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1. Introduction 

A suitable design of an implant material is aimed to provide an essential functionality, 
durability and biological response. Functionality and durability depend on the bulk 
properties of the material, whereas biological response is governed by the surface chemistry, 
surface topography, surface roughness, surface charge, surface energy, and wettability 
(Oshida et al., 2010). The implants biocompatibility has been shown to depend on 
relationship with biomaterials, tissue, and host factors, being associated with both surface 
and bulk properties.  
Research area of thin and nano-structured films for functional surfaces interests to enhance 
the surface properties of materials. Thin films are an important and integral part of 
advanced material, conferring new and improved functionalities to the devices. Also 
processing of thin coatings with reproducible properties is a major issue in life-time of 
implanted biomaterial. 
Currently in the implantology, hydroxyapatite (HA), alumina (Al2O3) and titanium nitride 
(TiN) have been widely chosen as thin biofilms to be coated on metal implants such as 
titanium materials and surgical 316L stainless steel.  
HA coatings on titanium implants have been proposed as a solution for combining the 
mechanical properties of the metals with the bioactive character of the ceramics, leading to a 
better integration of the entire implant with the newly remodelled bone. HA has drawn 
worldwide attention as an important substitute material in orthopaedics and dentistry 
because of its chemical and biological nature similar to that of bone tissue (~70%) (de Groot, 
1983; Kohn & Ducheyne, 1992; LeGeros & LeGeros, 1993; Elliot, 1994), its biocompatibility, 
bioactivity and osteoconductivity (Hench, 1991).  
Al2O3 for its excellent wear resistance (Husmann et al., 1998) high chemical inertness under 
physiological conditions and TiN for its chemical stability are also commonly used as 
biomaterials (Staia et al.,1995). This last one interlayer plays a role as a diffusion barrier and 
it exhibits excellent mechanical properties and chemical stability (Iliescu et al., 2004).  
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Titanium materials (commercially pure titanium ASTM Grades 1 through 4 or Ti-based 
alloys) are considered to be the most biologically compatible materials to vital tissue 
(Oshida et al., 2010). Their more recent applications are in maxillofacial, oral and 
cardiovascular-surgery, as well as in orthopaedics indicating a superiority of titanium 
materials compared to stainless steel, Co-Cr-Mo alloys (Kasemo, 1983). However, they have 
no bioactivity as bone-substitute implant materials. These results in mechanical bonding 
rather than direct chemical bonding between the titanium implant material and the host 
bone tissue (Long & Rack, 1998). According to various in-vitro and in-vivo tests, HA 
implant coatings have shown an improved bone apposition as compared to uncoated 
implants in the first several weeks after operation (Tisdel et al., 1994). 
Surgical AISI 316L stainless steel is widely used in orthopaedic implantology, although 
biological complications may result from its insufficient mechanical and tribological 
properties (Bordji et al., 1996). 316L contains enough chromium to confer corrosion 
resistance by passivity. Nevertheless the passive layer is not enough stable and because of 
poor corrosion resistance of 316L stainless steel under high stressed and oxygen-depleted 
regions, it is suitable to use it in temporary implant devices or coated with bioinert films.  
Nowadays there are numerous thin film deposition techniques; most common are 
molecular beam epitaxy, plasma spray (PS), dipping, electro-codeposition, sol-gel-derived 
coating, magnetron sputtering (MS) and pulsed laser deposition (PLD) methods that have 
been developing rapidly during the last decades. Between them, MS and PLD are very 
powerful process, which are employed successfully in biomedical, functional and 
protective films. MS and PLD processes allow the control of the interface layer between 
the substrate material and the thin film, which in turn can be used to substantially 
improve the film adhesion to substrate. They are useful method for making thin films of 
functional biomaterials. A considerable amount of researches has been devoted to develop 
techniques for coating HA on titanium (Long & Rack, 1998) such as plasma spraying 
(Yang, 1995; Weng et al.,1995), dipping (Li et al., 1996), electro-codeposition (Dasarathy et 
al., 1996), PLD (Cotell, 1994), sputtering (Yang et al., 2005) and sol-gel-derived coating 
(Carradò & Viart, 2010).  
Moreover, PLD (Pelletier et al., 2011) and MS (Carradò et al., 2010) can make thin TiN 
coatings, favourable for high fatigue resistance. In addition, TiN films should have good 
mechanical properties, i.e. a very strong adherence to the substrate, and hardness, Young 
modulus, stiffness and mechanical wear similar to those specific to human bone. Also a 
large variety of deposition techniques like PS (Liu et al. 2003), PLD (Carradò et al., 2008), MS 
(Trinh et al., 2008; Carradò et al., 2008), dipping and spinning (Babaluo et al., 2004) and sol-
gel (G. Ruhi et al., 2008) have been approached for obtaining these oxides (Al2O3).  
We reported some example of bioinert alumina, titanium nitride and bioactive 
hydroxyapatite coated on titanium and stainless steel substrates and we investigated the 
micro-structural and mechanical characteristics of these bioceramic coatings on their 
substrates. Among the different methods to obtain ceramic coatings that we have chosen 
PLD and MS due to their versatility and controllability, the aptitude to synthesize and 
deposit uniform films, with an accurate control of the stoichiometry and crystallinity. 
Various microscopic observations and mechanical characterisations by nanoindentation 
and scratch tests were used in order to connect the mechanical response to the 
microstructure of the coatings. Our studies revealed that the pulsed-laser deposition and 
magnetron sputtering technique appear as extremely versatile technologies in biomedical 
applications. 
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2. Ceramic thin films for biomedical 

Many commercial replacement materials now have been developed as biomaterial for thin 

films, including metal, natural and synthetic polymers, corals and its derivatives and 

synthetic ceramics. These last ones can be divided roughly into three main types governed 

by the tissue response. In broad terms:  

1. bioinert (alumina, titanium nitride, titanium dioxide, zirconia) materials have no or 

negligible tissue response;  

2. bioresorbable (tricalcium phosphate (TCP), Ca3(PO4)2) materials degradable and 

absorbed by the body;  

3. bioactive materials (hydroxyapatite (HA), Ca10(PO4)6(OH)2), bioactive glasses (CaO–

SiO2–P2O5–Na2O), and glass ceramics), encourage bonding to surrounding tissue with, 

for example, new bone growth being stimulated, or porous for tissue in growth (HA 

coating, and bioglass coating on metallic materials) (Hench, 1991; Cao & Hench, 1996; 

Hench, 1998). 

2.1 Bioactive ceramic films 

Hydroxyapatite (HA) forms a real bond with the surrounding bone tissue when implanted. 

Even so, due to the poor mechanical properties of bulk HA ceramic, it cannot be used as 

implant devices to replace large bony defects or for load-bearing application as was 

described by Hench (Hench & Wilson, 1993). Koch (Koch et al., 1990) presented HA has low 

mechanical strength, but very good osteointegration and biocompatibility. The use of HA 

coatings on titanium alloys leads to a structure that has good mechanical strength and good 

osteointegration properties at the surface (Lacefield, 1998). It has also been demonstrated 

that the bond between HA and bone is better than the bond between titanium and bone 

(Radin & Ducheine, 1992; Filiaggi et al., 1993).  

2.2 Bioinert ceramic films  

Alumina (Al2O3) is a highly inert material (Chiba et al., 2003) and resistant to most corrosive 

environments, including the highly dynamic environment that is the human body. Under 

physiological conditions, it is also extremely unreactive and is classed as nearly inert, 

eliciting little if any response from surrounding tissues and remaining essentially 

unchanged after many years of service. Due to its ability to be polished to a high surface 

finish and its excellent wear resistance, Al2O3 is often used for wear surfaces in joint and hip 

replacement prostheses (Hatton et al., 2002). Nevertheless, the body recognizes it as a 

foreign material and does attempt to isolate it by forming a layer of non adherent fibrous 

tissue around the implant where possible.  

Titanium nitride (TiN) is known for its high surface hardness and mechanical strength. It 

was also reported that the dissolution of Ti ions is very low (Tamura et al., 2002). TiN 

coatings are often employ for improving the tribological performance in industrial 

applications due to its mechanical (Leng et al., 2001) and chemical properties including high 

hardness, low wear coefficient (Holmberg & Matthews, 1994). It is biologically inert and 

tolerated by living tissues (Kao et al., 2002). Moreover, the TiN interlayer produces 

improvement of HA film mechanical performances, by increasing its bond strength and 

adherence (Nelea et al., 2002; Ducheyne et al., 1993). 
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3. Deposition techniques 

3.1 Magnetron sputtering (MS) 

Magnetron sputtering (MS) is a very powerful technique which is used in a wide range of 
applications due to its excellent control over thickness and uniformity, excellent adherence 
of the films and its versatility in automatization (Wasa et al. 2003). 
A strong potential difference is applied in a gas, generally of argon, with possibly reactive 
gases (O2, N2, etc.). It causes the ionization of the gas atoms and the creation of plasma. 
These ions are accelerated by the potential difference and strike the target surface. Target 
atoms are then ejected by mechanical action and condense on the substrate. Target electrons 
are also ejected and enter in collision with gas atoms, which causes their ionization and 
allows the maintenance of plasma (Fig. 1). Two types of power supply can be used: alternate 
radio frequency (RF) or direct current (DC). RF is used to deposit insulators, indeed in DC 
one uses a stronger tension to compensate for the resistivity of the target. 
 

 

Fig. 1. Schematic principle of magnetron sputtering (MS) and picture of MS apparatus 

3.2 Pulsed Laser Deposition (PLD) 

Pulsed laser deposition (PLD) is for many reasons a versatile technique. Since with this 
method the energy source is located outside the chamber, the use of ultrahigh vacuum as 
well as ambient gas is possible (Krebs et al., 2003) (Fig. 2). Combined with a stoichiometry 
transfer between target and substrate this allows depositing all kinds of different materials 
(e.g. oxides, nitrides, carbides, semiconductors, metals and even polymers) can be grown 
with high deposition rates. The preparation in inert gas atmosphere makes it even possible 
to tune the properties (stress, texture, reactivity, magnetic properties...) by varying the 
kinetic energy of the deposited particles. All this makes PLD an alternative deposition 
technique for the growth of high-quality thin films (Fernandez-Pradas et al., 1998; Jelínek et 
al., 1995; Mayor et al., 1998; Fernández-Pradas et al., 2002; Arias et al., 1997).  
Because of its capability to restore complex stoichiometry and to produce crystalline and 
adherent films, PLD stands for a challenge to plasma spraying that for the moment is the 
only commercially available technique for HA coatings deposition used in bone 
implantology (Zeng & Lacefield, 2000; Chen et al., 1997; Feng et al., 2000). However, it is 
generally accepted nowadays that plasma spraying produces porous films with poor 
crystallinity, exhibiting a low adherence to the metallic substrate (Carradó, 2010). PLD is an 
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alternative method to coat metal substrates with HA in order to improve both the chemical 
homogeneity and the mechanical properties of calcium phosphate coatings (Nelea et al., 
2006). PLD has successfully produced HA coatings with various compositions and 
crystallinity (Arias et al., 2002). Moreover, PLD can synthesize thin HA coatings, adequate 
for high fatigue resistance.  
 

 

Fig. 2. Schematic principle of Pulsed laser deposition (PLD) 

4. Experimental details  

4.1 Bioinert Al2O3 interlayer 

Al2O3 was deposed on stainless steel (grade 304L, Table 1) substrate— square pieces 
(1×1×10 mm3). Al2O3 was applied as an inert interlayer to improve the adhesion of bio-
ceramic films to the metallic substrate. The surgical stainless steel substrate was 
mechanically polished and then cleaned with methylene chloride and methanol. A 
dynamical pressure of O2 was stabilized inside the PLD chamber and maintained during 
the whole deposition cycle. During the deposition, the stainless steel substrate was kept at 
200 °C.  
Prior deposition the substrates of stainless steel were mirror-polished and then cleaned 
ultrasonically in CH2Cl2 and CH3OH. The studied alumina coatings were deposited onto 
these substrates by PLD and MS.  
 

 
Alloy composition 

[wt%] 

 C max Si max Mn max S max Cr Ni N Cu 

316 L 0.03 1.0 2.0 0.03 17.5/19.5 8.0/10.0 0.045 ≤0.11 

Table 1. Chemical composition in wt of surgical 304L stainless steel 

Magnetron sputtered samples were prepared at low substrate temperature (200 °C) by 
reactive (O2) direct current sputtering on a planar magnetron. The deposition parameters are 
summarized in Table 2. Before deposition, the surface of the substrates was cleaned by a 30 
minutes plasma etching. 
PLD coatings were produced using an excimer laser KrF* emitting at λ= 248 nm, by 20 ns 
pulses at 10 Hz and a sintered alumina target. As for MS samples, the substrates were 
maintained at 200 °C during the deposition time. Prior to the deposition, the pressure in the 
chamber was 5×10-6 Pa. Table 3 sums up the deposition parameters. 
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Sample MS

Target Al

Substrate temperature [°C] 200

Dynamical pressure [Pa] 0.4 with Ar 15 sccm and O2 8 sccm 

IDC [mA] 600

P [W] 180

Deposition time [h] 17.5

Coating thickness [µm] 1.0

Table 2. Experimental conditions for MS Al2O3 coatings 

 

Samples PLD 4 PLD 5 PLD 6 

Fluency [J/cm2] 1.5  

Dynamical pressure [Pa] 6×10-5 5 Pa with O2 10 sccm 1 Pa with O2 10 sccm 

Deposition time (hours) 4.5  

Coating thickness (µm) 1.2 0.6 1.2 

Pulse duration (ns) 20  

Pulse repetition rate (Hz) 10  

Number of pulses 150,000 150,000 180,000 
Substrate temperature (°C) 200  

Ra (m) 0.01 0.03 0.04 

Table 3. Experimental conditions for Pulsed Laser Deposition Al2O3 coatings 

The coatings surface morphology was investigated using a field emission microscope JEOL 
JSM-6700F. The chemical analysis of the thin films was investigated using an energy 
dispersive X-ray analyzer (Oxford Instruments). The crystal structure of the films was 
studied with a Selected Area Electron Diffraction (SAED) of Transmission Electron 
Microscopy (TEM) with a Topcom EM 002B microscope equipped with a small dose 
sensitive camera and a Si/Li detector. 

4.2 Bioactive hydroxyapatite coatings: experimental details 

An UV KrF* laser source (λ = 248 nm, ┬ = 10 ns), placed outside the irradiation chamber, was 
used. The laser radiation was focused with a an anti-reflection coated MgF2 cylindrical lens 
with a focal length of 30 cm and was incident at 45° onto the target surface. The targets were 
mounted in a special holder which was rotated and/or translated during the application of 
the multi-pulse laser irradiation in order to avoid piercing and to continuously submit a 
fresh zone to laser exposure. A multi structure of the type HA/Ti/ was grown on a titanium 
substrate. A multi-target carousel was used to facilitate the target exchange, in order to 
avoid exposition of growing films to open air. Commercial titanium (Ti grade 4), and 99.98% 
pure HA targets have been subsequently used.  
Two Ti Grade 4 substrates (Ø = 15 mm, thickness = 2 mm) were prepared with a final 
polishing by silicon carbide sandpaper (1200#) and finally treated chemically. The chemical 
etching consisted in a pre-treatment by specimen immersion in 1 M sodium hydroxide and 
0.5 M hydrogen peroxide at 75 °C for 10 minutes for cleaning and decontaminating the 
titanium surface from embedded particles and machining impurities. After 10 minutes of 
treatment in 0.2 M oxalic acid at 85°C to produce a microporous surface and a final 
immersion in nitric acid for final passivation was done. The Ti interlayer was interposed 
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between the initial titanium substrate and the HA film, to minimize interface stresses. 
Finally, one sample was kept as it was (HA-2, Table 4) and the second was treated for 6 
hours in an atmosphere enriched in water vapours (HA-1, see Table 4) in order to improve 
the HA crystallinity status and to restore the loss of OH groups from the HA molecule. The 
deposition conditions are collected in Table 4. 
 

 Target Temperature [°C] Pression [Torr] Pulses Water vapours treatment 

HA-1 Ti RT 10-6 40000

 HA 400 10-6 500

 HA 400 0.35 H2O 30000 *

HA-2 Ti RT 10-6 40000

 HA 400 10-6 500

 HA 400 0.35 H2O 30000 without treatment 

Table 4. Experimental conditions of HA films with and without water vapours 

5. Structural and microstructural characterisation 

Preliminary X-ray diffraction was performed for detecting the crystalline phases of the 
coatings. Only the characteristic peak pattern of austenitic Fe corresponding of 33-0397 
JCPDS was displayed. Consequently the alumina coatings seem to be amorphous. 
Nonetheless, in case of MS Al2O3 films grown at 200 °C, selected area electron diffraction 
(SAED) reveals a fine crystallization in the γ-Al2O3 phase (Fig. 3b). The SAED pattern 
corresponds to the tetragonal γ-Al2O3 polycrystalline structure, with reticular parameters a = 
b = 0.57 nm and c = 0.79 nm. The MS film deposited shows the characteristic 311, 400, 511, 
440 and 444 rings of polycrystalline aluminium oxide and the continuity of the rings in the 
first selected area diffraction indicates the presence of randomly oriented grains of very fine 
dimension (Fig. 3a). Whereas, as clearly shown in PLD Al2O3 films at 200 °C (Fig. 3c) 
samples is generally amorphous with a reduced number of small grain (Carradò et al., 2008).  
Laser deposited coatings have a smooth surface (Fig. 4a), with alumina particulates 
deposited on the film or embedded into the film. These particulates generally are either 
spherical, with a diameter between several hundreds of nanometers and one micrometer, or 
discoidal, with a diameter usually exceeding one micrometer (Fig. 4b,c). MS samples exhibit 
a smooth surface which follows closely the topography of the substrate. Spherical alumina 
particulates with approximately 100 nm diameter lay on top of the alumina film. They are 
generally agglomerated in structures resembling coral (Fig. 4d). 
 

 

Fig. 3. High-resolution TEM (HRTEM) plan-view image or Bright field of MS film (a) and 
SAED patterns of MS2 (b) and of PLD5 (c) 
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These structures are spread on areas up to 60 µm diameter. EDS measurements demonstrate 
that the coatings have a chemical composition close to stoichiometric Al2O3 (Al: 34%, O: 
66%, for MS coatings, and Al: 38%, O: 62%, for PLD coatings). 
 

 

Fig. 4. (a-c) Typical SEM micrographs of an Al2O3 film consisting evidencing a smooth film 
with embedded droplets. (a) PLD4  sample, without O2; (b) PLD 5 working pressure of 5 Pa, 
with O2 10 sccm. The scale bar is 1 µm (c) PLD 6 coatings deposed with working pressure of 
1 Pa, with O2 10 sccm. (d) MS coatings deposed with working pressure of 0.4 with Ar 15 
sccm and O2 8 sccm 

In Fig. 5 some typical SEM micrographs of the PLD HA film are given. The surface is compact 
and well-crystallized and exhibits an irregular morphology principally due to the chemical 
etching of the substrate. Some grain-like particles and droplets were observed on the surface of 
the film, characteristic to PLD coatings (Cottel, 1994). The morphology of the droplets suggests 
that they might be a result of target splashing in liquid phase (Fig. 5b, insert), since the droplet 
diameter is much smaller than the particle size of the powder used to prepare the HA target.  
SAED-TEM image (insert in Fig. 6) reveals a polycrystalline structure of the ceramic film, 
consisting of nanometric crystalline HA domains. The desired formation of a graded layer of 
about 20–25 nm thickness can be clearly observed. Atomic plane of grains are visible in 
some regions, demonstrating the polycrystalline structure of the HA layer. 
 

 

Fig. 5. (a) SEM micrograph of a HA film (HA-2, without water treatment). Particles of 
various sizes are visible with the larger ones been porous in (a) and smooth and vitreous in 
(b, HA-1, with water treatment) 
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Fig. 6. HRTEM image of the HA/Ti interface. The presence of the graded layer is evidenced  

6. Mechanical and tribological characterization 

As described before, bioceramics such as Al2O3 and HA are currently used as biomaterials 
for many biomedical applications partly because of their ability to form a real bond with the 
surrounding tissue when implanted (Cao et al, 1996). However, usually the main weakness 
of this material lies in their poor mechanical strength that makes them unsuitable for loads 
bearing applications.  
Our study is focused on understanding the mechanical characteristics and the tribological 
behaviour of a bioinert Al2O3 and a bioactive HA according to their micro-structural 
features processed by MS or PLD under several deposition conditions. The micro hardness,  
H, and elastic modulus, E, of the layers were measured using a nanoindentation system and  
a nano scratch experiments were employed to understand their wear mechanisms.  
The literature devoted to mechanical properties of bioceramics is not sufficiently exhaustive 
and this section intends to give some clarifications.  

6.1 Nanoindentation  

The mechanical properties of the Al2O3 and HA bioceramics coated by MS or PLD were 
analysed by nanoindentation technique using a Nanoindenter XP developed by MTS Systems 
Corporation. In this technique, a diamond tip (Berkovich indenter) was drawn into the surface 
under very fine depth and load control. The reaction force (P) was measured as a function of 
the penetration depth (h), both during penetration (loading phase) and during removal 
(unloading phase), with high load and displacement resolutions (50 nN and 0.04 nm 
respectively). H and E were deduced from the recorded load-displacement curve using the 
Oliver and Pharr procedure (Oliver et al. 1992). The force required to indent for a particular 
applied load (and its corresponding penetration depth) gives a measure of the hardness of the 
material, while the response of the material during removal indicates the apparent elastic 
modulus. Due to the low thicknesses of the coatings (500 to 1200 nm), the indentation tests 
were performed at shallow indentation depth to avoid or limit the effect of the substrate. 
Moreover, to follow the evolution of H and E values (in accordance to the indentation depth 
during loading phase) several partial unloading phases were introduced in order to estimate 
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the different contact stiffnesses. Consequently, the substrate effect on nanoindentation 
measurements was deduced. Prior to test, the Berkovich triangular pyramid was calibrated 
using the fused-silica samples following the Oliver and Pharr procedure (Oliver et al., 1992). 
Fig. 7 illustrates the experimental load-displacement curves obtained from the different 
bilayer Al2O3/304L systems (samples MS and PLD 5) whereas Fig. 8 shows the evolution of 
H and E, estimated on the 304L substrate as a function of the applied load (P) and the 
corresponding penetration depth (h).  
 

 

Fig. 7. Load-displacement curves obtained on Al2O3/304L systems processed by (a) MS and 
(b) PLD 5 

To obtain the H of a coated film, the indentation depth should be about ten times smaller 
than the film thickness, in case of a harder film deposited on a soft substrate (Buckle, 1973). 
Nevertheless, it mainly depends on (i) the mechanical properties of the film and of the 
substrate (ratios Hf/Hs  and Ef/Es), (ii) the indenter shape and (iii) the interface adhesion 
(Sun, 1995). Basically, the substrate effect on the determination of the Hf and Ef by 
nanoindentation is directly related to the expansion of the elastically and plastically 
deformed volume underneath the indenter during the loading phase. This critical depth 
normalized by the film thickness (hc/t) may vary between 0.05 and 0.2. The evolution of the 
composite hardness with indentation depth was predicted by various methods and models.  
 

 

Fig. 8. (a) Hardness and (b) elastic modulus as function of penetration depth determined 
from the 304L substrate without coating 
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In our study, due to the deposition of a hard film on a softer substrate, the analytical 
expression of Eq. 1 (Korsunsky, 1998) was used to extract the true Hf and Ef for the MS and 
PLD Al2O3 films: 
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c

H H
H H

h
k

t


 

   
 

 (1)  

where k is a fitting parameter. Here again, the contact depth is determined according to the 
Oliver and Pharr procedure (Oliver, 1992).  
Fig. 9 shows the evolutions of the composite hardness as a function of the indentation contact 
depth normalized to the coating thicknesses of the samples PLD 4, PLD 5 and PLD 6 and it can 
be seen that the previous equation can successfully described the shape of these curves.  
 

 

Fig. 9. Evolution of the harness according to the ratio (hc/t) for the sample (a) PLD 4, (b) 
PLD 5 and (c) PLD 6 

Using the same fitting equation (Eq. 1) the hardness of the MS sample was measured. Figure 
10 shows MS sample hardness measured values compared to PLD 4. The values of Hf, Hs 
and Ef are reported in Table 5. To determine the elastic modulus Ef of a film deposited on a 
substrate, a model should also be used to account for the substrate effect (Saha and Nix, 
2002). But, in a first approach, the average of elastic modulus is obtained by the plateau 
region of the curves (see Fig. 10 and Fig. 11). From these curves, an average value of Ef was 
obtained and reported in Table 5, assuming a Poisson coefficient of ┭ = 0.3 and ┭ = 0.25 for 
the 304L substrate and for the coatings respectively.  
 

 

Fig. 10. Hardness and elastic modulus evolutions as function of the penetration depth (ht) of 
MS  and PLD 4 samples 
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Sample Hf [GPa] Hs [GPa] Ef [GPa] 

MS 12.10 ± 1.23 2.60 ± 0.30 158 ± 13 

PLD 4 11.29 ± 0.35 2.34 ± 0.30 180 ± 15 

PLD 5 7.50 ± 0.25 2.29 ± 0.10 150 ± 20 

PLD 6 10.27 ± 0.25 1.95 ± 0.30 178 ± 13 

Table 5. Mechanical properties of Al2O3 films determined by nanoindentation (using Eq. 1) 

Fig. 9 illustrates a small difference between the experimental data and the fitting curves that 
could be explained by fracture phenomenon around the tip, defined by the physical 
meaning of the k parameter. In fact, SEM observations of the residual imprints (Fig. 12) 
show the formation of cracks in the contact zone for MS and PLD 5 layers. These cracks are 
related to the local microstructure and are predominately present on sample processed by 
MS and PLD5. They indicated the fragility of Al2O3 films compared to other ones which 
seem more ductile. Furthermore, it could also be linked to the smaller thickness of the Al2O3 
coating in case of PLD 5 (0.5 µm) compared to PLD 4 and PLD 6 (1.2 µm). 
It appears clearly that nanoindentation was relevant to extract the mechanical properties of 
the bioceramics films combined with microstructural observations showing the fragility 
aspects of the MS and PLD 5 films. For all samples, Hf and Ef values were in good 
agreements with those found by Ahn (Ahn, 2000) or Knapp (Knapp, 1996) for Al2O3 
deposited by Radio Frequency sputtering or pulsed laser deposition respectively.  
 

 

Fig. 11. Evolution of the elastic modulus for composite systems PLD 4, PLD 5 and PLD6 

 

 

Fig. 12. SEM observations of the residual imprints for indentation test performed at  
hT = 0.5 µm (first line of images) and hT = 1 µm (second range of images) 
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Nanoindentation experiments on bioactive hydroxyapatite layer (HA-1 and HA-2) PLD 
coated on massive Ti substrate were carried out and treated as described in this section. Due 
to the high porous and heterogeneous HA morphology (Fig. 5) a high scattering data was 
shown. Indeed, at low load, the scattering is related to the surface roughness and the surface 
morphology. Using a linear approximation, it was further possible to estimate the H and E 
values at the penetration depth of 100 nm that corresponds to several percent of the film 
thickness and thus to the intrinsic values of the mechanical properties of the tested HA 
coatings. Table 6 summarizes the obtained results. 
 

Sample H [GPa] E [GPa] 

HA-1 2.5 ± 0.5 80 ± 20 

HA-2 1.7 ± 0.5 65 ± 20 

Table 6. Experimental values of H and E for HA coatings determined by nanoindentation 

The values of nanohardness and elastic modulus experimentally determined in this study 
are in good agreements with the literature (Nieh, 2001; Deg, 2009). Most of them reported 
values of E and H determined by nanoindentation technique with a Berkovich indenter for 
plasma sprayed HA coatings on Ti ranging from 83 to 123 GPa and 4 to 5 GPa, respectively 
(Zhang, 2001). 

6.2 Nanoscratch  

In recent years, scratch testing has become a more popular and meaningful way to address 

coating damage and seems able to overcome the deficiencies found in other more subjective 

test methods. It involves the translation of an indenter of a specified geometry subjected to a 

constant or progressive normal load across a surface for a finite length at either constant or 

increasing speed. At a certain critical load the coating may start to fail. The beginning of the 

scratch can be taken as truly representative of the resistance of the investigated materials 

towards penetration of the indenter before scratching. The critical loads can be confirmed 

and correlated with observations from optical microscope. Fig. 13 schematically describes 

the scratch tester.  

The scratch testers measure the applied normal force, the tangential (friction) force and the 

penetration and the residual depth (Rd). These parameters provide the mechanical signature 

of the coating system. Using this general protocol, it becomes possible to effectively replicate 

the damage mechanisms and observe the complex mechanical effects that occur due to 

scratches on the surface of the coating. 

A typical scratch experiment is performed in three stages: an original profile, a scratch 

segment and a residual profile (Fig. 13). The actual penetration depth (hT) of the indenter 

and the sample surface are estimated by comparing the indenter displacement normal to the 

surface during scratching with the altitude of the original surface, at each position along the 

scratch length.  

The original surface morphology is obtained by profiling the surface under a very small 

load at a location where the scratch is to be performed. Figure 13 defines the different steps 

of a classical scratch procedure. Roughness and slope of the surface are taken into account in 

the calculation of the indenter penetration.  

The parameter commonly used to define the scratch resistance of the material, when 
fracture is involved, is the critical load. This parameter is the load at which the material first 
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fractures. LC1 and LC2  are the critical load values which correspond, respectively, to failure 
and detachment of the coating. The fracture events can be visible on both the microscope 
view and the penetration curves. 
All scratch experiments were performed with a spherical indenter with a tip radius R = 5 µm 
and at a constant sliding velocity of Vtip = 10 µm s-1. The parameters used for these 
experiments are reported in Table 7. 
 
Scratch Starting load [mN] Maximum load [mN] Loading rate [mN/s] Scratch length LR [µm] 

#1 1 16 0.3 500 
#2 10 25 0.3 500 

#3 20 40 0.4 500 
#4 40 80 0.4 1000 

Table 7. Scratch parameters  

 

 

Fig. 13. Schematic description of a typical scratch procedure: step 1, original surface 
morphology, step 2, penetration depth during scratch, step 3, residual depth of the scratch 
groove. 

Scratch experiments are known to be a more qualitative method compared to 
nanoindenation, and it is especially applied to compare the tribological response to friction 
of the tested surface during the same experimental procedure. In particular, scratch testing 
is widely used to determine the critical parameters for failure, such as the critical load which 
can be clearly seen when discontinuities appear on the different curves hT versus FN or FT 
versus FN. A further parameter of importance for tribological behaviour of films is the 
friction coefficient, defined as the ratio FT/FN. 
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In our study, residual scratch tracks were observed by SEM and compared to the experimental 
load-displacement curves during scratch to get access to the tribological properties of the 
deposited bioceramics in function of the used processes of elaboration (MS or PLD).  
As observed for MS and PLD 5 samples, the failure and then detachment of the Al2O3 
coating result in a abrupt changes in load-displacement curves, shown in Fig. 14(a-b), that 
show that critical load were reached. This is characteristic of an important release of an 
elastic energy during the propagation of cracks into Al2O3 films and then in the interface 
between the film and the underlying substrate, yielding to delamination. By contrast for the 
PLD 6 sample (Fig. 14c), no change in the hT versus FN curves is observed, proving that no 
ductile-brittle transition occurs for the tested normal load range. Same trend was observed 
for the PLD 4 sample but not presented here. 
 

 

Fig. 14. Penetration depth as a function of the applied load during scratch measurements 
numbered 1 to 4 for (a) MS and (b-c) PLD 5 and PLD 6 samples. 

SEM observations (Fig. 15), showing the scratch morphologies, clearly indicate that the 
initiation of failure occurs at the beginning of the scratch experiments for sample PLD 5 
where partial cone track is initiated at the trailing edge of the spherical indenter, rapidly 
followed by delamination process of the Al2O3.  
 

 

Fig. 15. SEM micrographs of the residual groove of scratch experiments 4 for the MS and 
PLD Al2O3 coatings 
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For MS sample, failure events can be seen with cracks perpendicular to the scratch direction 
that appear on the bottom of the groove. These cracks are essentially due to the tensile stress 
at the trailing edge of the contact during friction. Furthermore, others cracks are visible on 
both sides of the scratch (Fig. 15). In contrast, PLD 4 and PLD 6 samples show no evidence 
of failure and a rather ductile behavior as seems to indicate the allure of the load-
displacement curves for these samples (Fig. 14). 
As mentioned with nanohardness measurements, the mechanical properties of PLD 6 are 
higher. It is important to note that the harder film (PLD 6) appears to be tougher than the 
softer (PLD 5), as determined by nanoindentation experiments exposed in the above section. 
However, failure processes are dependent on the deposition routes through residual stresses 
generated at the interface between film and substrate and also on the adhesion energy 
which can explain that MS sample (which shows the higher hardness compared to any PLD 
samples) is subject to cracking under nanoscratch. We can, however, notice that in 
comparison to PLD 5, these failure events appear with some delay and for a higher load. 
Using the same tribological experimental conditions scratch tests were performed on the HA 
samples. Some results are given in Fig. 16 with increasing load from 0.75 to 15 mN (realized 
in three steps) at the sliding speed of 10 µm·s-1 (length scratch was 500 µm). 
The HA tribological behaviour is opposed to one of Al2O3 layer. It is due to the surface 
morphology of this last one which is a dense, homogeneous and with weak roughness. 
Opposite tribological performance of the PLD HA on Ti substrate is conditioned by its 
topography presenting a high roughness due to the presence of droplets of different 
diameters and nanoaggregates. This can de described by the high level of oscillations in the 
penetration curves. The HA-1 and HA-2 analysis of curves cannot clearly show a distinct 
mechanical behaviour within the tested range of load.  
 

 

Fig. 16. Resistance to Penetration curves determined by scratch experiments on (a) HA-1 and 
(b) HA-2 

7. Conclusions 

Morphological, structural, nanoscratch and nanoindentation studies were performed to 
evaluate the composition, crystallinity status and mechanical properties of Al2O3/304L and 
HA/Ti structures synthesized by PLD and MS. We compared the characteristics of the 
substrates and their coatings deposited in different conditions. Alumina nanostructured 
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films had a smooth surface, with few alumina particulates deposited on. They were 
stoichiometric, partially crystallized with an amorphous matrix. The obtained values of 
hardness and elastic modulus of the studied films are in good agreements with those found 
in literature. Different mechanical behaviours were observed in relation to different 
parameter of deposition (with or without working pressure in O2). By nanohardness and 
wear measurements, the mechanical properties of PLD 6 are higher. The harder PLD 6 film 
appears to be tougher than the softer films MS and PLD 5, as determined by nanoscratch 
experiments and validate by tribological tests. We also compared the characteristics of the  
HA synthesized with (HA-1) and without (HA-2) a post-deposition heat treatment in water 
vapour showing a well-crystallized, polycrystalline structure and an irregular HA 
morphology due to the chemical etching of the substrate and the presence of some HA 
particles and droplets, characteristic to PLD coatings.  
Tribological behaviour of HA samples is mainly conditioned by the surface morphology as 
detected by the numerous oscillations on the scratch penetration curves. During scratching, 
the plastic strain is the leading deformation mechanism without failure event, at least in the 
tested load range. 
These studies reveal that the pulsed-laser deposition and magnetron sputtering techniques 
appears extremely versatile technology and good candidates in tribological applications. 
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