction with the matter
modes. This type of coupling, determines that a time varying Dilaton induces time-dependent
coupling constants. Therefore, to overcome this difficulty this field should remain constant at
the current stage of cosmological evolution. In addition, unless it becomes very massive, its
existence can imply an observable kind of "Fifth force", being similar to the ones which are
currently associated to the observations of the Dark Matter. The constraints posed by current
experimental observations determine the lower bound on the mass of the Dilaton to be of the
order m < 10−12GeV (4) . However, there are attempts to make a time dependent Dilaton
consistent with late time cosmology (see (5)).
Therefore, the Dilaton stabilization problem has been the objective of an intense research
activity in recent times due to its physical relevance. It can be emphasized that the Dilaton
is one of various scalar fields emerging from the formulation of superstring theory in its
low-energy limit. Scalar fields describing the sizes and shapes of the extra spatial dimensions
associated in this theory are also arising, and are called "moduli fields". The stabilization of
such moduli fields has also been the object of recent attention, specially in connection with
Type IIB superstring theory. The introduction of fluxes within the compactification spaces has
made it possible to stabilize various moduli fields (7). Moreover, gaugino condensation effects
(8) has been argued to stabilize the Dilaton field in the framework of heterotic superstring
theory (9) and also in string gas cosmology (10).
It can be underlined that, since Dilaton stabilization has special relevance for late time
cosmology, there is motivation for finding mechanisms which do not directly rest on the
concrete assumptions defining the nature of the extra dimensions. Further motivation to
search for alternative Dilaton stabilization mechanisms appears in connection with String Gas
Cosmology (SGC). The SGC (11; 12) is a model of early universe cosmology which employs
new degrees of freedom and symmetries of string theory, and couples these elements with
gravity and Dilaton fields into a classical action model. The Universe is assumed to start as a
compact space filled with a gas of strings. Then, because in string theory there is a maximal
temperature for a gas of closed strings, the cosmological evolution in SGC starts from a phase
of almost constant temperature, called the "Hagedorn phase". The SGC allows to define a
non-singular cosmology in which there is no initial Big Bang explosion. Also, it has been
identified that the thermal fluctuations in a gas of closed strings in the Hagedorn phase gives
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justification to the observed scale-invariant spectrum of cosmological fluctuations in Nature
(13; 14), by adding a particular prediction of a slight blue tilt for gravitational waves (15). In
this, the consistency of the picture also requires that the Dilaton field be stabilized during the
Hagedorn phase. Therefore, in the SGC theory the Dilaton is also required to be fixed at very
early times as well as at very late times.
In the present review chapter I will resume the conclusions of two studies previous done in
common with various collaborators, in connection with the Dilaton vacuum field. They were
presented in Refs. (32; 33). Each of these works assumes different properties for the Dilaton
field as described below in the following two subsections:

1.1 a) Small mass Dilaton

In the discussion done in (32), which will be resumed in the section 2 of this chapter, the
Dilaton field was assumed to show a small mass. Therefore a static solution of the KG equation
for the Dilaton in interaction with gravity and dust matter was searched in that work. The
configuration found showed a large region of homogeneity close to a central symmetry point,
which becomes increasingly spatially varying at large distances. The existence of this static
solution essentially rests on the presence of an interaction of the Dilaton field with pressureless
matter. The solution obtained was a generalization of one formerly investigated in Ref. (18; 19)
in the absence of matter. The special behavior of the scalar field in such works led to the
proposal made in Ref. (18) about considering it as representing the Dilaton of the string theory
(20). The idea came from the arising circumstance that when you fix the value of the scalar
field (which have dimension of mass) at the central symmetry point to be at the Planck scale,
by also requiring an amount of Hubble effect similar to the experimental one, the radius of
existence of the solution gets a value R = 1028cm which is near the radius of the Universe.
Also very much curious is that the values of KG mass of the scalar field obtained by fixing the
above parameters, results to be of the order of 1/R. That is, a very small value which seems
compatible with a very tiny mass acquired by the Dilaton due to boundary conditions or non
perturbative effects, which could deviate its mass from its vanishing first approximation.
It should be remarked that the assumption about the isotropic and homogeneous nature of our
Universe, that is the Cosmological Principle, is central to modern Cosmology (16). However,
recent experimental observations suggest the possibility for the break down of the validity
of the principle at large scales (17). Accepting such a breaking will become necessary if the
obtained solution result to be realized in Nature. Various static models of the Universe have
been considered. Among them are the ones of Einstein, Le Maitre and de’Sitter, respectively.
Originally, Einstein (16) examined a Universe filled of uniformly distributed matter but
obtained a non-static metric. This result motivated him to introduce in his equations the
Cosmological Constant term λ, with the objective of allowing the obtaining of a static solution.
In connection with the solution discussed in (32) it follows that the centrally symmetric static
scalar field which satisfies the Einstein-Klein-Gordon equations (EKG), curves the space time
in a form resembling the one in the de’Sitter space in a large neighborhood of the origin
of coordinates (19). The fact that the scalar field is more weakly varying along the radial
distances when its value at the origin is lower is an interesting arising property to underline.
The associated densities of energy and pressure are positive and negative respectively and
weakly varying, approximating the presence of a positive Cosmological Constant. These
properties suggested the idea proposed in (18) about considering the Dark Energy (DE) as
described by a scalar field in this approximately homogeneous field configuration studied
in (19). As mentioned before, this assumption will determine the abandoning of the
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On the Dilaton Stabilization by Matter 3

Cosmological Principle in favor of what could be imagined as a kind of "Matryoshka" model
of the Universe. In this conception, proposed in (18; 19), we could be living inside of a
particular configuration in which the Dilaton field has a definite value resulted from the
collapse of string matter in fermionic states. Then, the idea comes to the mind about that
the Dilaton field could be radiated by the string matter in fermionic states under the extreme
conditions of the collapse of fermion matter. The effective realization of this picture in Nature,
could lead to the possibility that the astrophysical black-holes (by example the ones which are
expected to exist near the centers of the Galaxies) could be no other things that small Universes
in which the Dilaton field gets a different value to the external one. This change could be
produced again by the collapse of fermion matter in falling to the collapsed configuration,
upon the possible radiation of zero angular momentum modes, that is of the Dilaton to furnish
the variation of the internal Dilaton field. We find this picture as an interesting one and think
that its exploration is worth considering. One point to note, is that the proposed collapsed
structures would resemble the so called "gravastars" in Refs. (35; 36). At this point it might be
helpful to underline that given that the above recurrent picture is realized in Nature, supports
the interest of the ideas argued in Ref. (37), about the connections between the cosmological
constant and the quantum behavior of matter in such internal universes.
An important outcome emerged in the examination of the problem, is that the coexistence of
the scalar field as described by the EKG equations including also the dust energy momentum
tensor does not allow the existence of static solutions, at least in centrally symmetric
configurations, in the absence of Dilaton - matter interaction (26). However, when the
interaction is allowed a solution appears. The introduction of the coupling does not damage
the almost homogenous character of the solution in a relative large region around the origin
of the central symmetry, being far away form the limits of the Universe. Another interesting
outcome is that the distributions of matter and Dilaton field both show a very close behavior.
That is, the scalar field is able to sustain an amount of matter being almost proportional
between them.

1.2 a) Large mass stabilized by matter Dilaton

In Ref. (33), which results will be reviewed in section 3 of this chapter, in an alternative way
as in Ref. (32), the possibility for the Dilaton to acquire an appreciable mass due to its generic
interaction with the matter fields was investigated. In other words, the idea which motivated
this study was the universal type of coupling of the Dilaton to the matter fields. This property,
could not only lead to an unwanted effect as the mentioned time-dependence of the coupling
constants, but it also can give the possibility that quantum effects due to the interaction of the
Dilaton with matter, could generate interesting contributions to the Dilaton effective potential.
This question was started to be explored in Ref. (28). That work considered the cosmological
periods when the additional spatial dimensions of superstring theory were already stabilized
and the study was done in the framework of a four-dimensional field theory. The main
objective of study was then the interaction of the Dilaton with massive fermions. These masses
can be defined by fluxes through internal manifolds. Also, in late time cosmology, the masses
could had been generated after supersymmetry breaking. In an alternative early universe
cosmology, one may also take into account fermion masses generated by thermal effects. Ref.
(28) considered a simple form for the Dilaton gravity action in which a massive Dirac fermion
term was included (29). The Einstein frame, was chosen which does not show Dilaton field
dependence in the kinetic terms for the fermions. Alternatively, the fermion mass becomes a
function of the Dilaton through an universal exponential factor in Dilaton gravity (2; 3). The
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chosen action described the low energy effective interaction of Super-Yang-Mills fermions
with the Dilaton field in superstring theory (28). The effective potential for the Dilaton field
was evaluated up to two loop corrections in the small Dilaton radiative quantum field limit.
That leads to a Yukawa like interaction term which allows standard QFT calculations. A fixed
value of the cosmological scale factor was assumed. The outcome of the work was, thanks
to the appearing of logarithms in the loop calculations, that the Dilaton field appeared in the
result in powers multiplied by the exponential factors of the field. This structure, in the one
loop approximation clearly indicated the spontaneous generation of vacuum mean value of
the Dilaton field.
Motivated by the dynamical generation of the Dilaton result in Ref. (28), in Ref. (33) we
addressed the evaluation of next corrections 3-loop terms to the 2-loop evaluation of the
effective potential for the Dilaton field. The main issue explored in this work was the
possibility of the appearance in the improved potential of stabilizing effects which were in fact
absent in the second order correction, and which are suspected to be created by the existence
of massive matter upon the mean value of the Dilaton.
The results obtained indicated, for the fermion mass being selected at the GUT or the top
quark mass scales, that the mean value of the Dilaton field tends to be stabilized at a high value
being close to the Planck mass or the GUT scale, respectively. Therefore, it was suggested
that the appearance of mass for matter in the course of the evolution of the Universe can
generate a stabilizing action on the vacuum expectation value of the Dilaton field making
it unobservable. This effect will tend to stop the time evolution of the mean value, as it is
convenient for String Theory consistency.
It should be remarked that in in Ref. (33), in the process of extending the work to include

higher loop corrections, we have noticed that in Ref. (28), the kinetic term of the Dilaton
Lagrangian was chosen with a negative sign. This selection, although not changing the one
loop correction, led to a sign modification of the 2-loop terms, which suggested the existence
of minima in the effective action argued in Ref. (28). However, in spite of this non physical
adopted assumption, the indication about the dynamical generation in Ref.(28) remained a
valid one, because the change in the metric did not affected the one-loop correction, the basic
quantity indicating the dynamical generation effect. The results of the work in Ref. (33) and
reviewed in this chapter, corrected the evaluation of the two loop term, and indicated that its
place in the stabilizing effect over the Dilaton field is played by higher order contributions.
The exposition of section 3 will proceed as follows: In subection 3.1, the notation and basic
formulation are given. Subsection 3.2 presents the elements of the one, two and three loops
evaluation of the effective potential. Subsection 3.3 discuss the results of the evaluation. In
the concluding subsection 3.4 the conclusions of the work are resumed and commented.

2. A cosmological model with a nearly massless Dilaton field

As remarked in the introduction this section 2 will resume the discussion of the work (32)
in which the Dilaton field was assumed as a scalar field obeying the Einstein-Klein-Gordon
equations in which the mass is assumed to be small. It should be underlined that this
previous assumption resulted in radical contrast with the outcome of the later work reported
in (33), which will be also reviewed in this chapter. However, the appearance of a large mass
suggested by the discussion done in (33), as it will commented at the last section of the chapter
devoted to the conclusions, could not result to be excluding some of the most motivating
suggestions advanced in Ref. (32).
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Given the isotropic and stationary character of the solution which was searched in Ref. (32),
the structure of the metric was proposed in the standard form

ds2 = v(ρ)dxo2 − u(ρ)−1dρ2 − ρ2(sin2θdϕ2 + dθ2),

xo = ct, x1 = ρ, (1)

x2 = ϕ, x3 ≡ θ, (2)

from which the components of the Einstein tensor Gμν were computed. Since the metric tensor
is diagonal and only depending on ρ, the only non vanishing components of Gμν resulted in

G0
0 =

u′

ρ
− 1 − u

ρ2
,

G1
1 =

u

v

v′

ρ
− 1 − u

ρ2
,

G2
2 = G3

3 =
u

2v
v′′ +

uv′

4v
(

u′

u
− v′

v
) +

u

2ρ
(

u′

u
+

v′

v
).

The components G2
2 and G3

3 generated second order equations in the temporal component of
the metric, which explicitly did not played an important role thanks to the Bianchi identities
(16)

Gν
μ;ν = 0, (3)

which were employed in the discussion. Assumed the satisfaction of the Einstein equations
the Gν

μ tensor was substituted by the energy momentum tensor Tν
μ . Equation (3) was

interpreted as a set of dynamical equations for the variables of the problem e, p and φ.

2.1 Matter and Dilaton dark energy

In this subsection let us sketch the way followed in (32) for obtaining two of the necessary
equations needed to show the existence of the mentioned static model for the Universe: the
Bianchi relations (3) and the static equation for the scalar field coupled to matter.
The action for the scalar field-matter in the given space time was written in the form

Smat−φ =
∫

L
√

−gd4x, (4)

where g is the determinant of the metric tensor, and it was considered that the Lagrangian
density was taking the form:

L =
1

2
(gαβφ,αφ,β + m2φ2) + jφ + Le,p. (5)

The first and the third terms of the right member of (5) are the Lagrangian densities of the
KG scalar field and the dust-like matter respectively, while the second term was an interaction
term between both quantities which was assumed to exist. The strength of the interaction was
represented by the constant source j. Note that, the existing coupling of the Dilaton to matter
fields made this supposition a natural one in our case in which the scalar field was considered
as representing the Dilaton.
As it was previously mentioned we assumed for the matter, the perfect fluid expression (16):

(Te,p)
ν
μ = p δν

μ + uνuμ(p + e), (6)
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where p was the pressure of the matter. Note that in the work it was assumed a pressureless
matter p = 0. However, for bookkeeping purposes, it was employed the expression for a
general pressure p up to the end when the limit p = 0 was fixed.
As usual uν denoted the contra-variant components of the 4-velocity of the fluid in the system
of reference under consideration. In addition since the search for static configurations was
undertaken, the 4-velocity took the simple form uν = δν

0 .
From the Lagrangian L in (5) and the above remarks the energy momentum tensor of the
scalar field coupled with the matter got the form

Tν
μ = −

δν
μ

2
(gαβφ,αφ,β + m2φ2 + 2j φ)

+ gανφ,αφ,μ + pδν
μ + δν

0 δ0
μ(p + e). (7)

From equation (7), the Bianchi relation for μ = 1 in (3) transformed in

−φj′ + p′ +
v′

2v
(p + e) = 0.

In case under consideration this is the only one of the four Bianchi relations which became
different from zero.
The dynamical equation for the scalar field determining the extremum of the action Smat−φ,
resulted in the form

δSmat−φ

δφ
≡ d

dxμ

∂L

∂φ,μ
− ∂L

∂φ

≡ 1√−g

∂

∂xμ (
√

−ggμνφ,ν)− m2φ − j

= 0, (8)

which after introducing the components of the metric tensor was simplified to become

uφ′′ + uφ′(
1

2

v′

v
+

1

2

u′

u
+

2

ρ
)− m2φ − j = 0.

Note that if u = v = 1, that is, in Minkowski space, relation (9) reduces to the static KG
equation for scalar field interacting with an external source j. It might be helpful to notice
that natural units

[e] = [p] = cm−4, [m] = cm−1, [φ] = cm−1,

were employed.

2.2 Einstein equations

The extremum of the action Smat−φwith respect to the metric led to the Einstein equations in
the absence of a Cosmological Constant

Gν
μ = G Tν

μ , (9)

where in natural units G = 8π × l2
p and lp = 1.61 × 10−33cm is the Planck length.
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From relation (7), the Einstein equations (9) were expressed in the form

u′

ρ
− 1 − u

ρ2
= −G[

1

2
(uφ2

,ρ + m2φ2 + 2jφ) + e], (10)

u

v

v′

ρ
− 1 − u

ρ2
= G[

1

2
(uφ2

,ρ − m2φ2 − 2jφ) + p ]. (11)

As it was mentioned above, the third Einstein equation was not needed for determining the
solution, because its satisfaction was implied by the other equations. This expression only
imposed the continuity of the derivative of v with respect to the radial variable since it is a
second order differential equation.
It was assumed that j , which gives the form of the interaction term between the dark energy
and matter is of the form:

j = g
√

e,

where g is a coupling constant for the interaction matter-scalar field. In the natural system of
units [g] = cm−1.
With the aim of working with dimensionless forms of the equations (10) and (11), we defined
the new variables and parameters

r ≡ mρ, Φ ≡
√

8πlpφ,

J ≡
√

8πlp

m2
j, ǫ ≡

8πl2
p

m2
e, γ ≡ g

m
.

Also, it was fixed the small mass of the Dilaton field to the value estimated in Ref. (18)
for assuring the observed strength of the Hubble effect in the regions near the origin.
Interestingly, this value resulted in the very small quantity, m = 4 × 10−29cm−1 . This mass
is compatible with the zero mass Dilaton in the lowest approximation. In addition the mass
was of the order of the inverse of the estimated radius of the Universe, as it was observed in
Ref. (18).
Therefore, the set of working equations resulted in the form

u,r

r
− 1 − u

r2
= − 1

2
(uΦ,r

2 + Φ2)− JΦ − ǫ, (12)

u

v

v,r

r
− 1 − u

r2
= − 1

2
(−uΦ,r

2 + Φ2 + 2JΦ), (13)

ǫ
v,r

2v
− ΦJ,r = 0, (14)

uΦ,rr − Φ − J = −uΦ,r(
1

2

v,r

v
+

1

2

u,r

u
+

2

r
). (15)

2.3 The solutions near the center of symmetry

In Ref. (32) it was searched for smooth solutions around the origin. Thus, the continuity of the
derivatives v and φ, in all places including the origin, was required. Then, after considering
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the equations in a neighborhood of the origin, the asymptotic field values were written in the
form

u = 1 + u1r2...,

v = 1 + v1r2...,

Φ = Φ0 + Φ1r2...,

ǫ = ǫ0 + ǫ1r2...,

where u1, v1, Φ1, ǫ1 after substitution of the asymptotic solution in the equations were
determined in the form

u1 = − 1

3
(

Φ2
0

2
+ J0Φ0 + ǫ0), (16)

v1 = − 1

3
(

Φ2
0

2
+ J0Φ0 −

ǫ0

2
), (17)

Φ1 = − 1

6
(Φ0 + J0), (18)

ǫ1 = − ǫ
3
2
0

3γΦ0
(

Φ2
0

2
+ J0Φ0 −

ǫ0

2
), (19)

J0 = γǫ
1
2
0 .

Note that the spacial dependence of the metric tends to have an homogeneous structure near
the center of symmetry. The quantities Φ0, ǫ0 and the dimensionless coupling constant γ
remained as free parameters. Extensions of this work, could be considered to optimize the
parameters, aiming to compare the predictions of the model with redshift vs. stelar magnitude
in the supernovae obervations. In the next subsection we resume the study done about the
behavior of the solution at all radial distances for given physically motivated values of the
parameters.

2.4 The solutions at a arbitrary radial values

The numerical solutions of the equations (12)-(15) were considered, by selecting the parameter
values γ = −0.75, Φ0 = 2.2 and ǫ0 = 1. These specific choosing corresponded to a coupling
constant g = 2.9 × 10−29cm−1, a value of the scalar field at the origin φ0 = 2.7 × 1032cm−1

(that is, laying at the Planck scale) and a matter energy density of e = 2.3 × 107cm−4. The
determined numerical solutions of the equations (12)-(15) are illustrated in the figures (1)-(4).

These parameters were a priori selected with the aim of fixing the estimated value of 0.7/0.3
for the ratio of the Dark Energy to the matter energy content in the Universe (27) and an
approximate value of the Hubble effect.
From Fig. (1) the global similarity between the space-time being examined and the de Sitter
static solution can be observed. Moreover, due to the chosen value of the Dilaton mass
suggested in Ref. (18), the size of the Universe (defined as the radial distance at which
the singularity of the structure appears) is of the order of the estimated value 1029cm. In
Fig.(2) the dependence of the temporal metric is shown, it evidenced that the observer near
the origin measures a redshift which was imposed to show a value being near to the one
currently observed.
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U vs.r

Fig. 1. The radial contraviant component of the metric g11 ≡ u(r) behaved basically as in the
deSitter Universe having the size R ≡0.25×1029cm.

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

V vs.r

Fig. 2. Temporal component of the metric g00 ≡v(r). Its decreasing behavior shows the
redshift of the light arriving to the central zone regions from the outside regions. The radius
of the singularity at the far away regions is R ≡0.25×1029cm.

Figures (3) and (4) illustrate the obtained distribution of energy and scalar field respectively.
Note the similarity between both quantities. That is, the presence of the Dilaton-Matter
coupling not only allowed the existence of the static solution, but in addition it also produced
a configuration in which the proportion of matter and dark energy became approximately
constant over large regions of the space time.

3. Large mass Dilaton stabilization by matter

As it had been mentioned in the Introduction, this section will review the results of the work
presented in Ref. (33) . In this study it was investigated the possibility that the Dilaton
could be stabilized at large values and masses as a direct consequence its universal type of
interaction with matter. The review will be ordered as follows: In subsection 3.1, the notation
and basic formulation employed in Ref. (33) will be given. Subsection 3.2 will review the

261On the Dilaton Stabilization by Matter
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0 0.2 0.4 0.6 0.8 1
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Ε vs.r

Fig. 3. The matter distribution e(r) resulted as slowly varying with the radial distance. The
coupling between the scalar field and the matter J Φ was central in allowing the existence of
the static solution, in which also the matter to Dark energy content ratio resulted a slowly
varying. The radial singularity defining the end of the space time at R = 0.25 × 1029cm.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

� vs.r

Fig. 4. The scalar field slowly varied with the radial component and behaved very closely
with the matter density e(r); The radial singularity defining the end of the space time is at
R = 0.25 × 1029cm. There is no static metric with Dilaton and matter in coexistence without
interaction.

elements of the one, two and three loops evaluation of the effective potential. The subsection
3.3 discuss the results of the evaluations done.

3.1 The Dilaton action and generating functional

In Ref. (33) it was considered a model of the Dilaton field interacting with fermion matter in
the form

S =
∫

d4x
√

−g(x)(
1

2κ2
gμν(x)∂μφr(x)∂νφr(x) + Ψ(x)(i

gμνγμ
←→
∂ ν

2
− m)Ψ(x)

−Ψ(x)g∗Y φr(x)Ψ(x) + j(x)φr(x) + Ψ(x)η(x) +η(x)Ψ(x)), (20)
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m = exp(α∗ φ)m f , (21)

g∗Y = α∗ m, (22)

α∗ = − 3

4
, (23)

xμ = (x0, x1, x2, x3),
←→
∂ =

−→
∂ −←−

∂ ,
{

γμ, γν
}

= 2gμν(x), (24)

gμν(x) =

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎠

,
√

−g(x) = 1. (25)

That is, we considered the Dilaton field interacting with a massive fermion in the Einstein
frame, in which the metric gμν was approximated by the Minkowski one in order to simplify
the evaluations. The gravitational constant was explicitly introduced, and natural units were
employed for the distances and mass. The vacuum value of the Dilaton field is named as φ
and its radiative part is called φr. Note that is was assumed that the radiative part is small in
order to retain only the first term in the expansion of the exponential. This was the Yukawa
approximation which was employed in Ref. (33). All the results are functions of the vacuum
field φ.
The parameter defining the Dilaton field dependent exponential, the Planck length κ = lP and
mass mP were defined by the expressions

κ2 =
8πGh

c3
, (26)

κ = lP =
1

mP
= 8.10009 × 10−33 cm, (27)

G = 6.67 × 10−8 cm3 g−1 s−2, (28)

h̄ = 1.05457 × 10−27 cm2 g s−1, (29)

c = 2.9979245800 × 1010 cm s−1. (30)

In the above formula for the action, the coordinates and times are measured in cm, the masses
m in the natural unit cm−1 and the Dilaton field is dimensionless.
Starting from the classical action, the work considered corrections up to 3-loops for the
effective action, assuming a homogenous and time independent value of the Dilaton mean
field φ as

Γ[φ]

V(4)
= −Ve f f (φ), (31)

where V(4) is the four dimensional volume. In order to eliminate the explicit appearance of
the gravitational constant from the diagram technique for evaluating the effective action, its
appearance was eliminated from the equations by redefining the Dilaton field value, the α∗

constant and the coupling as

ϕ = φ/κ, (32)

α = α∗κ = − 3

4
κ, (33)

gY = g∗Yκ. (34)
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After these changes, the above written classical action S, to be used for generating the
Feynman expansion, was expressed as follows

S [Ψ, Ψ, ϕr, ϕ] =
∫

d4x (
1

2
gμν(x)∂μ ϕr(x)∂ν ϕr(x) + Ψ(x)(i

gμνγμ
←→
∂ ν

2
− m)Ψ(x)

−Ψ(x)gY ϕr(x)Ψ(x) + j(x)( ϕ + ϕr(x)) + Ψ(x) η(x) +η(x) Ψ(x)). (35)

The expansion was considered in d = 4 − 2ǫ dimensions for implementing dimensional
regularization scheme. Accordingly, the coupling constant gY was modified by the
introduction of the regularization scale parameter μ as follows

g2
Y = μ2ǫ(g0

Y )2,

where g0
Y is the usual coupling constant in four dimensions.

3.1.1 The generating functional and the effective action

In this subsection, we will sketch the main expressions defining the perturbative calculation
which was considered in Ref. (33). The generating functional of the Green functions Z , its
connected part W and the mean field values were defined by the formulae

Z[η, η, j] =
∫

DΨDΨDϕr exp(i S [Ψ, Ψ, ϕr, ϕ]), (36)

W[η, η, j] =
1

i
log Z[η, η, j], (37)

δ W

i δj(x)
= ϕ + 〈ϕr(x)〉, (38)

δ W

i δη(x)
= 〈Ψ(x)〉, (39)

δ W

−i δη(x)
= 〈Ψ(x)〉. (40)

Note that the mean Dilaton field ϕ was considered as homogeneous and the mean value of
the radiative part 〈ϕr(x)〉 was assumed to vanish when the sources are zero. The effective
action was defined as the Legendre transform of Z depending on the mean field values as:

Γ[〈Ψ〉, 〈Ψ〉, ϕ + 〈ϕr〉] = 1

i
log Z[η, η, j]−

∫

dx[j(x)( ϕ + 〈ϕr(x)〉) +

〈Ψ(x)〉 η(x) +η(x) 〈Ψ(x)〉 ], (41)

δ Γ

δ〈ϕr(x)〉 = −j(x), (42)

δ Γ

δ〈Ψ(x)〉 = −η(x), (43)

δ Γ

δ〈Ψ(x)〉 = η(x). (44)

The expression for Z, after writing the Yukawa vertex part of the Lagrangian in terms of the
functional derivatives over the sources and integrating the gaussian functional integral that
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remains, led to the Wick expansion formula:

Z[η, η, j] = exp [i
∫

dx gY
δ

iδj(x)

δ

−iδη(x)

δ

iδη(x)
]×

exp

[

∫

dx dy (η(x)S(x − y)η(y) +
1

2
j(x)D(x − y)j(y))

]

, (45)

S(x − y) =
∫

dpd

(2π)d

exp(−i p.(x − y))

m − γμ pμ
, (46)

D(x − y) =
∫

dkd

(2π)d

exp(−i k.(x − y))

−(k2 − iǫ)
, (47)

in which S and D are the fermion and Dilaton free propagators, respectively. The notation
for fermions and scalar field related quantities, and the definition of the Feynman rules for
the generation of the analytic expressions for the various contributions, were exactly the
ones described in Ref. (30), for the cases of scalar and fermion fields. Specifically, for
the momentum space rules, the propagators and the only existing vertex are graphically
illustrated in figure 5.

Fig. 5. The figure illustrates the Feynman rules for the particular Yukawa model
approximation adopted for the Dilaton action in Ref. (33)

3.2 Effective potential evaluation

Let us resume in this section the evaluations of the effective potential for the Dilaton field
done in Ref. (33). They followed after employing the perturbative expansion described in the
past section. The diagrams which were considered are depicted in Fig. 6. They included
up to three loops corrections. The contributions were exactly evaluated for the one and two
loops terms. In addition, the three loop term D32 also was analytically calculated in terms
of Master integrals. However, the three loop diagrams D31 and D33 were determined only

in their leading terms of order log
(

m
μ

)3
. We expect to be able in evaluating the non leading
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corrections (lower powers of log
(

m
μ

)

) in extending the work done in Ref.(33). The results for

each diagram are reviewed in various subsections below.

Fig. 6. The one, two and three loops Feynman diagrams considered in Ref. (33) . The one and
two loop corrections D1 and D2 were exactly calculated. In the case of the three loops terms,
the D32 was completely evaluated in terms of the listed Master integrals in Ref. (31). The D31

and D33 were determined only in their leading logarithm correction.

3.2.1 One loop term D1

The analytic expression for the one loop diagram D1 and its derivative over m2 had the forms

Γ(1) = V(d)
∫

dpd

(2π)di
Tr log(m2 − p2), (48)

d

d m2
Γ(1) = 4V(d)

∫

dpd

(2π)di

1

m2 − p2
. (49)

The result for the momentum integral entering in the derivate of Γ(1) over m2, after divided by

μ2ǫ V(d) (in order to define a 4-dimensional energy density) and integrated over m2, allowed
to write for the one loop effective action density the expression (See Ref. (31))

γ1(m, ǫ, μ) ≡ Γ(1)

μ2ǫV(d)
= m4(

m

μ
)−2ǫ 8π2−ǫ

(2π)4−2ǫ
Γ (−1 + ǫ) . (50)

After employing the minimal substraction (MS) scheme, that is, getting the finite part by
eliminating the pure pole part in ǫ the Laurent expansion of γ(m, ǫ) and taking the limit
ǫ → 0, the one loop contribution to the effective action density as a function of m and μ
becomes written in the form

γ1(m, μ) = 0.0506606m4

(

2. log

(

m

μ

)

− 2.95381

)

. (51)
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Note that the negative of this term, which defines the one loop effective potential led to
a the dynamical generation of the Dilaton field for positive values of α∗ φ as follows from
log(m) = log(m f ) +α∗ φ. This was the effect which motivated the study started in Ref. (28).

3.2.2 Two loop term D2

For the two loop contribution D2 the analytic expression was

γ2(m, ǫ, μ) ≡ Γ(2)

μ2ǫV(d)
=

1

2
(g0

Y )2
∫

dpd
1

(2π)di

dpd
2

(2π)di

4(m2 + p1.p2)

(m2 − p2
1)(m

2 − p2
2)(p1 − p2)2

=
1

2
(g0

Y )2m2d−4
∫

dqd
1

(2π)di

dqd
2

(2π)di

4(1 + q1.q2)

(1 − q2
1)(1 − q2

2)(q1 − q2)2

= 2(g0
Y )2m4m−4ǫ(2

∫

dqd
1

(2π)di

dqd
2

(2π)di

1

(1 − q2
1)(1 − q2

2)(q1 − q2)2
−

− 1

2
(
∫

dqd
1

(2π)di

1

(1 − q2
1)
)2), (52)

where the identity q1.q2 = 1
2 (q

2
1 − 1 + q2

2 − 1) + 1 − 1
2 (q1 − q2)

2 was employed. The two
momentum integrals appearing in the last line are the simplest Master integrals for scalar
fields as listed in Ref. (31). The results for them in that reference are:

∫

dqd
1

(2π)di

dqd
2

(2π)di

1

(1 − q2
1)(1 − q2

2)(q1 − q2)2
=

(d − 2)(π)dΓ
(

1 − d
2

)2

2(d − 3)(2π)2d
, (53)

∫

dqd
1

(2π)di

1

(1 − q2
1)

=
(π)

d
2 Γ

(

1 − d
2

)

(2π)d
. (54)

They allowed to write for the regularized two loop effective action density the expression

γ2(m, ǫ, μ) = −m4(
m

μ
)−4ǫ 2(g0

Y )2(π)d

(2π)2d
(− d − 2

d − 3
+

1

2
)Γ

(

1 − d

2

)2

. (55)

Expanding in Laurent series in ǫ and disregarding the pole part in the limit ǫ → 0, led in Ref.
(33) to the two loop perturbative contribution to the effective action

γ2(m, μ) = 0.0000200507(g0
Y )2m4 (48. log2

(

m

μ

)

− 173.783 log
m

μ
+ 183.83 ). (56)

As it was noted in the Introduction, in Ref. (28) it was employed an inappropriate negative
kinetic term for the Dilaton field. This change, although not affecting the one fermion loop
contribution, which is not altered by the sign of the boson propagator, drastically modified
the sign of the two loop term which linearly depends on the Dilaton propagator. In the
previous evaluation, the two loop terms determined the existence of minima for the Dilaton
potential. Therefore, the consequence of the change in sign fixed by the consideration in Ref.
(33) of the correct positive kinetic energy term, should be further investigated in connection
with the existence of stabilizing minima for the scalar field. This circumstance determined
the motivation for the new three loop corrections considered in Ref. (33) and reviewed in this
chapter.
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3.2.3 Three loops terms

Let us resume the evaluation of the three loop terms in Ref. (33).

3.2.4 Diagram D32

The D32 term is the only of the 3-loops diagrams which is not composed of two fermion or
boson self energy insertions connected in series. For the D31 and D33 cases we had difficulties
in reducing their contributions to a linear combination of tabulated Master integrals. This
obstacle only allowed us to calculate their leading term in the expansion in log(m

μ ). However,

for D32 it was possible to express it as a sum over the Master integrals given in Ref. (31). The
analytic expression of the diagram was

Γ(32) = −V(d) 1

4
(gY)

4
∫

dpd
1

(2π)di

dpd
2

(2π)di

dpd
3

(2π)di
×

Tr
[

(m + p
μ
2 γμ)(m + (p

μ
2 + p

μ
3 − p

μ
1 )γμ)(m + p

μ
3 γμ)(m + p

μ
1 γμ)

]

(m2 − p2
1)(m

2 − p2
2)(m

2 − p2
3)(m

2 − (p2 + p3 − p1)2)(p1 − p3)2(p1 − p2)2

= −V(d) 1

4
(gY)

4
∫

dpd
1

(2π)di

dpd
2

(2π)di

dpd
3

(2π)di
× (57)

m4 + c1(p1, p2, p3)m
2 + c2(p1, p2, p3)

(m2 − p2
1)(m

2 − p2
2)(m

2 − p2
3)(m

2 − (p2 + p3 − p1)2)(p1 − p3)2(p1 − p2)2
,

c1(p1, p2, p3) = 3p2.p3+p1.p2 + p1.p3 + p2
2 + p2

3 − p2
1 (58)

c2(p1, p2, p3) = p2
1 p2.p3 + p2

2 p1.p3 + p2
3 p1.p2 − 2 p1.p2 p1.p3. (59)

After defining

z1 = p2
1 − m2,

z2 = p2
2 − m2,

z3 = p2
3 − m2,

z4 = (p1 − p2)
2,

z5 = (p1 − p3)
2,

z6 = (p2 − p1 + p3)
2 − m2, (60)

and employing various vectorial identities expressing the squares of the differences between
any two momenta in terms of the scalar product between them and the squares of the
considered momenta, the integral defining Γ32 was written as follows

Γ32 = −V(d) 1

4
(gY )4

∫

dpd
1

(2π)di

dpd
2

(2π)di

dpd
3

(2π)di
×

m4 + c1(z) m2 + c2(z)

z1 z2 z3 z4 z5 z6
,

z = (z1, z2, z3, z4, z5,z6), (61)

c1(z) =
3

2
(z1 + z2 + z3 + z6)− 2( z4 + z5) + 6m2, (62)

c2(z) =
1

2
(z1z6 + z2z3 − z4z5 + m2(z1 + z2 + z3 + z6) + 2m4). (63)
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Therefore, there exist one or two z factors in the denominator that can be canceled by the
terms of the quadratic polynomial in these quantities. This property allowed the integral to
be decomposed in a linear combination of the Master integrals listed in Ref. (31). The result
for the action density

γ32(m, μ, ǫ) =
Γ(32)

μ2ǫV(d)
(64)

was expressed in terms of only five of them as follows

γ32(m, μ, ǫ) = −(g0
Y )4 m4

(

m

μ

)−6ǫ (

8I1(ǫ) + 8I2(ǫ)− 4I3(ǫ) + I5(ǫ)−
I7(ǫ)

2

)

,

where the functions I1(ǫ), I2(ǫ), I3(ǫ), I5(ǫ) and I7(ǫ) resulted to be given by

I1(ǫ) =
2−3(4−2ǫ)−9π− 3

2 (4−2ǫ)(5(4 − 2ǫ)− 18)M1(ǫ)
3

1 − 2ǫ
+ (65)

2−3(4−2ǫ)−6π−3(4−2ǫ)(3(4 − 2ǫ)− 10)(3(4 − 2ǫ)− 8)
(

M5(ǫ)− 8ǫ
2(4−2ǫ)−7

M4(ǫ)
)

ǫ2
,

I2(ǫ) = − 2−3(4−2ǫ)−2π−3(4−2ǫ)

1 − 2ǫ

(

M1(ǫ)
3(2 − 2ǫ)2

1 − 2ǫ
+ (3(4 − 2ǫ)− 8)M4(ǫ)

)

, (66)

I3(ǫ) = − 2−3(4−2ǫ)−3π−3(4−2ǫ)

ǫ

(

2(2 − 2ǫ)2 M1(ǫ)
3

1 − 2ǫ
+ (3(4 − 2ǫ)− 8)M5(ǫ)

)

, (67)

I5(ǫ) = (2π)−3(4−2ǫ)M4(ǫ), (68)

I7(ǫ) = (2π)−3(4−2ǫ)M5(ǫ),

in terms of the Master integrals (See Ref. (31)):

M1(ǫ) = π
1
2 (4−2ǫ)Γ

(

1

2
(2ǫ − 4) + 1

)

, (69)

M2(ǫ) = − (2 − 2ǫ) M1(ǫ)
2

2(1 − 2ǫ)
, (70)

M3(ǫ) = 2
1
2 (2ǫ−4)Γ

(

1

2
(4 − 2ǫ)

)

Γ

(

1

2
(2ǫ − 1)

)

M1(ǫ)
2, (71)

M4(ǫ) =
21−2ǫΓ

(

1
2 (8 − 3(4 − 2ǫ))

)

Γ
(

1
2 (2ǫ − 1)

)

Γ
(

1
2 (7 − 2(4 − 2ǫ))

)

Γ
(

1
2 (2ǫ − 2)

) M1(ǫ)
3, (72)

M5(ǫ) = (−2 − 5

3
ǫ − 1

2
ǫ2 +

103

12
ǫ3 +

7

24
(163 − 128ζ(3))ǫ4 +

(
9055

48
+

136π4

45
+

1

3
(π2 − log(2)2)(32 log(2)2)− 168ζ(3) (73)

−256Li4(
1

2
) )ǫ5 ) M1(ǫ)

3,
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where the special functions Lin(
1
2 ) and ζ(n) are defined as

Lin(x) =
∞

∑
k=1

1

2kkn
, (74)

ζ(n) =
∞

∑
k=1

1

kn
. (75)

Finally, the application of the before described MS procedure led to the following formula for
the contribution to the vacuum effective action density of the diagram D32

γ32(m, μ) = (g0
Y)

4m4 (0.0000329114 log5
(

m

μ

)

− 0.000105904 log4
(

m

μ

)

+

0.0000165851 log3
(

m

μ

)

+ 0.000441159 log2
(

m

μ

)

−0.00074347 log

(

m

μ

)

+ 0.000388237). (76)

It can be noted that this term has a high quintic power of log5(m
μ ) which was determined by

the also high pole of the ǫ expansion present in the function I1. This represents the highest

power of the log
(

m
μ

)

expansion appearing in the results. The next higher power, the fourth

one, also is arising in this term.

3.2.5 Diagram D31

We were not able to exactly evaluate this contribution (and also the one associated to D33) in
terms of Master integrals. Therefore, for both of these terms we limited ourself to evaluate

their leading terms in the expansion in powers of log
(

m
μ

)

. For this purpose, use was made

of the circumstance that (at variance with D32, but in coincidence with the case of D33)
this term corresponds to a loop formed by two one loop self-energy insertions. Since these
self-energy terms are explicitly calculable in terms of hypergeometric functions, both terms
were expressed as single momentum integral in d dimensions. The diagram had the original
analytic expression

Γ31 = −V(d) 1

2
(gY)

4
∫

dpd
1

(2π)di

dpd
2

(2π)di

dpd
3

(2π)di
×

Tr
[

(m + p
μ
2 γμ)(m + p

μ
1 γμ)(m + p

μ
3 γμ)(m + p

μ
1 γμ)

]

(m2 − p2
1)

2(m2 − p2
2)(m

2 − p2
3)(p1 − p3)2(p1 − p2)2

= −V(d) 1

2
(gY)

4
∫ dpd

1

(2π)di

dpd
2

(2π)di

dpd
3

(2π)di
×

m4 + d1(p1, p2, p3)m
2 + d2(p1, p2, p3)

(m2 − p2
1)

2(m2 − p2
2)(m

2 − p2
3)(p1 − p3)2(p1 − p2)2

, (77)

d1(p1, p2, p3) = p2
1 + 2p1.p2 + 2p1.p3 + p2.p3 , (78)

d2(p1, p2, p3) = 2 p1.p2 p1.p3 − p2
1 p2.p3. (79)
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Then, it was defined the fermion self-energy integral and its related vector as follows

s31(p2) =
∫

dpd
1

(2π)di

1

(m2 − p2
1)(p1 − p)2

= − π
d
2

(2π)d
Γ(ǫ)

∫ 1

0
dx x−ǫ(m2 − p2(1 − x)− iδ)−ǫ

=
π

d
2

(2π)d
Γ(ǫ)(m2)−ǫ

2F1(1 − ǫ, ǫ, 2 − ǫ,− ( p
m )2

1−( p
m )2 )

ǫ − 1
, (80)

vμ(p2) =
∫

dpd
1

(2π)di

p1μ

(m2 − p2
1)(p1 − p)2

= a(p2) pμ, (81)

a(p2) =
p2 + m2

2p2
s31(p2)− L(m, ǫ)

2p2
, (82)

L(m, ǫ) =
∫

dpd
1

(2π)di

1

(m2 − p2
1)

=
π

d
2 md−2

(2π)d
Γ(1 − d

2
). (83)

In the above expressions, the Feynman parametric integral was explicitly evaluated by
employing the algebraic calculation program Mathematica. After again defining the action
density contribution as

γ31(m, μ, ǫ) =
Γ(31)

μ2ǫV(d)
, (84)

performing the Wick rotation in the momenta and extracting the d-dimensional solid angle
arising form the angular integrals, this quantity is expressed as the integral

γ31(m, μ, ǫ) = −
2(g0

Y)
4
(

m
μ

)−6 ǫ
c(m, ǫ)

ǫ2

∫ ∞

0

p3−2ǫ

(p2 + 1)
2

f (p, ǫ)dp, (85)

f (p, ǫ) = ǫ2 f1(p, ǫ)Γ(ǫ)2 + f2(p, ǫ) ǫ Γ(ǫ) + f3(p, ǫ), (86)

f1(p, ǫ) = (1 − p2)(3 − (1 − p2)2

4p2
)(s∗31(p2, ǫ))2, (87)

f2(p, ǫ) = (2 − (1 − p2)2

2p2
)s∗31(p2, ǫ)L∗(ǫ), (88)

f3(p, ǫ) = −
(

1 − p2
)2

(L∗(ǫ))2

4p2
, (89)

s∗31(p, ǫ) = −
22ǫ−4π

1
2 (4−2ǫ)+2ǫ−4

2F1

(

1 − ǫ, ǫ; 2 − ǫ;
p2

p2+1

)

ǫ − 1
, (90)

c(m, ǫ) =
22ǫ−3m4π

1
2 (4−2ǫ)+2ǫ−4

Γ
(

1
2 (4 − 2ǫ)

) , (91)

L∗(ǫ) = ǫL(1, ǫ). (92)

271On the Dilaton Stabilization by Matter

www.intechopen.com



20 Cosmology book 2

As it was mentioned before, we were not able yet to find an epsilon expansion (rigorous
or sufficiently approximated numerical one) allowing to exactly evaluate this integral after
removing the regularization. Therefore, in order to determine an approximation for γ31 we
have made use of an assumption suggested by an exploration done about the asymptotic
power expansion at infinity of the integrand as a function of the momentum integration
variable p. It followed that all the terms of the expansion after integrated, show a single
pole structure in their Laurent expansion in ǫ. Then, it suggests that the full divergence of the
integral at d = 4 is defined by a single pole in ǫ. Assuming this property, the extraction of the
leading correction in log(m

μ ) should be defined by the maximal power of log(m
μ ) appearing

in the coefficient of the zero order term in the expansion of the modified integral γ31(m, μ, ǫ)

γ∗
31(m, μ, ǫ) = −

2(g0
Y)

4
(

m
μ

)−6 ǫ
c(m, 0)

ǫ2

∫ ∞

0

p3−2ǫ

(p2 + 1)
2

f (p, 0)dp. (93)

Note that any other power of ǫ in the expansions of c(m, ǫ) and f (p, ǫ) will reduce the
maximal order of the negative powers of epsilon in the full expansion of γ31(m, μ, ǫ), which
determines the leading correction in the expansion. For f (p, 0) it followed

f (p, 0) =
p4

1024π4
− 17p2

1024π4
+

7

256π4
− 1

256π4 p2
. (94)

Then, the use of the formula

∫ ∞

0

p3−2ǫ+m

(p2 + 1)
2

dp = −π

4
(m − 2ǫ + 2) csc(

π

2
(m − 2ǫ)), (95)

which shows the 1
ǫ singularity, allowed to write for γ31 the leading logarithm correction to its

finite part

γ31(m, μ) = −0.0000228551(g0
Y )

4 m4 log3

(

m

μ

)

. (96)

3.2.6 Diagram D33

As it was remarked before, this term was treated in a similar way as it was D31. Now, the
corresponding self-energy insertions were boson ones. Again, the two self-energy loops were
explicitly calculable in terms of hypergeometric functions. The starting analytic expression of
the diagram was

Γ33 = V(d) 1

4
(gY)

4
∫

dpd

(2π)di

dpd
1

(2π)di

dpd
2

(2π)di
× 1

(p2)2

Tr[(m + p
μ
1 γμ)(m + (p + p1)

νγν)]Tr[(m + p
μ
2 γμ)(m + (p2 + p)νγν)]

(m2 − p2
1)

2(m2 − (p1 + p)2)(m2 − p2
2)

2(m2 − (p2 + p)2)
,

= V(d)4(gY)
4
∫

dpd

(2π)di

dpd
1

(2π)di

dpd
2

(2π)di
× 1

(p2)2
×

(m2 + p1.(p1 + p))(m2 + p2.(p2 + p))

(m2 − p2
1)

2(m2 − (p1 + p)2)(m2 − p2
2)

2(m2 − (p2 + p)2)
, (97)
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where the fermion traces were evaluated for writing the second form of the integral. The last
expression evidenced the decomposition in two serial self-energy terms.
After rotating to Euclidean space the momenta variables of the integration regions and the
external momentum, the fermion selfenergy integral and its related vector integral were
written as follows (See Ref. (30))

s33(q
2, ǫ) =

∫

dqd
1

(2π)di

1

(m2 + q2
1)(m

2 + (q + q1)2

=
(m)−2ǫ

(4π)
d
2

Γ(ǫ)
∫ 1

0
dx (1 + (

q

m
)2x(1 − x))−ǫ

=
(m)−2ǫ

(4π)
d
2

Γ(ǫ)F (
q2

m2
),

F (q2) =
∫ 1

0
dx (1 + q2x(1 − x))−ǫ

= −
2−ǫ−1(q +

√

q2 + 1)(1 − q√
q2+1

)ǫF1(1 − ǫ, ǫ, 2 − ǫ, 1
2 (

q√
q2+1

+ 1))

q(ǫ − 1)
−

2−ǫ−1(q −
√

q2 + 1)(1 +
q√

q2+1
)ǫF1(1 − ǫ, ǫ, 2 − ǫ, 1

2 (−
q√

q2+1
+ 1))

q(ǫ − 1)
,

v33μ(p2) =
∫

dpd
1

(2π)di

p1μ

(m2 − p2
1)(m

2 − (p + p1)2

= a(p2) pμ,

a(p2) = − 1

2
s33(p2, ǫ).

Again the result for parametric Feynman integral was analytically evaluated thanks to
the use of the algebraic calculation program Mathematica. Thus, after extracting the
Euclidean angular integrals and performing some transformations, the effective action density
contribution

γ33(m, μ, ǫ) =
Γ(33)

μ2ǫV(d)
(98)

was expressed as single momentum integral in the range (0,∞) as follows

γ33(m, μ, ǫ) =
4c(m, ǫ)(g0

Y)
4
(

m
μ

)−6ǫ

ǫ2

∫ ∞

0
dp

p3−2ǫ

(p2 + r2)
2

g(p, ǫ), (99)

g(p, ǫ) = ǫ2g1(p, ǫ)Γ(ǫ)2 + g2(p, ǫ) ǫ Γ(ǫ) + g3(p, ǫ), (100)

g1(m, ǫ) =

(

p2

2
+ 2

)2

s∗33(p, ǫ)2, (101)

g2(m, ǫ) = −2

(

p2

2
+ 2

)

L(ǫ) s∗33(p, ǫ), (102)
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g3(m, ǫ) = L(ǫ)2, (103)

s∗33(p, ǫ) =
s33(p, ǫ)

Γ(ǫ)
, (104)

c(m, ǫ) =
22ǫ−3m4π

1
2 (4−2ǫ)+2ǫ−4

Γ
(

1
2 (4 − 2ǫ)

) , (105)

L(ǫ) =
π2−ǫ

(2π)4−2ǫ
Γ(−1 + ǫ). (106)

Finally, by employing a similar procedure for extracting the leading logarithmic correction in

log
(

m
μ

)

for D31, the analogous contribution for D33 followed in the form

γ33(m, μ) = −0.000329114 (g0
Y)

4 m4 log3
(

m

μ

)

.

3.3 Discussion of the results

This subsection resume the results obtained in Ref. (33) for the effective action density. The
total effective potential value v(m, μ), resulted to be given by the sum of all the evaluated
terms after changing their sign. The total potential and its various contributions were written
as follows

v(m, μ) = v1(m, μ) + v2(m, μ) + v31(m, μ) + v33(m, μ) + v32(m, μ), (107)

v1(m, μ)

m4
= −γ1(m, μ)

m4

= −0.0506606

(

2. log

(

m

μ

)

− 2.95381

)

, (108)

v2(m, μ)

m4
= −γ2(m, μ)

m4

= −0.0000200507(g0
Y )

2(183.83 − 173.783 log

(

m

μ

)

+ 48. log2
(

m

μ

)

), (109)

v31(m, μ)

m4
= −γ31(m, μ)

m4
= 0.0000228551(g0

Y )
4m4 log3

(

m

μ

)

, (110)

v33(m, μ)

m4
= −γ33(m, μ)

m4
= 0.000329114(g0

Y )
4m4 log3

(

m

μ

)

, (111)

v32(m, μ)

m4
= −γ32(m, μ)

m4

= − (g0
Y)

4m4 10−3(0.0329114 log5

(

m

μ

)

− 0.105904 log4

(

m

μ

)

+ 0.0165851 log3
(

m

μ

)

+ 0.441159 log2
(

m

μ

)

−

0.74347 log

(

m

μ

)

+ 0.388237). (112)
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The renormalization point for μ was chosen at the same value of the fermion mass m f , under

consideration, that is Log(
m f

μ )− > 0. Also, it was defined a new scaled scalar field Φ and

interaction parameter g by mean of

Φ = αϕ, (113)

g0
Y = αm = g exp(Φ), (114)

g = αm f . (115)

Then, the evaluated total contribution to the effective potential for the Dilaton v(m, μ) was
expressed as a function v(Φ, g) as follows

v(Φ, g)

m4
f

≡ v(m, μ)

m4
f

= − 0.0000329114e8Φ g4Φ5 + 0.000105904e8Φ g4Φ4

+0.000289673e8Φ g4Φ3 + e4Φ
(

−0.000441159e4Φ g4 − 0.000962436e2Φ g2
)

Φ2 +

e4Φ
(

0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(

−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642
)

. (116)

New functions u5, u4 and u3 representing approximations of the potential were defined in the
form

u5(Φ, g)

m4
f

=
v(Φ, g)

m4
f

, (117)

u4(Φ, g)

m4
f

= 0.000105904e8Φ g4Φ4 + 0.000289673e8Φ g4Φ3 +

e4Φ
(

−0.000441159e4Φ g4 − 0.000962436e2Φ g2
)

Φ2 +

e4Φ
(

0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(

−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642
)

, (118)

u3(Φ, g)

m4
f

= + 0.000289673e8Φ g4Φ3 +

e4Φ
(

−0.000441159e4Φ g4 − 0.000962436e2Φ g2
)

Φ2 +

e4Φ
(

0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(

−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642
)

. (119)

Note that u5 coincided v and is of order five in the powers of Φ. The function u4, u3 were
defined as retaining only all the terms up to order Φ4 and Φ3 respectively of the original
function u5 . Therefore, these functions basically correspond to the expansion of order five,

four and three in powers of log
(

m
μ

)

. They were defined in order to study the influence of

increasing the order of the perturbative expansion in powers of log
(

m
μ

)

.
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To evidence the dependence on Φ and g of the three functions (after divided by the common
factor m4

f ), they were plotted in figure 7. The range of values of g = m f α was chosen (0, 1) as

suggested by the fact that α is of the order of the Planck length and thus the physical values
of the considered fermion mass are expected to determine g to be smaller than one. The
plot of u5 showed that there is a threshold value of g, below which the potential exhibits
minima tending to stabilize the vacuum mean value of the Dilaton field. This behavior
was also shown by the approximated potentials u4 and u3, a fact that indicated that after
disregarding the higher quintic and quartic terms in the expansion in log(m

μ ), the existence of

Dilaton stabilizing minima is not affected.
When considering the full evaluated potential curve u5, illustrated at the top plot of figure 7,
it can be observed that after lowering the g value below a critical threshold, the minimum
as a function of Φ stops to exist at a critical value gmin. However, in the case of u4 and u3, the
minimum exists for arbitrary values of g− > 0. That is, when the potential approximation
is bounded from below, the potential shows stabilizing minima at any small value of g close
to zero. The field value at the minima grow when the coupling tends to vanish. It can be
noted, that the non bounded from below character of the approximated potential calculated, is
determined by the fact that the quintic power of Φ correction turned to be negative. However,
the physical system under consideration is one in which the total effective potential can be
expected to show an exact bounded from below character. Thus, the next corrections are
expected to exhibit a bounded from below behavior. In accordance with this expectation, in
studying the g dependence at small values, we employed the approximated potential function
u4, assuming that it represents a reasonably good approximation of the exact potential.

3.4 Dilaton field and mass for m f at the GUT scale

In Ref. (33) it was firstly considered that the highest fermion mass m f is given by the GUT
mass scale

m f = mGUT = 5.06773 × 1029cm−1

≡ 1016 GeV, (120)

which produced for the coupling g the value

g = m f α = − 3

4
κ mGUT = −0.0030789542773.

The potential u4 as a function of the field Φ for this particular value of g is shown in figure 8.
The minimum of the curve determined an estimate for the vacuum value of the Dilaton field
given by

Φvac = 5.8576156 = α ϕvac, (121)

ϕvac = − 4

3
5.8576156

1

κ
. (122)

This result indicated that the vacuum mean value of the Dilaton field, after assuming that the
fermion mass is in the GUT scale, became stabilized in the scale of the Planck mass.
For the mass of the field excitation it followed that its value was determined by the second
derivative of the potential curve taken at the minimum, which is given by

d2

dΦ2
u4(Φ,−0.0030789542773)

∣

∣

∣

∣

Φ=Φ
(mGUT)
vac

= 1.28179 × 1011m4
f . (123)
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Fig. 7. The three figures show, from top to bottom, the potentials u5, u4 and u3 dependence
on the field Φ and the coupling g, respectively. The potential scale is chosen for a high
magnification range (the minima of the surface at fixed g values are very far below the
plotted range) in order to evidence the presence of a threshold for the appearing of the
minima when the value of g decreases below g = 1. Note that for Φ smaller than some units
and not to small values of g, the three plotted graphs are similar, indicating that the
elimination of the highest fifth, and also the next to highest fourth, powers of the field (or, of
the logarithm in the original expansion) in defining u4 and u3 respectively, are not affecting
the results in the mentioned region. The circumstance that the exact evaluated contribution
has a negative leading term of order five (which makes the result unbounded from below)
explains that for the plot of u5 the minima disappear for sufficiently small values of g.
However, the fact that exact potential should be expected to be bounded from below, we
consider that supports our assumption about employing the bounded from below
approximations of the potential u4 (or u3) in evaluating the Dilaton properties at the small
values of g defined by the GUT and mtop mass scales.
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Fig. 8. The effective potential u4 defined by Eq. 118 as a function of the Dilaton field Φ. The
fermion mass was fixed to correspond to the GUT mass mGUT and the renormalization scale
μ was chosen to coincide with this mass. The minimum of the potential was near the value
Φ = 5.7, which indicates that the field is bound to a high value near the Planck scale.

In order to estimate the Dilaton mass it was considered the linearized equation of motion
for the mean field

(
1

α2
∂2 +

d2

dΦ2
u4(Φ,−0.00307895)

∣

∣

∣

∣

Φ=Φ
(mGUT)
vac

)Φ = 0, (124)

in which the factor 1
α2 multiplying the D’Alembertian appeared due to the previously done

change of field variables Φ = α ϕ.
The above wave equation led to the dispersion relation for the Dilaton modes

(− 1

α2
p2 +

d2

dΦ2
u4(Φ,−0.00307895)

∣

∣

∣

∣

Φ=Φ
(mGUT)
vac

) = 0, (125)

which for the case of the particle at rest p = (m
(mGUT)
D , 0, 0, 0) determined for the Dilaton the

mass estimate

m
(mGUT)
D =

√

d2

dΦ2
u4(Φ,−0.00307895)

∣

∣

∣

∣

Φ=Φ
(mGUT)
vac

m2
GUT | α |

= 5.58626 × 1032 cm−1. (126)

Therefore, the predicted order of the mass for the Dilaton also became an extremely high
value which makes this field mode undetectable in a direct way.

3.5 Dilaton mean value and mass for m f at the top quark mass scale

It was also of interest to take as m f the highest currently known fermion mass: that is, the top
quark one

mtop = 172.0 ± 0.9 GeV = 8.7164 × 1015 cm−1. (127)
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Fig. 9. The effective potential u4 plotted as a function of the Dilaton field Φ. In this case the
coupling was defined by a fermion mass correspond to the top quark one mtop and the
renormalization scale μ was also chosen to coincide with this value. The minimum of the
potential is now near the value Φ = 36.7765, which indicated that the field is again staying at
a high value.

Then, the coupling g in this case got the small value

g = m f α = − 3

4
κ mtop = −5.32659 × 10−17. (128)

Figure 9 shows the dependence of the potential u4 as a function of the field Φ at the above
value of the coupling g. The minimum of the curve in this case gave for the mean Dilaton
field at the vacuum

Φ
(mtop)
vac = 36.3020096 = α ϕ

(mtop)
vac , (129)

ϕ
(mtop)
vac = − 4

3
36.3020096

1

κ
. (130)

This result predicts that, assuming that the maximal fermion mass in Nature is given by the
top quark one, which means a lower bound for the physical masses, the vacuum field of the
Dilaton, again becames stabilized in a scale, which although not being so high, is yet close to
the Planck mass.
In this case the dispersion relation for the Dilaton modes resulted in the form

(− 1

α2
p2 +

d2

dΦ2
u4(Φ,−5.32659 × 10−17)

∣

∣

∣

∣

Φ=Φ
(mtop)
vac

) = 0. (131)

But, after evaluating for the second derivative of the potential at the minimum to be

d2

dΦ2
u4(Φ,−5.32659 × 10−17)

∣

∣

∣

∣

Φ=Φ
(mtop)
vac

= 6.86404 × 1064, (132)
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and fixing again the rest frame momentum p = (m
(mtop)
D , 0, 0, 0) estimated for the Dilaton

mass the value

m
(mtop)
D =

√

d2

dΦ2
u4(Φ,−5.32659 × 10−17)

∣

∣

∣

∣

Φ=Φ
(mtop)
vac

× m2
top | α |

= 7.07209 × 1029 cm−1. (133)

Henceforth, also in this case the predicted mass for the Dilaton turned to be a high value
being now close to the GUT scale. Thus, it can be expected that for maximal fermion masses
in Nature ranging between the lower bound mtop and the GUT scale one, the Dilaton gets
stabilized at a large field value as required by string phenomenology. In addition the resulting
values of its mass, for the same range of m f , became also out of the current observability range
of particle detectors.

4. Conclusions

We had reviewed and commented some issues linked with the possible roles of the Dilaton
in Cosmology and its stabilization properties under the existence of massive fermion matter,
which were advanced in Refs. (32; 33).
In the work (33), the fermion field mass values were considered in two cases: the top quark
mass representing the lower bound of all existing but yet unknown fermion masses in Nature,
and the energy scale of the grand unification theories of order 1016 GeV. In both situations,
the results indicated that the Dilaton mean field becomes stabilized at the very high values
required by its role in allowing gravity to have its observed properties. Then, the same
existence of matter seems to be a possible source of the dynamical fixation of the Dilaton
field at the high values, required by String Theory to imply the observable Einstein theory of
gravity. Furthermore, the evaluations pointed out that the Dilaton field also resulted to be
strongly bound around its mean value, by showing a large mass being close to the GUT or
Planck scales. Therefore, a possible explanation for the lack of observable consequences of the
Dilaton scalar field in Nature was underlined. The discussion included contributions to the
effective potential up to 3-loops. They allowed to consider the influence of the inclusion of
different leading perturbative correction on the main conclusions. After, disregarding in the
evaluated potential: a) the highest order term (quintic) in the expansion in powers of Log(m

μ )

(which determined the unbounded from below structure of the potential at large Φ values ) or
b) the two highest orders (the quintic and the quartic ones), the obtained modified potentials
were both bounded from below at high field values. This procedure allowed that minima as
functions of Φ exist for arbitrarily small values of the coupling g, which allowed to evaluate
at the small coupling values fixed by the GUT and top quark masses. The fact that the Yukawa
theory under consideration should exhibit a bounded from below potential, then supported
the adopted procedure for estimating the vacuum mean values and mass of the Dilaton field.
However, further higher loop evaluations are convenient to define more precise estimated
values of the Dilaton vacuum field and mass and also for checking that they do not affect
the picture. Moreover, it will be also helpful to perform an evaluation of the vacuum mean
value of the square of the radiation Dilaton field (basically defined by a Dilaton propagator
tadpole diagram). A result of < 0|((Φr(x))2|0 > being much smaller than 1 will check a main
assumption adopted in this work: that the QFT with exponential interaction associated to the
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Dilaton field could be well approximated by the here employed Yukawa QFT description for
each value of the mean field Φ.
On another hand the results of the work (32) presented a static solution of the EKG equations
in which the Dilaton was represented by a scalar field showing a small mass of the order of
the inverse of the estimated radius of the Universe. An interaction of the Dilaton with matter
was also included. It arose that the existence of the interaction was central in allowing the
arising of the static solution. The model parameters were able to be fixed for determining a
relation matter-Dark Energy ratio close to the one observed, and which slowly changes with
the increase of the radial distance. However, the assumed small mass of the Dilaton rises
doubts about the validity of this picture for the Dilaton. Consequently, these doubts also
translate to the possible feasibility of the picture speculated in the introduction in which the
Universe could show a kind a "Matryoshka" structure, in which our Universe could result
to be the interior of a kind of "gravastar" (See Refs. (35; 36)). However, the fixation of the
Dilaton field to a high and rigid value induced by the validity of the results of Ref. (33)
could perhaps not to exclude the realization of the mentioned picture. We would like to
underline here an idea, which is already being discussed in the literature, and that in our
view could support the considered picture, by also furnishing a concrete explanation for the
origin and smallness of the Cosmological Constant. The first reference about this point of
view we received from the work reported in Ref. (34). In this article it was pointed out that
the one loop quantization of pure gravity determines deSitter spacetime as a natural solution.
More importantly, it was also underlined that the effect is a consequence of a very much
natural effect: the condensation of the massless and also gravitationally attracting between
themselves gravitons. In other words that work proposed as the source of the Cosmological
Constant (that is, the validity in Nature of the deSitter space time) the expected to occur
condensation of gravitons once the gravity is assumed to be quantized. The smallness of
the CC could be associated to the weakness of the attraction between gravitons. It should
be also pointed out that the technical difficulty linked with the non renormalizability of pure
gravity, should not be considered as a serious obstacle to the possibility of the relevance in
Nature of this effect. This seems to be so, whenever we accept the relevance of string theory
in Physics, because a quantized gravity should be described by string theory in an expected
to be finite way. If such is the case, the just mentioned graviton condensation effect should be
expected in the finite calculational framework of string theory for the quantum gravitational
effects. Finally, the connection of this picture with our discussion comes form the possibility
that the graviton condensation effect could allow a possible realization of the "Matryoshka"
model of the Universe. In it, the collapse of usual matter could occur between regions showing
a difference in the Cosmological Constant values. Such configurations can be imagined as
being closely resembling the so called "gravastars" discussed in Refs. (35; 36). In ending, I
would like to remark about the fact that the observed CC is considered as a surprisingly small
quantity as compared with the energy density of the vacuum modes for the fields associated
to the observed particles in Nature. However, it can be noted that in the framework of QFT
in Minkowski spacetime, such vacuum densities are automatically canceled by the normal
ordering rules in the field quantization procedure. Therefore, one could suspect that such
vacuum contributions can be also efficiently canceled by consistent quantization procedures
in curved spacetimes. The validity of this expectation could perhaps enforce the vanishing of
the CC when QFT is considered in Minkowski space time and the gravitons are assumed as
pure classical modes. However, just the gravitons are assumed to be quantum waves, their
massless character in addition with the natural gravitational attraction existing among them,
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strongly suggest the appearance of the graviton condensate already underlined in Ref. (34),
as being equivalent to the instability of the Minkowski spacetime to become a deSitter one.
This last point also rises the idea about that the one loop effective action for gravity which
should be generated by the graviton condensation effect, could also play a role in explaining
the large scale effects currently attributed the existence of the Dark Matter. We expect to be
able of considering some of these questions in further extensions of the work.
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